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3 Sobolev spaces

When studying differential equations it is often convenient to assume that all functions in
the equation are several times differentiable and that their derivatives are continuous. If the
equation is of second order, for instance, one usually assumes that the solution should be
two times continuously differentiable. There are several reasons to allow functions with less
smoothness. Let us consider two of them.

Suppose that
u′′(t) + αu′(t) + βu(t) = f(t)

describes the position u(t) of a particle at time t, where f is some external force acting on
the particle. If the force is contiuous in t, one expects the solution u to be twice continuously
differentiable. If the functions f has jumps, the second derivative of u will not be continuous
and, more than that, u′ will probably not be differentiable at the points where f is discon-
tinuous. Such external forces typically appear in systems such as electrical circuits, where
external influences can be switched on or off. There is no harm in such discontinuities. The
function u′′ still exists almost everywhere and u′ will still be the indefinite integral of u′′.

The second reason concerns mathematical rather than modeling issues. Differential equa-
tions can often not be solved explicitly. It can then still be useful to know existence of
solutions. For instance, if one wants to apply numerical approximation schemes. A functional
analytic approach to existence of solutions has become a popular method. Showing existence
comes down to finding, among all differentiable functions (or m times differentiable functions)
a function which satisfies the equation. The set of all differentiable functions is a function
space.

The functional analytic approach uses structure of function spaces and maps on them to
show existence of solutions. It is almost indispensible that the function space in which the
solution is sought is a linear space with a norm and that it is complete with respect to the
norm. For instance the linear space C1[0, 1] of all continuously differentiable functions on
[0, 1] with the norm

‖f‖C[0,1] := |f(0)| + max
0≤t≤1

|f ′(t)|

is a complete normed space, that is, a Banach space. It is often desirable that the space is
a Hilbert space, that is, a Banach space where the norm is induced by an inner product. It
turns out that the space of differentiable functions is not a Hilbert space. However, there are
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Hilbert spaces consisting of almost everywhere differentiable functions, which turn out to be
very useful for the study of differential equations.

3.1 Sobolev spaces on intervals

The space C[a, b] of all continuous functions from [a, b] to R is a Banach space with the norm

‖f‖∞ = max
a≤t≤b

|f(t)|.

This space is not a Hilbert space. Let L2[a, b] denote the space of all Lebesgue measurable
functions f : [a, b] → R such that

∫
[a,b] f(t)2 dt < ∞. Let L2[a, b] denote the Banach space of

equivalence classes of functions from L2[a, b], where we identify two functions that are equal
almost everywhere. The space L2[a, b] is a Hilbert space with the inner product given by

〈f, g〉L2 =

∫

[a,b]
f(t)g(t) dt

and its induced norm is

‖f‖L2 =

(∫ b

a
f(t)2 dt

)1/2

.

A continuously differentiable function can be seen as the indefinite integral of a continuous
function. In the hope to obtain a Hilbert space of ‘differentiable’ functions we could consider
the functions that are indefinite integrals of functions from L2[a, b]. Recall that every g ∈
L2[a, b] is integrable.

Define

W 1,2[a, b] := {α +

∫ t

0
g(s) ds : α ∈ R, g ∈ L2[a, b]}.

First observe that there is no ambiguity in the function t 7→
∫ t
0 g(s) ds. If we would take

another element g̃ from the same equivalence class as g, then g̃ and g are equal almost
everywhere, so that their integrals over any set coincide. Observe further that the set W 1,2[a, b]
is a vector space with the pointwise addition and scalar multiplication. We have seen that the
indefinite integral of an integrable function is absolutely continuous. Therefore the function
f(t) = α+

∫ t
0 g(s) ds, where g ∈ L2[a, b], is absolutely continuous. Moreover, f is differentiable

almost everywhere and its derivative equals g almost everywhere. We will denote the (almost
everywhere defined) derivative of an absolutely continuous function f by f ′. The set W 1,2

equals

W 1,2[a, b] = {f : [a, b] → R : f is absolutely continuous and

∫ b

a
f ′(t)2 dt < ∞}.

Define an inner product on W 1,2[a, b] by

〈f, g〉W 1,2 = f(a)g(a) +

∫ b

a
f ′(t)g′(t) dt, f, g ∈ W 1,2.

The induced norm is given by

‖f‖1,2 =

(
f(a)2 +

∫ b

a
f ′(t)2 dt

)1/2

=
(
f(a)2 + ‖f ′‖2

L2

)1/2
.
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The space W 1,2[a, b] endowed with the inner product 〈·, ·〉W 1,2 is called a Sobolev space. The
role of the upper indices 1, 2 becomes clear if we introduce some other Sobolev spaces:

W 1,p[a, b] = {α +

∫ t

0
g(s) ds : α ∈ R, g ∈ Lp[a, b]}

and, inductively,

Wm,p[a, b] = {α +

∫ t

0
g(s) ds : α ∈ R, g ∈ W m−1,p[a, b]},

where m ∈ N and p ≥ 1. We focus on W 1,2.

Lemma 3.1. The Sobolev space (W 1,2[a, b], 〈·, ·〉W 1,2 ) is a Hilbert space.

Proof. It is straightforward to show that W 1,2 is a vector space, that 〈·, ·〉W 1,2 is a symmetric
bilinear form on W 1,2, and that 〈f, f〉W 1,2 ≥ 0 for every f . If f ∈ W 1,2 is such that 〈f, f〉W 1,2 =

0, then
∫ b
a f ′(t)2 dt = 0, so f ′(t) = 0 for almost every t. Since f is absolutely continuous (as

it is an indefinite integral), it follows that f is constant. Since we also have that f(a) = 0,
the function f must be identically zero.

Next we show that W 1,2[a, b] is complete. Let (fn) be a Cauchy sequence in W 1,2. As
‖f ′

n − f ′
m‖2

2 ≤ ‖fn − fm‖W 1,2 , the sequence (f ′
n) is a Cauchy sequence in L2[a, b]. Because

L2[a, b] is complete, there exists a g ∈ L2[a, b] such that ‖f ′
n − g‖L2 → 0 as n → ∞. Also,

|fn(a)−fm(a)| ≤ ‖fn−fm‖W 1,2 , so (fn(a)) is a Cauchy sequence in R. Let α := limn→∞ fn(a).
Define

f(t) := α +

∫ t

a
g(s) ds, t ∈ [a, b].

Then f ∈ W 1,2. It remains to show that f is the limit of fn with convergence in the sense of
W 1,2. Well,

‖f − fn‖2
W 1,2 = (α − fn(a))2 + ‖g − f ′

n‖2
2 → 0 as n → ∞,

so f is indeed the limit in W 1,2 of (fn). Hence W 1,2 is complete.

There is a physical interpretation of the space W 1,2. If f describes the position of a
particle, then f ′(t) is its velocity at time t. The condition

∫ b
a f ′(t) dt < ∞ then means that

the total kinetic energy of the motion from time a to b is finite. So W 1,2 is the space of ‘curves
with finite kinetic energy’.

The essential part of the norm ‖ · ‖W 1,2 is the term
∫ b
a f ′(t)2 dt. Only this term would not

define a norm as otherwise each constant function would get norm equal to zero. There are
different ways to add a term to make it a norm. A common other choice is the following.
Define

〈〈f, g〉〉 =

∫ b

a
f(t)g(t) dt +

∫ b

a
f ′(t)g′(t) dt, f, g ∈ W 1,2[a, b].

It is easy to verify that 〈〈·, ·〉〉 is an inner product on W 1,2.

Claim 3.2. The norm ||| · ||| induced by 〈〈·, ·〉〉 is equivalent to ‖ · ‖.
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Proof. For x ∈ [a, b],by (α + β)2 ≤ 2α2 + 2β2 and Cauchy-Schwartz,

f(x)2 =

(
f(a) +

∫ x

a
f ′(t) ds

)2

≤ 2f(a)2 + 2

(∫ x

a
f ′(t)1 dt

)2

≤ 2f(a)2 + 2

((∫ x

a
f ′(t)2 dt

)1/2 (∫ x

a
12 dt

)1/2
)2

≤ 2f(a)2 + 2(b − a)

∫ b

a
f ′(t)2 dt, (1)

so

∫ b

a
f(x)2 dx ≤ 2(b − a)f(a)2 + 2(b − a)2

∫ b

a
f ′(t)2 dt

≤ max{2(b − a), 2(b − a)2}‖f‖2
W 1,2 ,

so
|||f ||| ≤ C

1/2
1 ‖f‖W 1,2 ,

where C1 = max{2(b − a), 2(b − a)2‖ + 1.
For the inequality in the converse direction, for x ∈ [a, b],

f(a)2 ≤
(

f(x) −
∫ x

a
f ′(t) dx

)2

≤ 2f(x)2 + 2

(∫ x

a
f ′(t)1 dt

)2

≤ 2f(x)2 + 2

(∫ x

a
f ′(t)2 dt

∫ x

a
12 dt

)

≤ 2f(x)2 + 2

∫ x

a
f ′(t)2 dt (b − a),

so

f(a)2 =
1

b − a

∫ b

a
f(a)2 dt

≤ 2

b − a

∫ b

a
f(x)2 dx + 2

∫ b

a
f ′(t)2 dt.

Hence
‖f‖W 1,2 ≤ C

1/2
2 |||f |||,

where C2 = max{ 2
b−a , 2} + 1. Thus the norms ||| · ||| and ‖ · ‖W 1,2 are equivalent.

There are many other equivalent norms, e.g.,

(
f(b)2 +

∫ b

a
f ′(t) dt

)1/2

,
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(
f(c)2 +

∫ b

a
f ′(t)2 dt

)1/2

,

(
5f(a)2 + 7f(b)2 + π

∫ b

a
f ′(t)2 dt

)1/2

,

etc.
We conlcude this section by a useful lemma.

