Topics in Analysis 1 – Real Functions

Assignment 3

Let $f: [a, b] \to \mathbb{R}$ be a function and let $x \in [a, b]$. We say that f has a right limit at x if x < b and

$$f(x+) := \lim_{y \downarrow x} f(y)$$
 exists

and f has a left limit at x if x > a and

$$f(x-) := \lim_{y \uparrow x} f(y)$$
 exists.

The function f is called *right continuous* if f(x) = f(x+) for all $x \in [a, b)$ and *left continuous* if f(x-) = f(x) for all $x \in (a, b]$. f is called a *càdlàg function* (from the french phrase "continue à droite, limite à gauche") if f is right continuous and has a left limit at every $x \in (a, b]$. Similarly, f is *càglàd* if f is left continuous and has a right limit at every $x \in [a, b)$. (Authors avoiding french sometimes use 'RCLL' and 'LCRL'.)

1. Discontinuities of functions with left and right limits. Let $f: [a, b] \to \mathbb{R}$ be a functions that has a right limit at every $x \in [a, b]$ and a left limit at every $x \in (a, b]$. Let

$$D = \{x \in [a, b] : f \text{ is not continuous at } x\}.$$

- (a) Show that $D = \{x \in (a, b]: f(x-) \neq f(x)\} \cup \{x \in [a, b): f(x) \neq f(x+)\}.$
- (b) Let $\varepsilon > 0$. Show that for each $x \in (a, b)$ there exists a $\delta > 0$ such that

$$|f(y) - f(x-)| < \varepsilon \text{ for all } y \in (x - \delta, x) \cap [a, b]$$

and

$$|f(x+) - f(y)| < \varepsilon$$
 for all $y \in (x, x + \delta) \cap [a, b]$.

- (c) Show that f is bounded.
- (d) Show that for each $\alpha > 0$ the set

$$\{x \in (a,b]: |f(x-) - f(x)| > \alpha\}$$

is finite.

(Hint: use (b) and compactness of [a, b].)

- (e) Show that D is at most countable.
- 2. Càdlàg versions. Let $f: [a,b] \to \mathbb{R}$ be a functions that has a right limit at every $x \in [a,b)$ and a left limit at every $x \in (a,b]$. Define

$$h(x) := \begin{cases} f(x+), & x \in [a,b), \\ f(b), & x = b. \end{cases}$$

(The function h is called a $c\grave{a}dl\grave{a}q$ version of f.)

- (a) Show that h is a càdlàg function.
- (b) Show that $\{x \in [a,b]: h(x) \neq f(x)\}\$ is at most countable.
- (c) Let $f: [a, b] \to \mathbb{R}$ be of bounded variation. Show that f has a right limit at every $x \in [a, b)$ and a left limit at every $x \in (a, b]$. (Hence f has a càdlàg version.)
- 3. An integral equation. Let a continuous function $f: [0, \infty) \to \mathbb{R}$ with f(0) = 0 and a constant $c \in \mathbb{R}$ be given. Consider the integral equation

$$y(t) = c + \int_0^t y(s) \, ds + f(t), \quad t \ge 0.$$
 (1)

Show that there exists a unique continuous function $y:[0,\infty)\to\mathbb{R}$ satisfying (1).

4. Convex functions. If $f:[a,b] \to \mathbb{R}$ is a convex function and $x \in (a,b)$, then we denote the *left derivative of* f *at* x by

$$D_l f(x) = \lim_{y \uparrow x} \frac{f(y) - f(x)}{y - x}$$

and the right derivative of f at x by

$$D_r f(x) = \lim_{y \downarrow x} \frac{f(y) - f(x)}{y - x}.$$

(a) Let $f: [a,b] \to \mathbb{R}$ be convex and let $x_0 \in (a,b)$ be such that

$$f(x_0) \le f(x)$$
 for all $x \in (a, b)$.

Show that $D_l f(x_0) \leq 0$ and $D_r f(x_0) \geq 0$.

- (b) Let $f: [a, b] \to \mathbb{R}$ be convex and let $x_0 \in (a, b)$. Show that for $\alpha \in \mathbb{R}$ we have $D_l f(x_0) \le \alpha \le D_r f(x_0) \iff \alpha(x x_0) + f(x_0) \le f(x) \, \forall x \in [a, b].$
- (c) Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function which is *coercive*, that is,

$$\lim_{x \to -\infty} f(x) = \infty$$
 and $\lim_{x \to \infty} f(x) = \infty$.

Show that there exists $x_0 \in \mathbb{R}$ such that $f(x_0) \leq f(x)$ for all $x \in \mathbb{R}$.

(d) Let $f: \mathbb{R} \to \mathbb{R}$ be strictly convex, that is,

$$\left. \begin{array}{l} x, y \in \mathbb{R}, \ x \neq y \\ \lambda \in (0, 1) \end{array} \right\} \Longrightarrow f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

Show that there exists at most one $x_0 \in \mathbb{R}$ such that $f(x_0) \leq f(x)$ for all $x \in \mathbb{R}$. (Hence (c) and (d) together yield: a strictly convex coercive function from \mathbb{R} to \mathbb{R} has a unique minimizer.)

(e) Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function. Show that there exists an affine function $g(x) = \alpha x + \beta$, $x \in \mathbb{R}$, such that $f(x) \geq g(x)$ for all $x \in \mathbb{R}$.

— Please hand in before May 27, 2008 —

Onno van Gaans