
Topics in Analysis 1 – Real Functions

Assignment 3

Let f : [a, b] → R be a function and let x ∈ [a, b]. We say that f has a right limit at x if x < b

and
f(x+) := lim

y↓x
f(y) exists

and f has a left limit at x if x > a and

f(x−) := lim
y↑x

f(y) exists.

The function f is called right continuous if f(x) = f(x+) for all x ∈ [a, b) and left continuous

if f(x−) = f(x) for all x ∈ (a, b]. f is called a càdlàg function (from the french phrase
“continue à droite, limite à gauche”) if f is right continuous and has a left limit at every
x ∈ (a, b]. Similarly, f is càglàd if f is left continuous and has a right limit at every x ∈ [a, b).
(Authors avoiding french sometimes use ‘RCLL’ and ‘LCRL’.)

1. Discontinuities of functions with left and right limits. Let f : [a, b] → R be a
functions that has a right limit at every x ∈ [a, b) and a left limit at every x ∈ (a, b]. Let

D = {x ∈ [a, b] : f is not continuous at x}.

(a) Show that D = {x ∈ (a, b] : f(x−) 6= f(x)} ∪ {x ∈ [a, b) : f(x) 6= f(x+)}.

(b) Let ε > 0. Show that for each x ∈ (a, b) there exists a δ > 0 such that

|f(y)− f(x−)| < ε for all y ∈ (x − δ, x) ∩ [a, b]

and
|f(x+) − f(y)| < ε for all y ∈ (x, x + δ) ∩ [a, b].

(c) Show that f is bounded.

(d) Show that for each α > 0 the set

{x ∈ (a, b] : |f(x−) − f(x)| > α}

is finite.
(Hint: use (b) and compactness of [a, b].)

(e) Show that D is at most countable.

2. Càdlàg versions. Let f : [a, b] → R be a functions that has a right limit at every
x ∈ [a, b) and a left limit at every x ∈ (a, b]. Define

h(x) :=

{

f(x+), x ∈ [a, b),
f(b), x = b.

(The function h is called a càdlàg version of f .)
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(a) Show that h is a càdlàg function.

(b) Show that {x ∈ [a, b] : h(x) 6= f(x)} is at most countable.

(c) Let f : [a, b] → R be of bounded variation. Show that f has a right limit at every
x ∈ [a, b) and a left limit at every x ∈ (a, b]. (Hence f has a càdlàg version.)

3. An integral equation. Let a continuous function f : [0,∞) → R with f(0) = 0 and
a constant c ∈ R be given. Consider the integral equation

y(t) = c +

∫ t

0

y(s) ds + f(t), t ≥ 0. (1)

Show that there exists a unique continuous function y : [0,∞) → R satisfying (1).

4. Convex functions. If f : [a, b] → R is a convex function and x ∈ (a, b), then we
denote the left derivative of f at x by

Dlf(x) = lim
y↑x

f(y) − f(x)

y − x

and the right derivative of f at x by

Drf(x) = lim
y↓x

f(y) − f(x)

y − x
.

(a) Let f : [a, b] → R be convex and let x0 ∈ (a, b) be such that

f(x0) ≤ f(x) for all x ∈ (a, b).

Show that Dlf(x0) ≤ 0 and Drf(x0) ≥ 0.

(b) Let f : [a, b] → R be convex and let x0 ∈ (a, b). Show that for α ∈ R we have

Dlf(x0) ≤ α ≤ Drf(x0) ⇐⇒ α(x − x0) + f(x0) ≤ f(x) ∀x ∈ [a, b].

(c) Let f : R → R be a convex function which is coercive, that is,

lim
x→−∞

f(x) = ∞ and lim
x→∞

f(x) = ∞.

Show that there exists x0 ∈ R such that f(x0) ≤ f(x) for all x ∈ R.

(d) Let f : R → R be strictly convex, that is,

x, y ∈ R, x 6= y

λ ∈ (0, 1)

}

=⇒ f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y).

Show that there exists at most one x0 ∈ R such that f(x0) ≤ f(x) for all x ∈ R.
(Hence (c) and (d) together yield: a strictly convex coercive function from R to R

has a unique minimizer.)

(e) Let f : R → R be a convex function. Show that there exists an affine function
g(x) = αx + β, x ∈ R, such that f(x) ≥ g(x) for all x ∈ R.

— Please hand in before May 27, 2008 —

Onno van Gaans
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