Lemma 3.3. Let c ∈ [a, b]. Let

ϕc(f) := f(c), f ∈ W 1,2[a, b].

Then ϕc is a bounded linear functional on W 1,2.

Proof. Clearly, ϕc is linear. From (1) it follows that

|ϕc(f)|2 ≤ 2f(a)2 + 2(b − a)

∫ b

a
f ′(t)2 dt ≤ max{2, 2(b − a)}‖f‖2

W 1,2

for all f ∈ W 1,2, so ϕc is a bounded linear functional.

From (1) we even obtain that

max
a≤t≤b

|f(t)| ≤ C‖f‖W 1,2

for some constant C. That means that the norm ‖ · ‖W 1,2 is stronger than ‖ · ‖∞.

3.2 Application to differential equations

In order to explain the functional analytic approach to differential equations and show the
use of Sobolev spaces, we consider two examples.

Consider {
u′′ − u = f on (0, 1),
u(0) = u(1) = 0,

(2)

where the function f : [0, 1] → R is given and we want to find a fucntion u : [0, 1] → R

satisfying (2). A classical solution of (2) is a twice continuously differentiable function u with
(2). From the equation we see that for existence of such a solution it is necessary that f is
continuous.

We will show existence of a solution (2) by means of the Sobolev space W 1,2[0, 1] and the
representation theorem of Riesz:

Theorem 3.4. Let (H, 〈·, ·, 〉) be a Hilbert space and let ϕ : H → R be a bounded linear
function. Then there exists a unique y ∈ H such that

ϕ(u) = 〈u, y〉 for all u ∈ H.
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First we reformulate (2). If u would satisfy (2), we could multiply both sides of the
equation by a v ∈ W 1,2[0, 1] and integrate over [0, 1],

∫ 1

0
u′′(t)v(t) dt −

∫ 1

0
u(t)v(t) dt =

∫ 1

0
f(t)v(t) dt

and use integration by parts to obtain

u′(1)v(1) − u′(0)v(0) −
∫ 1

0
u′(t)v′(t) dt −

∫ 1

0
u(t)v(t) dt =

∫ 1

0
f(t)v(t) dt.

If v(0) = v(1) = 0, we get

∫ 1

0
u′(t)v′(t) dt +

∫ 1

0
u(t)v(t) dt = −

∫ 1

0
f(t)v(t) dt.

Hence (2) implies

∫ 1

0
u(t)v(t) dt +

∫ 1

0
u′(t)v′(t) dt = −

∫ 1

0
f(t)v(t) dt for all v ∈ D, (3)

where
D = {v ∈ W 1,2[0, 1] : v(0) = v(1) = 0}.

Equation (3) is called the weak formulation of (2). The function v ∈ D is called a test
function. The integral at the right hand side of (3) makes sense for any f ∈ L2[0, 1]. The
integrals at the left hand side exist for each u ∈ W 1,2[0, 1]. A function u ∈ W 1,2[0, 1] with
u(0) = u(1) = 0 which satisfies (3) is called a weak solution of (2).

Assume f ∈ L2[0, 1]. We claim that

(a) D is a closed subspace of W 1,2[0, 1] hence a Hilbert space,

(b) there is a unique u ∈ D such that (3) holds,

(c) if f is continuous, then u is twice continuously differentiable.

It follows that (2) has a unique solution if f ∈ L2[0, 1] and a classical solution if f ∈ C[0, 1].
Proof of (a). By Lemma 3.3,

ϕ0(v) := v(0) and ϕ1(v) := v(1), v ∈ W 1,2[0, 1],

define bounded linear functionals ϕ0, ϕ1 : W 1,2[0, 1] → R. Hence

D = {v ∈ W 1,2[0, 1] : ϕ0(v) = 0, ϕ1(v) = 0}
= ϕ−1

0 ({0}) ∩ ϕ−1
1 ({0})

is a closed subspace of W 1,2[0, 1].
Proof of (b). Consider the inner product

〈〈u, v〉〉 =

∫ 1

0
u(t)v(t) dt +

∫ 1

0
u′(t)v′(t) dt
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on W 1,2[0, 1]. As shown in the previous section, its induced norm ||| · ||| is equivalent to
‖ · ‖W 1,2 , so W 1,2[0, 1] is also a Hilbert space when endowed with the inner product 〈〈·, ·〉〉.
As D is a closed subspace, (D, 〈〈, ·, ·〉〉) is a Hilbert space. Define

ϕf (v) := −
∫ 1

0
f(t)v(t) dt, v ∈ D.

Then ϕf is linear and

|ϕf (v)| ≤
(∫ 1

0
f(t)2 dt

)1/2 (∫ 1

0
v(t)2 dt

)1/2

≤ ‖f‖L2 |||v||| for all v ∈ D,

so ϕf is a bounded linear functional on D. Equation (3) can be written as

〈〈u, v〉〉 = ϕf (v) for all v ∈ D.

Due to Riesz’s representation theorem, there exists a unique y ∈ D such that ϕf (v) =
〈〈v, y〉〉 = 〈〈y, v〉〉 for all v ∈ D. This y is then the unique solution in D of (3). In other
words, y is the unique weak solution of (2).

Proof of (c). Assume that f is continuous. From (3) and integration by parts we have for
every v ∈ D that

∫ 1

0
u′(t)v′(t) dt = −

∫ 1

0
(u(t) + f(t))v(t) dt

=

∫ 1

0

∫ t

0
(u(s) + f(s)) dsv′(t) dt,

so ∫ 1

0

(
u′(t) −

∫ t

0
(u(s) + f(s)) ds

)
v′(t) dt = 0. (4)

It follows from the next lemma that there exists a constant C such that

u′(t) −
∫ t

0
(u(s) + f(s)) ds = C for almost every t. (5)

Lemma 3.5. If w ∈ L2[a, b] is such that

∫ b

a
w(t)g(t) dt = 0 for all g ∈ L2[a, b] with

∫ b

a
g(t) dt = 0,

then there exists a constant C such that

w(t) = C for almost every t ∈ [a, b].

Moreover,

C =

∫ b

a
w(t) dt.
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Proof. Let C :=
∫ b
a w(t) dt and g(t) := w(t)−C, t ∈ [a, b]. Then g ∈ L2[a, b] and

∫ b
a g(t) dt = 0,

so ∫ b

a
w(t)g(t) dt = 0.

Hence
∫ b

a
g(t)2 dt =

∫ b

a

(
w(t) − C

)
g(t) dt

=

∫ b

a
w(t)g(t) dt − C

∫ b

a
g(t) dt = 0.

Hence g = 0 a.e.

Let us see that (4) indeed yields (5). We have that
∫ 1

0

(
u′(t) −

∫ t

0
(u(s) + f(s)) ds

)
g(t) dt = 0 (6)

holds for any g of the form v′ with v ∈ D. If g ∈ L2[0, 1] is such that
∫ 1
0 g(s) ds = 0,

then v(t) :=
∫ t
0 g(s) ds is such that v ∈ D and v′ = g. Hence (6) holds for all g ∈ L2[0, 1]

with
∫ 1
0 g(t) dt = 0. Then the lemma yields existence of a constant C such that (5) holds.

Consequently, since u is absolutely continuous,

u(t) = u(0) +

∫ t

0
u′(s) ds = Ct +

∫ t

0

∫ s

0
(u(s) + f(s)) ds.

Because u + f is continuous, we obtain that u ∈ C2[0, 1], that is, u is twice continuously
differentiable. Moreover, differentiating twice yields that

u′′(t) = u(t) + f(t), t ∈ (0, 1).

Recall that u ∈ D, so that also the boundary conditions u(0) = u(1) = 0 are satisfied.

The above procedure is typical for the functional analytic approach to differential equa-
tions. First find a weak formulation of the equation by multiplying by a test function, inte-
grating and using integration by parts. Second, apply abstract functional analytic methods
(e.g., Riesz representation theorem) to obtain existence of a weak solution. Third, consider
regularity of the solution.

More generally, we consider the Sturm-Liouville problem
{

−(pu′)′ + qu = f on (0, 1)
u(0) = u(1) = 0,

(7)

where the coefficients p ∈ C1[0, 1] and q ∈ C[0, 1] are given with p(x) > 0 and q(x) ≥ 0 for
all x ∈ [0, 1]. Let f ∈ L2[0, 1]. The corresponding weak formulation is

∫ 1

0
(p(x)u′(x)v′(x) + q(x)u(x)v(x)) dx =

∫ 1

0
f(x)v(x) dx for all v ∈ D. (8)

Define

〈u, v〉SL :=

∫ 1

0
p(x)u′(x)v′(x) dx +

∫ 1

0
q(x)u(x)v(x), u, v ∈ D.

We claim
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(a) 〈·, ·〉SL is an inner product on D and its induced norm ‖ · ‖SL is equivalent to ‖ · ‖W 1,2

on D,

(b) there exists a unique u ∈ D which satisfies (8),

(c) this function u is in C2[0, 1] if f ∈ C[0, 1].

Proof of (a). It is straightforward that 〈·, ·〉SL is bilinear and symmetric. For u ∈ D,

‖u‖2
SL ≥

∫ 1

0
p(x)u′(x)2 dx ≥ min

x∈[0,1]
p(x)

∫ 1

0
u′(x)2 dx = min

x∈[0,1]
p(x)‖u‖2

W 1,2

and

‖u‖2
SL ≤ max

x∈[0,1]
p(x)

∫ 1

0
u′(x)2 dx + max

x∈[0,1]
|q(x)|

∫ 1

0
u2(x) dx

≤ max{max
x

p(x),max
x

|q(x)|}|||u|||2 ≤ C‖u‖2
W 1,2 .

