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1. Overview

Let’s first say what this seminar is actually about. A (coherent) D-module or stratified bundle is a
vector bundle endowed with an infinitesimal descent datum. Informally such a descent datum
is an algebraic differential equation. More concretely: let k be an algebraically closed field and
X/k a smooth (integral and separated) variety. On X we will define a sheaf DX/k of differential
operators OX → OX . Various examples of sections of DX/k are
I (degree 0) sections f ∈ OX ,
I (degree 1) derivations θ ∈ TX/k,
I compositions of such.

Composition defines a ring structure on DX/k. It is not commutative! For instance, for f ∈ OX
and θ ∈ TX/k one has θ ◦ f = f ◦ θ + θ( f ).

Example 1.1. Take X = An with coordinates x1, . . . , xn.
I If char k = 0, then DX/k is the free OX-module on generators ∂e1

x1 · · · ∂
en
xn .

I If char k = p is positive, then we have ∂
p
xi = 0. Nevertheless, there exists a degree p operator

that acts like 1
p! ∂

p
xi and does not come from derivations. �

A D-module on X/k is simply a sheaf E on X with a DX/k-module structure. A first example is
the sheaf E = OX with action θ · f = θ( f ).

Example 1.2. Take global sections θ1, · · · , θr ∈ DX/k(X). They determine a subsheaf Sol ⊆ OX
of solutions, i.e. sections f ∈ OX satisfying θ1( f ) = . . . = θr( f ) = 0. Let M be the D-module
DX/k/(DX/kθ1 + . . . +DX/kθr). Then

Sol←→ HomDX/k (M,OX),
f 7→

[
θ 7→ θ( f )

]
ϕ(1) 7→ϕ

are inverse isomorphisms. �

One of our main goals is to derive the Riemann–Hilbert correspondence. This is a result from
complex geometry that relates D-modules to local systems. The latter are purely topological!
It is best expressed in terms of the analytic space Xan associated to a complex variety X/C.
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Here (1) is the classical, analytic Riemann–Hilbert correspondence. The equivalence (2) holds
by the standard GAGA theorems if X is proper. On the other side, however, local systems
on Xan do not have a good algebraic analogue. But finite local systems do. Equivalence (3) is
called the Riemann existence theorem. In another direction, local systems on Xan correspond to
representations of the fundamental group π1(Xan). Similarly finite local systems correspond
to representations of the profinite completion π̂1(Xan). These are the equivalences (4). The
profinite completion π̂1(Xan) has an algebraic description as the étale fundamental group πet

1 (X).
Finally, the induced inclusion (6) is simply given by restriction along π1(Xan)→ πet

1 (X).

Theorem 1.3 (Grothendieck–Malc̆ev). Let π be a finitely generated group. If π̂ = 1, then all repre-
sentations of π are trivial. �

Corollary 1.4. All coherent D-modules on a proper smooth variety X/C are trivial iff πet
1 (X) = 1. �

Gieseker conjectured in 1975 that the same should be true in positive characteristic, and proved
the implication ⇒. The converse was proven only in 2010 by Esnault–Mehta. We will not go
into that proof. Instead, towards the end of the seminar we will verify the conjecture in several
specific examples.

2. Preliminaries

In this section we recall a few basic notions that we’ll need. The results below can be found
in Hartshorne’s Algebraic geometry or Liu’s Algebraic geometry and arithmetic curves. All schemes
are tacitly assumed to be locally noetherian.

Let X be a scheme. An OX-module is an abelian sheaf E endowed with a module structure
under the structure sheaf OX . We recall some constructions:⊕

i∈I
Ei =

[
U 7→

⊕
i∈I

Ei(U)
]#

, HomOX (E,F) =
[
U 7→ HomOU (E|U ,F|U)

]
,

E⊗OX F =
[
U 7→ E(U)⊗OX(U) F(U)

]#
, E∨ = HomOX (E,OX).

An OX-module E is free if it is isomorphic to a direct sum
⊕

i∈I OX . It is locally free if locally on
X it is free. An important class of OX-modules are vector bundles, locally free OX-modules of
finite rank. If f : X → Y is a morphism, there is a direct image functor f∗E and an inverse image
functor f ∗F = OX ⊗ f−1OY

f−1F. They satisfy HomOX ( f ∗F,E) = HomOY (F, f∗E).
Let A be a ring and M an A-module. Associated to M is an OX-module M̃ on X = Spec A

defined by M̃(D( f )) = M f . An OX-module is called quasi-coherent if locally on X it is of this
form. It is called coherent if moreover the module M is finitely generated. Being (quasi-)coherent
is stable under taking kernels, cokernels, images, extensions, direct sums, and tensor products.
However, the dual of a quasi-coherent OX-module is not necessarily quasi-coherent.