It follows that 〈·, ·〉SL is an inner product and that its induced norm is equivalent to ‖ · ‖W 1,2 .
Proof of (b). Due to (a), (D, 〈·, ·〉SL) is a Hilbert space. The functional ϕf (v) :=∫ 1

0 v(x)f(x), v ∈ D, is bounded linear, so by Riesz’s representation theorem, there is a unique
u ∈ D with

ϕf (v) = 〈u, v〉SL for all v ∈ D.

That is, u satisfies (8).
Proof of (c). The weak solution u satisfies

∫ 1

0
p(x)u′(x)v′(x) dx −

∫ 1

0

(∫ x

0
(q(s)u(s) − f(s)) ds

)
v′(x) dx = 0 for all v ∈ D,

from which we infer by Lemma 3.5 that there exists a constant C such that

p(x)u′(x) −
∫ x

0
(q(s)u(s) − f(s)) ds = C for a.e. x ∈ [0, 1].

Hence

u′(x) =
1

p(x)

(
C +

∫ x

0
(q(s)u(s) − f(s)) ds

)
,

so, because u is absolutely continuous,

u(x) =

∫ x

0

1

p(x)

(
C +

∫ s

0
(q(r)u(r) − f(r)) dr

)
ds.

Hence, if f is continuous, u is C2, since q is continuous and p is in C1[0, 1].

3.3 Distributions

In order to be able to differentiate functions that are not everywhere differentiable, we have
considered almost everywhere derivatives. There is an even weaker notion of derivative, which
makes even more functions ‘differentiabe’. The price to pay is that derivatives will no longer
be functions. The idea is that instead of describing a function f by all its values f(x), it
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can also be described by all values
∫

f(x)g(x) dx, where g runs through a suitable set of test
functions.

The support of a function f : R → R is the closed set suppf := {x ∈ R : f(x) 6= 0}.
Consider the space of test functions

D(R) = {f : R → R : f is infinitely many times differentiable

and suppf is compact}.
On D(R) we consider a notion of convergence given by

gk → g in D ⇐⇒ ∃N such that supp gk ⊆ [−N,N ] for all k and

g
(m)
k → g(m) uniformly as k → ∞ for all m ≥ 0.

(9)

Here we use the convention that g(0) = g. This notion of convergence is given by a topology
on D, which is more complicated to describe and of little interest. It can be defined as follows.
For N ∈ N, define

DN = {g ∈ D : supp g ⊆ [−N,N ]},
BN (f,m, r) = {g ∈ DN : sup

x∈R

|g(m)(x) − f (m)(x)| < r}, f ∈ DN , m ≥ 0, r > 0

BN = {BN (f,m, r) : f ∈ DN , m ≥ 0, r > 0},
BN
∩ = {B1 ∩ · · · ∩ Bn : Bi ∈ BN , n ∈ N},

UN = {
⋃

i∈I

Ui : Ui ∈ BN
∩ , I any set}, and

U = {U ⊆ D : U ∩ DN ∈ UN for all N}.
Proposition 3.6. (i) U is a topology on D.

(ii)

gk → g in D w.r.t. U ⇐⇒ ∃N such that supp gk ⊆ [−N,N ] for all k and

g
(m)
k → g(m) uniformly as k → ∞ for all m ≥ 0.

Proof. (i) It is straightforward to check that ∅,DN ∈ UN , that UN is closed under finite
intersections and closed under arbitrary unions. It then follows that U is a topology in D.(ii)
⇒) gk → g w.r.t. U means that for each U ∈ U with g ∈ U there exists a k0 such that
gk ∈ U for all k ≥ k0. Take N0 such that supp g ⊆ [−N0, N0]. As DN0 ∈ U , there exists
a k0 such that gk ∈ DN0 for all k ≥ k0. Choose N1 such that supp gk ⊆ [−N1, N1] for
k = 1, . . . , N0. Let N := max{N0, N1}. For every m ≥ 0 and ε > 0, the set BN (g,m, ε) ∈ U ,
so there exists a k1 such that for all k ≥ k1 one has gk ∈ BN (g,m, ε), which means that

supx∈R |gk(x)(m) − g(x)(m)| < ε. Hence g
(m)
k → g(m) uniformly.

⇐) Let U ∈ U with g ∈ U . Take N such that supp gk ⊆ [−N,N ] for all k. Then
U∩DN ∈ UN , so there are B1, . . . , Bn ∈ BN with U∩DN ⊇ B1∩· · ·∩Bn and g ∈ B1∩· · ·∩Bn.
For each j, the uniform convergence and the triangle inequality yield that gk ∈ Bj for k
sufficiently large. Therefore gk ∈ U for k large. Hence gk → g w.r.t. U .

On D we will consider the convergence given by (9). Denote

D′ = {ϕ : D → R : ϕ is linear and continuous}.
The elements of D′ are called distributions.

11



Example 3.7. (a) A function f : R → R is locally integrable if it is measurable and
∫ b
a |f(x)|dx <

∞ for every a < b. In other words, f is locally integrable if it is integrable on [−R,R] for
every R > 0. If f is locally integrable, then

ϕf (g) =

∫

R

f(x)g(x) dx, g ∈ D,

defines a distribution ϕf ∈ D′. Indeed, the linearity is clear. If gk → g in D, then there exists
N ∈ N such that supp gk ⊂ [−N,N ] and supp g ⊆ [−N,N ] and gk → g uniformly. Hence

|ϕf (gk) − ϕf (g)| ≤
∫

R

|f(x)(gk(x) − g(x))|dx ≤
∫ N

−N
|f(x)|dx sup

x
|gk(x) − g(x)| → 0,

as k → ∞.
(b)The Dirac distribution δa at a ∈ R is defined by

δa(g) = g(a), g ∈ D.

(c) If µ is any finite measure on the Borel σ-algebra of R,

ϕµ(g) =

∫

R

g(x) dµ(x), g ∈ D,

defines ϕµ ∈ D′.

Lemma 3.8. If f1 and f2 are locally integrable and ϕf1(g) = ϕf2(g) for all g ∈ D, then
f1 = f2 a.e.

Proof. (Sketch) Denote f = f1 − f2. Then ϕf (g) = 0 for all g ∈ D. Let

h(x) = c

{
e

1
x2

−1 , −1 < x < 1,
0, |x| ≥ 1,

where c is chosen such that
∫

R
h(x) dx = 1. Then h ∈ D. Let

hm(x) = mh(mx), x ∈ R.

Let c < d. Let

gm(x) =

∫

[c−1/m,d+1/m]
hm(x − y) dy.

Then gm ∈ D for all m and gm(x) → 1[c,d](x) for all x ∈ R. By Lebesgue’s dominated
convergence theorem,

∫

[c,d]
f(x)dx = lim

m→∞

∫

R

f(x)gm(x) dx = 0.

It follows that f = 0 a.e.

12



It follows from the lemma that there is an injection f 7→ ϕf from the locally integrable
functions into D′, if we identify functions that are equal almost everywhere. In other words,
every locally integrable function f corresponds to a distribution ϕf . Instead of considering
the function f we can as well consider the distribution ϕf .

Distributions on intervals. More generally we can consider distributions on any open
interval I ⊆ R. Let

D(I) = {g : I → R : g is infinitely many times differentiable and supp g ⊂ I}.

Observe that supp g ⊂ I means that there is a closed interval [c, d] ⊂ I such that g = 0
outside [c, d]. In particular g vanishes near the boundary of I. On D(I) we introduce the
following convergence.

gk → g in D(I) ⇐⇒ ∃ closed interval [c, d] such that supp gk ⊆ [c, d] for all k and

g
(m)
k → g(m) uniformly as k → ∞ for all m ≥ 0.

Define the distributions on I by

D′(I) = {ϕ : D → R : ϕ is linear and continuous}.

As before, we can view locally integrable functions on I as distributions, by

ϕf (g) =

∫

I
f(x)g(x) dx.

If ϕ is a distribution, we will say that ϕ ∈ C(I) (or Lp(I) or ...) if there exists a function
f ∈ C(I) (or Lp(I) or ...) such that ϕ = ϕf .Derivatives of distributions. If f is C1 and

g ∈ D, then by integration by parts,

∫

I
f ′(x)g(x) dx = −

∫

I
f(x)g′(x) dx.

That is,
ϕf ′(g) = −ϕf (g′) for all g ∈ D.

Definition 3.9. The derivative of a distribution ϕ ∈ D ′ is the distribution Dϕ ∈ D′ defined
by

Dϕ(g) = −ϕ(g′), g ∈ D.

It is not difficult to prove that Dϕ is indeed an element of D ′. It follows that every locally
integrable function and even every distrbution has a derivative.

Lemma 3.10. If f : I → R is locally integrable, then

f is absolutely continuous ⇐⇒ Dϕf is integrable.

13



Proof. ⇒) Let g ∈ D. We first show that fg is absolutely continuous. If (ai, bi), i = 1, . . . , n,
are mutually disjoint subintervals of I, then

n∑

i=1

|(fg)(bi) − (fg)(ai)|

≤
n∑

i=1

(|f(bi)g(bi) − f(bi)g(ai)| + |f(bi)g(ai) − f(ai)g(ai)|)

≤ max
x∈[a,b]

|f(x)|
n∑

i=1

|g(bi) − g(ai)| + max
x∈[a,b]

|g(x)|
n∑

i=1

|f(bi) − f(ai)|.

Moreover, g is C1 hence absolutely continuous. Therefore, it follows that fg is absolutely con-
tinuous. (In fact we have just shown that the product of two absolutely continuous functions
is absolutely continuous.) Then, for a ∈ I,

∫ x

a
(fg)′(t) dt = (fg)(x) − (fg)(a) for all x ∈ I, x ≥ a.

Since supp g ⊂ I and I is open, g vanishes near the boundaries of I. Hence we obtain

∫

I
(fg)′(t) dt = 0.

That is, ∫

I
f ′(t)g(t) dt +

∫

I
f(t)g′(t) dt = 0.

Hence Dϕf = ϕf ′ . As f ′ is integrable, Dϕf is integrable.
⇐) By definition, there exists an integrable h : I → R such that Dϕf = ϕh. That is,

−
∫

I
f(t)g′(t) dt =

∫

I
h(t)g(t) dt.

Let a be the left end point of I (possibly −∞) end let

H(x) =

∫ x

a
h(t) dt.

Then H is absolutely continuous, so Hg is absolutely continuous, so

H(x)g(x) =

∫ x

a
(Hg)′(t) dt

=

∫ x

a
H ′(t)g(t) dt + H(t)g′(t) dt.

Hence (with x = b)

0 =

∫

I
h(t)g(t) dt +

∫

I
H(t)g′(t) dt,

so ∫

I
f(t)g′(t) dt = −

∫

I
h(t)g(t) dt =

∫

I
H(t)g′(t) dt,

14



so ∫

I
(f(t) − H(t))g′(t) dt = 0 for all g ∈ D.

From this we want to conclude that there exists a constant C sucht that f(t)−H(t) = C for
almost every t ∈ I. Since H + C is absolutely continuous, it then follows that f is absolutely
continuous. If w ∈ D is such that

∫
I w(s) ds = 0, then g(x) :=

∫ x
a w(s) ds defines an element g

in D with g′ = w. So
∫
I(f(t)−H(t))w(t) dt = 0. By a suitable approximation argument it can

then be shown that
∫
I(f(t) − H(t))w(t) dt = 0 holds for any w ∈ L2(I) with

∫
I w(s) ds = 0,

so that there exists a constant C with f(t) − H(t) = C for almost every t.

Corollary 3.11.

W 1,2[a, b] = {f ∈ L2[a, b] : Dϕf ∈ L2[a, b]}.

Similarly,

Wm,p[a, b] = {f ∈ Lp[a, b] : Dϕf ∈ W m−1,p[a, b]}
= {f ∈ Lp[a, b] : Dϕf , . . . , Dmϕf ∈ Lp[a, b]}.

Multidimensional distributions. Let d ∈ N and let Ω be an open subset of R
d. Let

D(Ω) := {g : Ω → R : all partial derivatives of g of all orders exist and are continuous and

∃ compact K ⊆ Ω such that supp g ⊆ K}.

Introduce a notion of convergence in D by

gn → g ⇐⇒ ∃ compact K ⊆ Ω such that supp gn ⊆ K for all n and for every

m1, . . . ,md ≥ 0, ∂m1+···mdgk

∂m1x1···∂mdxd
→ ∂m1+···mdg

∂m1x1···∂mdxd
uniformly

The set of distributions is given by

D′(Ω) := {ϕ : D → R : ϕ is linear and continuous }.

A function f : Ω → R is locally integrable if

∫

B
|f(x1, . . . , xd)|dx1 . . . dxd < ∞

for every bounded B ⊆ Ω. The functional

ϕf (g) =

∫

Ω
f(x1, . . . , xd)g(x1, . . . , xd) dx1 . . . dxd, g ∈ D,

is then a distribution.
For m1, . . . ,md ≥ 0, define the derivative of ϕ ∈ D′ of order (m1, . . . ,md) by

Dm1,...,mdϕ(g) := (−1)m1+···+mdϕ

(
∂m1+···+md

∂m1 · · · ∂mdxd
g

)
, g ∈ D.
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Then Dm1,...,mdϕ ∈ D′. By means of these multidimensional distributional derivatives we can
define Sobolev spaces on Ω as follows:

Wm,p(Ω) := {f ∈ Lp(Ω): Dm1,...,mdϕf ∈ Lp(Ω)

for all m1, . . . ,md ≥ 0 with m1 + · · · + md ≤ m}.

If d = 1, we have seen that that every f ∈ W 1,p is continuous (even absolutely continuous).
In higher dimensions elements of W 1,p need not be continuous. The following theorem is the
famous Sobolev embedding theorem. Its proof is beyond the scope of this course.

Theorem 3.12. If d ∈ N, m, k ∈ {0, 1, 2, . . .}, Ω ⊆ R
d is open, and p > 1, then

Wm,p(Ω) ⊆ Ck(Ω) if m > k +
d

p
.

If we denote by Hm,p
0 (Ω) the closure of D(Ω) in W m,p(Ω), then

• Hm,p
0 (Ω) is compactly embedded in Lq(Ω) if mp < d and q < dq

d−mp

• Hm,p
0 (Ω) is compactly embedded in Ck(Ω) if mp > d + k.

Here we say that a normed space X is compactly embedded in a normed space Y if X is a
subspace of Y and all elements from the unit ball of X are a relatively compact set in Y .

A standard reference on Sobolev spaces is the book “Sobolev spaces” by R.A. Adams,
Academic Press, 1975.

3.4 Fourier transform and fractional derivatives

If one analyses linear operations in R
d, it is sometimes convenient to choose a new basis. The

transformation of coordinates with respect to the old basis to the coordinates for the new basis
is a linear bijection. Differentiation is also a linear transformation. It is sometimes convenient
to use a transformation of a function space that makes the operation of differentiation simpler.
Such a transformation is the Fourier transform. A complete theory of the Fourier transform
is quite involved. This section contains a glossery of the main features relevant for Sobolev
spaces.

For an integrable function f : R → R we define the Fourier transform of f by

(F)(ω) =
1√
2π

∫

R

f(t)e−iωt dt, ω ∈ R.

Not all mathematicians agree on the choice of the scaling factor 1√
2π

. Other common choices

are 1 and 1
2π .

The function Ff is often also denoted by f̂ . It can be shown that f̂ is a continuous
function and

f̂(ω) → 0 as ω → ∞ or ω → −∞.

If we apply F to a test function f ∈ D, the image Ff need not be in D. If we enlarge the
class of test functions somewhat, we get a class that is more compatible with the action of F .
A function f : R → R is called rapidly decreasing if

|t|nf(t) → 0 as |t| → ∞ for every n ∈ N,
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that is, f decays faster than any power of t. For instance, f(t) = e−|t| is rapidly decreasing
and every function with a bounded support is rapidly decreasing. The set

S(R) = {f ∈ C∞(R) : f (m) is rapidly decreasing for all m ∈ N}

is called the Schwartz space. Observe that D(R) ⊂ S(R). The relevance of the Schwartz space
for the Fourier transform is shown by the next theorem, which we cite without proof.

Theorem 3.13. The Fourier transform F is a bijection from S(R) onto S(R).

Proposition 3.14. For f, g ∈ S(R) we have

(a)
∫

R
f̂(ω)g(ω) dω =

∫
R

f(t)ĝ(t) dt;

(b) F(t 7→ e−
1
2
t2) = ω 7→ e−

1
2
ω2

and, more generally, F(t 7→ e−
1
2
(at)2 ) = ω 7→ 1

ae−
1
2
( ω

a
)2 for

every a 6= 0;

(c) F(Ff)(ξ) = f(−ξ) for all ξ ∈ R;

(d)
∫

R
f̂ ĝ(ω) dω =

∫
R

f(t)g(t) dt.

Proof. (a) By Fubini,
∫

R

f̂(ω)g(ω) dω =

∫

R

1√
2π

∫

R

f(t)e−iωt dt g(ω) dω

=

∫

R

f(t)
1√
2π

∫

R

g(ω)e−iωt dω dt

=

∫

R

f(t)ĝ(t) dω.

(b) We have

1√
2π

∫

R

e−
1
2
(at)2e−iωt dt =

1√
2πa

∫

R

e−
1
2
s2

e−i ω
a

s ds

=
1√
2πa

∫

R

e−
1
2
(s− iω

a
)2 ds e−

1
2 (

ω
a )

2

=
1

a
e−

1
2 (

ω
a )

2

.

(c) By (a) and (b),

1√
2π

∫

R

(Ff)(ω)e−iωξe−
1
2
(aω)2 dω

=
1√
2π

∫

R

f(t)F(e−iωξe−
1
2
(aω)2) dω

=
1√
2π

∫

R

f(t)
1√
2π

∫

R

e−iωξe−
1
2
(aω)2e−iωt dω dt

=
1√
2π

∫

R

f(t)
1

a
e−

1
2 (

ξ+t

a )
2

dt

=
1√
2π

∫

R

f(as − ξ)e−
1
2
s2

ds.
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If we let a → 0, Lebesgue’s dominated convergence theorem applied to both the left and right
hand side yields

1√
2π

∫

R

(Ff)(ω)e−iωξ dω = f(−ξ),

so FFf(ξ) = f(−ξ).
(d) Since

ĝ(ω) =
1√
2π

∫

R

g(t)e−iωt dt =
1√
2π

∫

R

g(t)eiωt dt

=
1√
2π

∫

R

g(−s)e−iωt ds = F(s 7→ g(−s)),

(a) and (c) yield with h(t) = g(−t) that
∫

R

f̂(ω) ĝ(ω) dω =

∫

R

f̂(ω)(Fh)(ω) dω

=

∫

R

f(t)(FFh)(t) dω =

∫
f(t)h(−t) dt

=

∫

R

f(t)g(t) dt.