Theorem 2.1. Let f : X → Y be a morphism, E an OX-module, and F and OY-module.
I If F is (quasi-)coherent, then so is f ∗F.
I Suppose f is quasi-compact and quasi-separated. If E is quasi-coherent, then so is f∗E.
I Suppose f is proper. If E is coherent, then so is f∗E. �

Example 2.2. Let f : Spec A→ Spec B be a morphism of affine schemes, M an A-module, and
N a B-module. Then

f ∗Ñ = Ã⊗B N, f∗M̃ = B̃ M

where B M is the B-module obtained from M by restriction of scalars. �
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As next topic we recall derivations. Let A be a ring, B an A-algebra, and M a B-module. An
A-derivation θ : B → M is an A-linear map satisfying the Leibniz rule θ(bc) = bθ(c) + cθ(b).
Each A-algebra B has a universal A-derivation denoted d: B → Ω1

B/A. The elements of Ω1
B/A

are called differential forms. The construction of Ω1
B/A commutes with base change, in particular

with localization. Hence for a scheme X/S we obtain the sheaf of differential forms Ω1
X/S. It is

quasi-coherent; if X/S is locally of finite type, it is coherent.
Here is an abstract construction. Let I be the kernel of the multiplication map B⊗A B→ B.

Then Ω1
B/A = I/I2 with db = 1⊗ b− b⊗ 1. Similarly, for a scheme X/S let ∆ : X → X×S X be

the diagonal and I the kernel of ∆# : OX×SX → ∆∗OX . Then Ω1
X/S = ∆∗(I/I2).

Example 2.3. Let X = Z( f1, . . . , fr) ⊆ An over S = Spec k. Then

Ω1
X/k =

⊕n
i=1 OXdxi

OXd f1 + . . . +OXd fr
.

Here dx1, . . . , dxn are symbols and d f = ∂ f
∂x1

dx1 + . . . + ∂ f
∂xn

dxn. �

Example 2.4. There is a short exact sequence

0 Ω1
Pn/k OPn(−1)n+1 OPn 0.

In particular Ω1
P1/k = OP1(−2). �

The tangent sheaf on X/S is TX/S = (Ω1
X/S)

∨. By the universal property of Ω1
X/S we immedi-

ately see that TX/S is the sheaf of OS-derivations OX → OX .
To conclude we recall some facts about smoothness. A morphism X → S is smooth if it is

locally of finite type, flat, and has regular geometric fibers. It is smooth of relative dimension n if
moreover all fibers are pure of dimension n. It is étale if it is smooth of relative dimension zero.
Recall that X/k is regular if at all (closed) points x ∈ X one has dimκ(x) mx/m2

x = dimOX,x.

Theorem 2.5. Let k be an algebraically closed field and X/k a variety. The following are equivalent:
I X is smooth of dimension n,
I X is regular of dimension n,
I Ω1

X/k is locally free of rank n,
I TX/k is locally free of rank n,
I locally X is of the form Z( f1, . . . , fr) ⊆ An+r such that J =

( ∂ fi
∂xj

)
i,j has rank r. �

Theorem 2.6. Let f : X → Y be a morphism of smooth k-varieties.
I f is smooth iff Ω1

X/Y is locally free iff the tangent map TX/k → f ∗TY/k is surjective.
I f is étale iff Ω1

X/Y = 0 iff the tangent map TX/k → f ∗TY/k is bijective. �

Theorem 2.7. Let X/k be a smooth variety and x ∈ X. There exists an open neighborhood U ⊆ X of
x and regular functions f1, . . . , fn ∈ OX(U) such that d f1, . . . , d fn form a basis of Ω1

X/k on U. The
induced k-morphism f : U → An is étale. �

Combining the last two theorems yields the following fact. On any smooth variety X/k locally
one has Ω1

X/k = f ∗Ω1
An/k for some étale map f . Thus we know the local structure of Ω1

X/k on
any smooth variety. We will use the same idea to compute the local structure of DX/k.
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