From part (d) we have
〈Ff,Fg〉L2(R) = 〈f, g〉L2(R)

and
‖Ff‖L2(R) = ‖f‖L2(R).

So F is an isometry with respect to the L2-norm on S(R). It can be shown that S(R) is
dense in L2(R) and then it follws that F extends uniquely to an isometry F2 from L2(R) into
L2(R). This extension F2 is called the Fourier-Plancherel transformation. It satisfies

〈F2f,F2g〉L2(R) = 〈f, g〉L2(R) for all f, g ∈ L2(R).

Moreover, F is a bijection from L2(R) onto L2(R).

Fourier transform and derivative. The importance of the Fourier transform in the context
of differentiation is that it transforms differentiation to multiplication by iω, which is an easier
operation.

Proposition 3.15. If f ∈ S(R), then

f̂ ′(ω) = iωf̂(ω).

Proof.

1√
2π

∫

R

f ′(t)e−iωt dt = lim
M,N→∞

1√
2π

∫ N

−M
f ′(t)e−iωt dt

= lim
M,N→∞

1√
2π

(
f(t)e−iωt|N−M −

∫ N

−M
f(t)(−iω)e−iωt dt

)

= iωf̂(ω).
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It can be seen from the Fourier transform of a function whether its distributional derivative
is actually a function in L2(R).

Proposition 3.16. For f ∈ L2(R) one has

f has distributional derivative in L2(R) ⇐⇒ ω 7→ ωf̂(ω) ∈ L2(R).

Moreover, in that case the distributional derivative of f equals

F−1
2 (ω 7→ iωf̂(ω)).

Proof. ⇐) As F is a bijection from L2(R) onto L2(R), we can define h = F−1
2 (ω 7→ iωf̂(ω)) ∈

L2(R). For g ∈ D(R),

∫

R

h(t)g(t) dt =

∫

R

ĥ(t) ĝ(ω) dω =

∫

R

iωf̂(ω) ĝ(ω) dω

= −
∫

R

f̂(ω) (iω)ĝ(ω) dω = −
∫

R

f̂(ω)ĝ′(ω) dω = −
∫

R

f(t)g′(t) dt,

so h is the distributional derivative of f .⇒) Let h ∈ L2(R) be the distributional derivative of
f . Then ∫

R

h(t)g(t) dt = −
∫

R

f(t)g′(t) dt for all g ∈ D(R).

Therefore, for every g ∈ D(R),

∫

R

ĥ(ω)ĝ(ω) dω =

∫

R

h(t)g(t) dt = −
∫

R

f(t)g′(t) dt

= −
∫

R

f̂ ĝ′(ω) dω = −
∫

R

f̂(ω) (iω)ĝ(ω) dω

=

∫

R

iωf̂(ω) ĝ(ω) dω,

so ∫

R

(
ĥ(ω) − iωf̂(ω)

)
ĝ(ω) dω = 0.

By a quite involved approximation argument it can be shown that this imlies that

ĥ(ω) − iωf̂(ω) = 0 for almost every ω.

Hence ω 7→ ωf̂(ω) = ĥ(ω) ∈ L2(R).

We can view a function f ∈ L2[a, b] as a function in L2(R) by extending with zero:

f(t) =

{
f(t), t ∈ [a, b],
0, t ∈ R \ {0}.

Notice that f ∈ L2(R) ∩ L2(R).
The previous proposition yields yet another way to describe the Sobolev space W 1,2[a, b].

Corollary 3.17.

W 1,2[a, b] = {f ∈ L2[a, b] : ω 7→ ωf̂(ω) ∈ L2(R)}.
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Fractional derivative. Does there exist an operator D1/2 such that applying it twice to a
function f yields the derivative f ′? For higher derivatives we see from f̂ ′(ω) = iωf̂(ω) that

f (m) = F−1
2 (ω 7→ (iω)mf̂(ω)),

whenever f is such that ω 7→ (iω)mf̂(ω) is in L2(R). If s > 0 and f ∈ L2(R) is such that
ω 7→ (iω)sf̂(ω) ∈ L2(R), we define

Dsf = F−1
2 (ω 7→ (iω)sf̂(ω)).

Then the function Dsf is in L2(R) and it is called the fractional derivative of f of order s.
Recall that

(iω)s =

{
e

1
2
πis|ω|s, ω ≥ 0,

e
3
2
πis|ω|s, ω < 0.

By means of the Fourier-Plancherel transform we see that if f ∈ L2(R) has distributional
derivative in L2(R), then D1/2D1/2f = f ′. A short overview with other approaches to frac-
tional derivatives is given on
http://en.wikipedia.org/wiki/Fractional calculus.

4 Stieltjes integral

4.1 Definition and properties

Riemann’s idea to define the integral of a function f on an interval [a, b] was to consider
convergence of sums

∑
i f(si)(ti+1 − ti), where a = t0 ≤ t1 ≤ · · · ≤ tn = b is a partition and

si ∈ [ti, ti+1]. The factor ti+1 − ti is the weight or length of the interval [ti, ti+1]. If µ is an
arbitrary measure on [a, b], then the Lebesgue integral of f with respect to µ is constructed
by means of sums

∑
i αiµ(Ai), where

∑
i αi

�
Ai

are step functions approximating f . The
factor µ(Ai) is the weight or measure of the set Ai. The integral of Thomas Stieltjes is both
historically and in generality between the Riemann and the Lebesgue integral. It is not as
general as Lebesgue’s integral but its construction is as explicit as that of Riemann’s integral.
It is especially convenient in probability theory. Moreover, the stochastic integrals of Wiener
and Ito are based on Stieltjes’s construction.

A partition of an interval [a, b] is a finite set t = {t0, t1, . . . , tn} of points of [a, b]. We
will assume that a partition always contains a and b. In proofs and constructions it is often
convenient to order the points of a partition. The assumption that the end points are in the
partition and the right labeling of the point so that they are ordered can be summarized in
the phrase “ let a = t0 ≤ t1 ≤ · · · ≤ tn = b be a partition of [a, b]”. It turns out to be
convenient to allow here that some consecutive points are equal. This means in particular
that a point may occur several times. The mesh size of a partition a = t0 ≤ t1 ≤ · · · ≤ tn = b
is defined by

mesh(t) = max
1≤k≤n

|tk − tk−1|.

If t and s are two partitions, then s is called finer than t if s ⊇ t. That is, a finer partition
is obtained from a coarser one by adding more points. Notice that {0, π, 4} and {1, 2, 4} are
both partitions of [0, 4] but none of the two is finer than the other. Given two (or finitely
many) partitions, there is always a partition that is finer than each of them, namely the union.
Such a finer partition is sometimes called a common refinement.
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Definition 4.1. Let f, g : [a, b] → R. The function f is Stieltjes integrable with respect to g if
there exists I ∈ R such that for every ε > 0 there exists a partition such that for every finer
partition a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b and every choice of si ∈ [ti−1, ti] we have

∣∣∣∣∣

n∑

k=1

f(sk)
(
g(tk) − g(tk−1)

)
− I

∣∣∣∣∣ < ε.

The number I is then called the Stieltjes integral of f with respect to g and it is denoted by

∫ b

a
f(t) dg(t).

If a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b is a partition and sk ∈ [tk−1, tk] are intermediate points,
we denote the corresponding Riemann-Stieltjes sum by

S(s, t) =
n∑

k=1

f(sk)
(
g(tk) − g(tk−1)

)
.

The most famous instance of Stieltjes integrability is the following.

Theorem 4.2. If f : [a, b] → R is continuous and g : [a, b] → R is of bounded variation, then
f is Stieltjes integrable with respect to g.

Proof. First we compare the Riemann-Stieltjes sums for two partitions, one finer than the
other. Let a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b and for each k let tk−1 = τk,0 ≤ τk,1 ≤ · · · ≤
τk,mk

= tk. Let sk ∈ [tk−1, tk] and let σk,i ∈ [τk,i−1, τk,i]. Then

|S(σ, τ) − S(s, t)|

=

∣∣∣∣∣

n∑

k=1

mk∑

i=1

f(σk,i)
(
g(τk,i) − g(τk,i−1)

)
−

n∑

k=1

f(sk)
(
g(tk) − g(tk−1)

)∣∣∣∣∣

=

∣∣∣∣∣

n∑

k=1

mk∑

i=1

f(σk,i)
(
g(τk,i) − g(τk,i−1)

)
−

n∑

k=1

mk∑

i=1

f(sk)
(
g(τk,i) − g(τk,i−1)

)∣∣∣∣∣

=

∣∣∣∣∣

n∑

k=1

mk∑

i=1

(
f(σk,i) − f(sk)

)(
g(τk,i) − g(τk,i−1)

)∣∣∣∣∣

≤ max
k

max
σ,s∈[tk−1,tk]

|f(σ) − f(s)|
n∑

k=1

mk∑

i=1

(
g(τk,i) − g(τk,i−1)

)

≤ max
k

max
σ,s∈[tk−1,tk]

|f(σ) − f(s)|V[a,b](g).

Next, choose any sequence of partitions tn with mesh size tending to zero and such that tn+1

is a refinement of tn for every n. Then for m ≥ n,

|S(sn, tn) − S(sm, tm)| ≤ max
|s−σ|≤mesh(tn)

|f(s) − f(σ)|V[a,b](g).

As f is continuous on [a, b], it is uniformly continuous, since [a, b] is compact. Hence the
previous formula yields

|S(sn, tn) − S(sm, tm)| → 0 as m,n → ∞.
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So (S(sn, tn))n is a Cauchy sequence and therefore there exists I ∈ R such that

I = lim
n→∞

S(sn, tn).

Now we have the candidate integral I.
Let ε > 0. Choose δ > 0 such that

|s − σ| < δ =⇒ |f(s) − f(σ)| <
ε

2V[a,b](g) + 1
.

(The +1 in the denominator is only there to avoid division by 0 in case V[a,b](g) = 0. Alter-
natively, this trivial case could be treated separately.) Choose N such that

mesh(tN ) < ε/2 and |S(sn, tn) − I| < ε/2 for all n ≥ N.

Let τ be any partition finer than tN and σ any choice of intermediate points for τ . Then

|S(σ, τ ) − S(sN , tN )| ≤ max
|s−σ|<mesh(tN )

|f(s) − f(σ)|V[a,b](g) < ε/2

and
|S(sN , tN ) − I| < ε/2

so
|S(σ, τ) − I| < ε.

Hence f is Stieltjes integrable with respect to g and
∫ b
a f(t) dg(t) = I.

Recall that every increasing or decreasing function g is of bounded variation.

Example 4.3. Let f : [a, b] → R be continuous and g : [a, b] → R be piecewise constant with
jumps at u1, . . . , um of size β1, . . . , βm, respectively, where a ≤ u1 < u2 < · · · < um < b. That
is,

g =
m∑

i=1

βi
�

[ui,b],

or, equivalently, g(t) = β1 + · · · + β` whenever t ∈ [u`, u`+1) (where um+1 := b). Then f is
Stieltjes integrable with respect to g and

∫ b

a
f(t) dg(t) =

m∑

`=1

f(u`)β`.

Indeed, let ε > 0. Choose δ > 0 such that

|s − σ| < δ =⇒ |f(s) − f(σ)| <
ε∑

` |β`| + 1

and such that δ < u`+1 − u` for all `. Let a = t0 ≤ t1 ≤ · · · ≤ tn = b be any partition with
mesh(t) < δ and let s by any choice of intermediate points for t. Then each interval [tk−1, tk]
contains at most one of the jump points u`. Further,

⋃m
`=1[u`, u`+1) = [a, b), so for each `

there is exactly one k` such that u` ∈ [tk`+1, tk`
). Then

n∑

k=1

f(sk)
(
g(tk) − g(tk−1)

)
=

m∑

`=1

f(sk`
)
(
g(tk`

) − g(tk`−1)
)

=

m∑

`=1

f(sk`
)β`.
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Since both sk`
∈ [tk`−1, tk`

] and u` ∈ [tk`
−1, tk`

), we have |sk`
−u`| < |tk`

− tk`−1| < δ. Hence

|f(sk`
) − f(u`)| <

ε∑
` |β`| + 1

,

so ∣∣∣∣∣

m∑

`=1

f(sk`
)β` −

m∑

`=1

f(u`)β`

∣∣∣∣∣ ≤
m∑

`=1

|f(sk`
− f(u`)| |β`| < ε.

Therefore f is Stieltjes integrable with respect to g and
∫ b
a f(t) dg(t) =

∑m
`=1 f(u`)β`.

Example 4.4. The function f =
�

[0,1/2) is not Stieltjes integrable with respect to g =
�

[1/2,1]. Indeed, if 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 is any partition, then there exists a k∗ such

that [tk∗−1, tk∗) contains 1/2. Then
∑n

k=1 f(sk)
(
g(tk) − g(tk−1)

)
= f(sk∗). By choosing

sk∗ ∈ [tk∗−1, tk∗ ] less than 1/2 or greater or equal 1/2 we can make the Riemann Stietjes sum
either 0 or 1. Thus f is not Stietjes integrable with respect to g.

A formula for calculus with Stieltjes integrals. If g ∈ C 1[a, b] then g is of bounded
variation. Indeed, for a = t0 ≤ t1 ≤ · · · ≤ tn = b,

n∑

`

|g(tk) − g(tk−1)| ≤
n∑

k=1

max
ξ∈[a,b]

|g′(ξ)| |tk − tk−1| = max
ξ∈[a,b]

|g′(ξ)| (b − a),

so V[a,b](g) ≤ maxξ∈[a,b] |g′(ξ)|(b − a).

Theorem 4.5. If f : [a, b] → R is continuous and g : [a, b] → R is continuously differentiable,
then ∫ b

a
f(t) dg(t) =

∫ b

a
f(t)g′(t) dt.

Proof. First we show that the continuous differentiability of g implies uniform differentiability
in the following sense: for every ε > 0 there exists δ > 0 such that

0 < |s − t| < δ =⇒
∣∣∣∣
g(s) − g(t)

s − t
− g′(t)

∣∣∣∣ < ε.

Indeed, let

h(s, t) :=

{
g(s)−g(t)

s−t , s 6= t,

g′(t), s = t.

Then h is continuous on [a, b] × [a, b] and therefore uniformly continuous. Hence for ε > 0
there exists a δ > 0 such that

‖(s, t) − (s0, t0)‖ < δ =⇒ |h(s, t) − h(s0, t0)| < ε.

Then (with t = s0 = t0)

|s − t| < δ =⇒ |h(s, t) − h(t, t)| < ε,

and that is the implication we wanted to show.
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Next, let ε > 0. Choose δ > 0 such that

0 < |s − t| < δ =⇒
∣∣∣∣
g(s) − g(t)

s − t
− g′(t)

∣∣∣∣ <
ε

2(b − a)‖f‖∞ + 1
.

Then

0 < |s − t| < δ =⇒ |g(s) − g(t) − g′(t)(s − t)| <
ε

2(b − a)‖f‖∞ + 1
|s − t|.

Choose a partition t such that for every finer partition a = τ0 ≤ τ1 ≤ · · · ≤ τn = b and for
every choice of σk ∈ [τk−1, τk],

∣∣∣∣∣

n∑

k=1

f(σk)
(
g(τk) − g(τk−1)

)
−
∫ b

a
f(t) dg(t)

∣∣∣∣∣ < ε/2.

Without loss of generality we may choose t such that mesh(t) < δ. Then also mesh(τ) < δ,
so
∣∣∣∣∣

n∑

k=1

f(σk)g
′(σk)(τk − τk−1) −

∫ b

a
f(t) dg(t)

∣∣∣∣∣

<

∣∣∣∣∣

n∑

k=1

f(σk)g
′(σk)(τk − τk−1) −

n∑

k=1

f(σk)
(
g(τk) − g(τk−1)

)∣∣∣∣∣+ ε/2

≤
n∑

k=1

|f(σk)|
∣∣∣g′(σk)(τk − τk−1) −

(
g(τk) − g(τk−1)

)∣∣∣+ ε/2

≤
n∑

k=1

‖f‖∞|g′(σk)(τk − σk) + g′(σk)(σk − τk−1) − (g(τk) − g(σk)) + (g(τk−1) − g(σk))| + ε/2

≤ ‖f‖∞
n∑

k=1

(
ε

2(b − a)‖f‖∞ + 1
|τk − σk| +

ε

2(b − a)‖f‖∞ + 1
|τk−1 − σk|

)
+ ε/2

≤ ε

2(b − a)

n∑

k=1

(τk − σk + σk − τk−1) + ε/2 ≤ ε

2(b − a)
(b − a) + ε/2 = ε.

So
∫ b
a f(t) dg(t) =

∫ b
a f(t)g′(t) dt.

Integration by parts. Another important theorem about the Stieltjes integral is the inte-
gration by parts formula.

Theorem 4.6. Let f, g : [a, b] → R. If f is Stieltjes integrable with respect to g, then g is
Stieltjes integrable with respect to f and

∫ b

a
f(t) dg(t) = −

∫ b

a
g(t) df(t) + f(b)g(b) − f(a)g(a).

Proof. Let ε > 0. Since we know that
∫ b
a f(t) dg(t) exists, we can choose a partition a = t0 ≤

t1 ≤ · · · ≤ tn = b such that for every finer partition a = τ0 ≤ τ1 ≤ · · · ≤ τm = b and every
σi ∈ [τk−1, τk] we have

∣∣∣∣∣

m∑

k=1

f(σk)
(
g(τk) − g(τk−1)

)
−
∫ b

a
f(t) dg(t)

∣∣∣∣∣ < ε.
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In order to show that
∫ b
a g(t) df(t) exists and equals −

∫ b
a g(t) df(t) + f(b)g(b) − f(a)g(a),

we consider the partition a = t0 ≤ t0 ≤ t1 ≤ t1 ≤ t2 ≤ t2 ≤ · · · ≤ tN ≤ tN = b (on
purpose!). Let a = θ0 ≤ θ1 ≤ · · · ≤ θM = b be a finer partition and let ζk ∈ [θk−1, θk].
Due to the way we have chosen the partition with double tis, each ti will occur as one of
the ζk. That is, a = ζ1 ≤ ζ1 ≤ · · · ≤ ζM = b is a partition of [a, b] which is finer than
a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b. Morover, θk−1 ≤ ζk ≤ θk ≤ ζk+1, so θk ∈ [ζk, ζk+1] for
k = 0, . . . ,M − 1, where we set ζ0 := a. Hence

∣∣∣∣∣

M−1∑

k=0

f(θk)
(
g(ζk+1 − g(ζk)

)
−
∫ b

a
f(t) dg(t)

∣∣∣∣∣ < ε.

Further,

M−1∑

k=0

g(θk)
(
f(ζk+1 − f(ζk)

)
=

M−1∑

k=0

g(θk)f(ζk+1) −
M−1∑

k=0

g(θk)f(ζk)

=
M∑

k=1

g(θk−1)f(ζk) −
M−1∑

k=0

g(θk)f(ζk)

=

M∑

k=1

g(θk−1)f(ζk) −
M∑

k=1

g(θk)f(ζk) + g(θk)f(ζk) − g(θ0)f(ζ0)

= −
M∑

k=1

f(ζk)
(
g(θk) − g(θk−1

)
+ f(b)g(b) − f(a)g(a).

So
∣∣∣∣∣

M−1∑

k=0

g(θk)
(
f(ζk+1 − f(ζk)

)
−
(
−
∫ b

a
f(t) dg(t)f(b)g(b) − f(a)g(a)

)∣∣∣∣∣

≤
∣∣∣∣∣−

M∑

k=1

f(ζk)
(
g(θk) − g(θk−1)

)
+

∫ b

a
f(t) dg(t)

∣∣∣∣∣ < ε.

Hence g is Stieltjes integrable with respect to f and

∫ b

a
f(t) dg(t) = −

∫ b

a
g(t) df(t) + f(b)g(b) − f(a)g(a).

Remark 4.7. The definition given here of Stieltjes integrability is not the original one, which
was somewhat more restrictive. Let f, g : [a, b] → R. The original definition of “f is Stieljes
integrable with respect to g” would read

There exists an I ∈ R such that for every ε > 0 there exists a δ > 0 such that for every
partition a = t0 ≤ t1 ≤ · · · ≤ tn = b with mesh(t) < δ and every choice of sk ∈ [tk−1, tk]
one has ∣∣∣∣∣

n∑

k=1

f(sk)
(
g(tk) − g(tk−1)

)
− I

∣∣∣∣∣ < ε.
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The difference is that in this definition every partition of small enough mesh has to be
considered, whereas in our definition we only need to consider partitions that are refinement
of a given partition. The latter enables us to include some critical points in each of the
partitions.

Let us consider an example. Let f =
�

[0,1/2] and g =
�

[1/2,1]. As in Example 4.4 we can
show for any partition of which 1/2 is not one of the points that the Riemann Stieltjes sum can
be 1 or 0, depending on the choice of intermediate points. Theorefore, f and g do not satisfy
the original definition stated above. However, for every partition 0 = τ0 ≤ τ1 ≤ · · · ≤ τn = 1
finer than 0 = 0 ≤ 1/2 ≤ 1 = 1 and any choice of intermediate points σk ∈ [τk−1, τk], we have

n∑

k=1

f(σk)
(
g(τk) − g(τk−1)

)
= 1.

So f is Stieltjes integrable with respect to g according to our definition.
More generally, it can be shown that every càglàd function f is Stieltjes integrable with

respect to any càdlàg function g. Here càglàd stands for the french phrase “continu à gauche,
limite à droite”, which means left continuous with right limits. It means that f is such
that at every point t, both the left and right limits exist and that f(t) equals the left limit.
Similarly, càdlàg means right continuous with left limits. This situation, although it seems
somewhat technical, is of great importance in the theory of stochastic processes, in particular,
integration with respect to semimartingales.

Connection with Lebesgue integral. Let g : [a, b] → R be increasing. Then µ((s, t]) :=
g(t) − g(s) extends to a measure µ on the Borel sets of [a, b]. If f is continuous, then f is
Lebesgue integrable with respect to the bounded measure µ. We will show that

∫ b

a
f(t) dg(t) =

∫

[a,b]
f(t) dµ(t).

Let N ∈ N. Choose a partition a = tN
0 ≤ tN1 ≤ · · · ≤ tNnN

= b such that mesh(tN ) < 1/N and

∣∣∣∣∣

nN∑

k=1

f(sk)
(
g(tNk ) − g(tNk−1)

)
−
∫ b

a
f(t) dg(t)

∣∣∣∣∣ <
1

N
,

for any choice of sk ∈ [tNk−1, t
N
k ]. Choose any sN

k ∈ [tNk−1, t
N
k ] and let

hN :=

n∑

k=1

f(sN
k )

�

[(tN
k−1,tN

k
].

Then ∫
hN dµ(t) =

N∑

k=1

f(sN
k )µ((tNk−1, T

N
k ]) =

n∑

k=1

f(sN
k )
(
g(tNk ) − g(tNk−1)

)
.

Since f is continuous, hN (t) → f(t) as N → ∞ for every t ∈ [a, b]. Further, |hN | ≤ ‖f‖∞ on
[a, b]. Due to Lebesgue’s dominated convergence theorem we find as N → ∞

∫
hN (t) dµ(t) →

∫
f dµ(t).
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Also, ∫
hN (t) dµ(t) =

nN∑

k=1

f(sN
k )
(
g(tNk ) − g(tNk−1)

)
→
∫ b

a
f(t) dg(t).

Recall that a measure µ on [a, b] is called absolutely continuous with respect to the
Lebesgue measure λ if λ(A) = 0 impies µ(A) = 0 for every Borel set A ⊆ [a, b].

Theorem 4.8. Let g : [a, b] → R be increasing. Let µ be a measure on the Borel sets of [a, b]
such that µ((s, t]) = g(t) − g(s) for all a ≤ s < t ≤ b. Then

µ is absolutely continuous with respect to λ ⇐⇒ g is absolutely continuous.

Proof. ⇐) Let A be a Borel set with λ(A) = 0. Let ε > 0. We want to show that µ(A) < ε.
Since g is absolutely continuous, we can choose a δ > 0 such that

n∑

k=1

|g(bk) − g(ak)| < ε

for every mutually disjoint intervals (ak, bk), k = 1, . . . , n, with
∑n

k=1(bk − ak) < δ. Since
λ(A) = 0, there are mutually disjoint open intervals (ai, bi), i ∈ N, such that A ⊆ ⋃∞

i=1(ai, bi)
and

∑∞
i=1(bi − ai) < δ. Then

∑n
i=1(bi − ai) < δ for each n so

∑n
i=1 |g(bi) − g(ai)| < ε for

every n. Hence
∑∞

i=1 |g(bi) − g(ai)| ≤ ε. We infer

µ(A) ≤ µ(

∞⋃

i=1

(ai, bi)) =

∞∑

i=1

µ((ai, bi)) ≤
∞∑

i=1

µ((ai, bi])

=
∞∑

i=1

(g(bi) − g(ai)) ≤ ε.

Thus µ(A) = 0.
⇒) Assume that µ is absolutely continuous with respect to λ. Due to the Radon-Nikodym

theorem there exists an integrable function h : [a, b] → R with h ≥ 0 such that

µ(A) =

∫
�

A(s)h(s) dλ(s).

for all Borel sets A. If we use this for A = (a, t], we find

g(t) − g(a) = µ((a, t]) =

∫
�

(a,t](s)h(s) dλ(s).

Hence

g(t) = g(a) +

∫ t

a
h(s) ds for all t ∈ [a, b],

which yields that g is absolutely continuous.
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4.2 Langevin’s equation

Consider the movement of a particle of mass m along a line, with velocity v(t) at time t. Due
to friction there is a force −av(t) acting on the particle, where a ≥ 0 is a constant. Suppose
that many small influences in the environment of the particle are acting on the particle,
resulting in a force, which is erratic and very irregular. We will call this force “noise”. The
velocity of the particle then satisfies

mv′(t) = −av(t) + “noise”.

By means of rescaling, we can rewrite the equation as

y′(t) = −ay(t) + “noise” (10)

How to model noise? Let us first consider the case a = 0. We conceive of the noise as
a force which is so erratic that is cannot be modeled deterministically. We think of tossing
a coine at each time t and a force hitting the particle in positive direction if the outcome
is head and in negative direction if the outcome is tail. For a good mathematical model we
consider discretization of the differential equation

y′(t) = “noise” (11)

Fix t > 0 and n ∈ N. Let X1, . . . , Xn be mutually independent random variables such that
Xk = 1 with probability 1/2 and Xk = −1 with probability 1/2. We let tk = k

nt and consider
the discretized equation

y(tk) − y(tk−1)

tk − tk−1
= bXk, k = 1, . . . , n,

where b is a constant. Then

y(tk) = y(tk−1) + b(tk − tk−1)Xk = y(tk−1) + b
1

n
Xk,

so

y(t) = y(tn) = y(0) +
bn

n
t

n∑

k=1

Xk.

We do this for each n,

yn(t) = y(0) +
b

n
t

n∑

k=1

Xn,k.

We are looking for a limit as n → ∞. If bn is too small, the random influence may converge
to 0. If bn is too big, the sums may not converge. The Central Limit Theorem says that
1√
n
t
∑n

k=1 Xn,k converges in law to a random variable W (t) with normal (Gaussian) law with

mean 0 and variance t. Therefore we choose bn =
√

n. The limiting random variables W (t)
can be chosen in such a way that the dependence on t is coninuous, as is stated in the next
theorem. Its proof is difficult and beyond these notes.

Theorem 4.9. There exists a probability space (Ω,F , P) and random variables W (t), t ≥ 0,
such that
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• W0 = 0 a.e. on Ω,

• Wt has normal law with mean 0 and variance t,

• Wt − Ws is independent of Wr for all 0 ≤ r ≤ s ≤ t,

• t 7→ Wt(ω) is continuous for a.e. ω ∈ Ω.

The family of random variables Wt, t ≥ 0, of the above theorem is called a Brownian
motion or Wiener process.

Recall that a probability space (Ω,F , P) is a set Ω, a σ-algebra F , and a measure P on F
with P(Ω) = 1. A random variable is a map X : Ω → R that is measurable with respect to F
and the Borel σ-algebra in R. The law or distribution of X is the measure µX on R satisfying

µX(A) = P(X−1(A)) = P({ω ∈ Ω: X(ω) ∈ A}),

where A ⊆ R is a Borel set. In words, µX(A) is the probability that X has values in A.
There can be different random variables (even defined on different probability spaces) with
the same law. If X and Y are random variables defined on Ω, then their joint law is the
measure µ(X,Y ) on R

2 defined by

µ(X,Y )(C) = P({ω ∈ Ω: (X(ω), Y (ω)) ∈ C}),

C ⊆ R
2 Borel. The random variables X and Y are independent if µ(X,Y ) equals the product

measure µX ⊗ µY . Equivalently, if

P((X,Y ) ∈ A × B) = P(X ∈ A)P(Y ∈ B)

for all Borel sets A ⊆ R, B ⊆ R. A law µ is called normal or Gaussian with mean m ∈ R

and variance σ2 ≥ 0 if for every Borel set A ⊆ R,

µ(A) =

∫

A

1√
2π σ

e−
1
2

(x−m)2

σ .

By considering limits of discretizations we have found a mathematical model for noise. As a
solution of (11) we found

y(t) = y(0) + Wt

so

“noise” = y′(t) =
d

dt
Wt.

Langevin’s equation is therefore

y′(t) = −ay(t) + σ
d

dt
Wt, (12)

where σ ∈ R is some auxiliary parameter. More explicitly, Wt depends on the variable ω ∈ Ω,
so also y(t) will depend on ω. We thus have for each ω ∈ Ω the differential equation

y′(t)(ω) = −ay(t)(ω) + σ
d

dt
Wt(ω).
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As usual in probability theory we often do not write the dependence on ω explicitly.
There is a mathematical problem: the map t 7→ Wt(ω) is continuous for almost every ω,

but it is not differentiable and even nowhere differentiable. So d
dtWt(ω) does not exist. (The

proof of this fact is far from easy and we omit it). There is a simple way to avoid this problem:
we formulate Langevin’s equation as an integral equation,

y(T ) = y(0) +

∫ T

0
−ay(t) dt + σWT , T ≥ 0. (13)

Let us next solve equation (12) or rather its correct formulation (13). The homogeneous
equation

y′(t) = −ay(t)

has solution
y(t) = ce−at, t ≥ 0.

Due to the variation-of-constants formula, the solution of the inhomogeneous equation

y′(t) = −ay(t) + f(t), t ≥ 0,

is given by the convolution

y(t) = ce−at +

∫ t

0
e−a(t−s)f(s) ds,

where c = y(0) and f is a continuous function. Formally, the solution of (12) would be

y(t) = y(0)e−at +

∫ t

0
e−a(t−s)σ

d

ds
Ws ds

= y(0)e−at + σ

∫ t

0
e−a(t−s) dWs.

Be aware that d
dsWs doesnot exist. The latter expression, however, makes sense as a Stieltjes

integral. Indeed, s 7→ e−a(t−s) is increasing hence of bounded variation and Ws is continuous.
Hence ∫ t

0
e−a(t−s) dWs(ω)

exists for almost every ω ∈ Ω as a Stieltjes integral. These formal manipulations do yield the
correct solution.

Theorem 4.10. Let a, σ ∈ R. Let Wt, t ≥ 0, be a Wiener process defined on (Ω,F , P). Let
y0 ∈ R. Define

y(t) = e−aty0 + σ

∫ t

0
e−a(t−s) dWs

(for almost every ω ∈ Ω as Stieltjes integral). Then y satisfies the Langevin equation

y(t) = y0 − a

∫ t

0
y(s) ds + σW (s).
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Proof. By integration by parts,

y(t) = e−aty0 + σ

∫ t

0
e−a(t−s) dWs

= e−aty0 + σe−at
(
easWs|t0 −

∫ t

0
Ws deas

)

= e−a(t−s) + σe−at
(
eatWt −

∫ t

0
aWte

as ds
)

e−aty0 + σWt − σ

∫ t

0
ae−a(t−s)Ws ds.

Hence the above expression for y and Fubini yield

∫ T

0
y(t) dt = σ

∫ T

0
Wt dt − σ

∫ T

0

∫ t

0
ae−a(t−s)Ws dsdt +

∫ T

0
e−aty0 dt

= σ

∫ T

0
Wt dt − σ

∫ T

0

∫ T

s
ae−a(t−s)Ws dds +

e−aT

a
y0 −

y0

a

= σ

∫ T

0
Wt dt + σ

∫ T

0

(
e−a(t−s) − 1

)
Ws ds +

e−aT

a
y0 −

y0

a

= σ

∫ T

0
e−a(T−s)Ws ds +

e−aT

a
y0 −

y0

a

=
1

a
σWt −

1

a
y(t) +

e−aT

a
y0 −

y0

a
.

Thus y(t) satisfies the Langevin equation.

Concerning uniqueness we have the following.

Proposition 4.11. Let a, σ ∈ R. Let Wt, t ≥ 0, be a Wiener process and let Ω0 ⊂ Ω be such
that P(Ω0) = 1 and t 7→ Wt(ω) is continuous for all ω ∈ Ω0. If y1(t) and y2(t), t ≥ 0, are
two families of random variables on (Ω,F , P) such that t 7→ y1(t)(ω) and t 7→ y2(t)(ω) are
continuous for all ω ∈ Ω0 and such that y1 and y2 both satisfy (13), then

|y1(t) − y2(t)| ≤ e−at|y1(0) − y2(0)|, t ≥ 0.

Proof. Let
v(t) := y1(t) − y2(t), t ≥ 0.

Then v satisfies

v(t) = −a

∫ t

0
v(s) ds.

On Ω0, v is continuous and then from the previous formula v is even continuously differen-
tiable. Differentiating yields

v′(t) = −av(t),

so
v(t) = v(0)e−at,

which yields the desired formula.
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Consequently, if y1(0) = y2(0), then y1 = y2.

Law of the solution. So far we have considered ω ∈ Ω as a parameter and solved the
Langevin equation for each ω separately. We obtained for almost every ω a function t 7→
y(t)(ω). Next, we fix t. Then y(t) is an alomost everywhere defined map from Ω to R. If
necessary we can assume it everywhere defined by choosing it zero on those ω where it is not
defined. It can be shown that the map y(t) is then measurable. Thus for fixed t, y(t) is a
random varuable. What is its law? We know that

y(t) = e−aty0 + σ

∫ t

0
e−a(t−s) dWs.

By definition of the Stieltjes integral, y(t) is a limit of sums of the form

S(s1, . . . , sn) = e−aty0 + σ
n∑

k=1

e−a(t−sk)
(
Wsk

− Wsk−1

)
.

From the propertied of the Wiener process it follows that the Wsk
− Wsk−1

, k = 1, . . . , n are
mutually independent normal random variables with means 0 and variances sk − sk−1. Hence
S(s1, . . . , sn) has normal law with mean e−aty0 and variance σ2

∑n
k=1 e−2a(t−sk)(sk − sk−1).

It follows that the random variables converge in law to a normal random variable with mean
e−aty0 and variance

σ2
n∑

k=1

e−2a(t−sk) ds =
σ2

2a
(1 − e−2at).

Hence y(t) is normal with mean e−aty0 and variance σ2

2a (1 − e−at). The details of the above
arguments need more probability theory and we omit them. We summarize the conclusion.

Proposition 4.12. The solution y(t) at time t of the Langevin equation

y(t) = y0 − a

∫ t

0
y(s) ds + σWt, t ≥ 0,

has normal law with mean e−at and variance σ2

2a (1 − e−2at).

We could also take the initial value y0 to be a random variable. If we take it independent
of Wt for all t and with normal law with mean 0 and variance σ2

2a , then it turns out that y(t)

has at each time t mean 0 and variance σ2

2a . Thus, the random variables y(t) vary in time, but
their laws are constant. Such a solution is called a stationary solution. In case of the above
laws, the solution is called an Ornstein-Uhlenbeck process.

4.3 Wiener integral

Let Wt, t ≥ 0 be a Wiener process defined on the probability space (Ω,F , P). Since s 7→
e−a(t−s) is of bounded variation, we can define

∫ t

0
e−a(t−s) dWs
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as a Stieltjes integral, almost everywhere on Ω. In the same way we can define

∫ t

0
f(s) dWs

for any f : [0, t] → R of bounded variation. As before, the corresponding Riemann-Stieltjes
sums

n∑

k=1

f(sk)
(
Wsk

− Wsk−1

)

have mean 0 and variance
n∑

k=1

f(sk)
2(sk − sk−1).

In other words,

E

(
n∑

k=1

f(sk)
2
(
Wsk

− Wsk−1

))2

=

n∑

k=1

f(sk)
2(sk − sk−1),

where E denotes expectation:

EX =

∫

Ω
X(ω) dP(ω).

It can be shown that taking limits leads to

E

(∫ t

0
f(s) dWs

)2

= E

∫ t

0
f(s)2 ds.

This can be restated as ∥∥∥∥
∫ t

0
f(s) dWs

∥∥∥∥
L2(Ω,P)

= ‖f‖L2[0,t].

This identity is called the Ito isometry. The map J : f 7→
∫ t
0 f(s) dWs from BV [0, t] to

L2(Ω, P) is hence an isometry with respect to ‖ · ‖L2[0,t] on BV [0, t]. J is also linear. Since

BV [0, t] is dense in (L2[0, t], ‖·‖L2 [0,t]), there is a unique bounded linear map Ĵ from L2[0, t] →
L2(Ω, P) that extends J . Moreover, this map Ĵ is an isometry. We denote Ĵ by an integral
sign: ∫ t

0
f(s) dWs := Ĵ(f).

Thus we can “integrate” any L2-function f : [0, t] → R with respect to the Wiener process
Ws. This integral is called the Wiener integral.

The definition of integration with respect to Ws can still be extended further, for instance,
to functions f that are themselves random. Then we arrive at a stochastic integral called the
Ito integral.

5 Convex functions
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