Topics in Analysis 1 - Real Functions

Assignment 3

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and let $x \in[a, b]$. We say that f has a right limit at x if $x<b$ and

$$
f(x+):=\lim _{y \downarrow x} f(y) \text { exists }
$$

and f has a left limit at x if $x>a$ and

$$
f(x-):=\lim _{y \uparrow x} f(y) \text { exists. }
$$

The function f is called right continuous if $f(x)=f(x+)$ for all $x \in[a, b)$ and left continuous if $f(x-)=f(x)$ for all $x \in(a, b]$. f is called a càdlàg function (from the french phrase "continue à droite, limite à gauche") if f is right continuous and has a left limit at every $x \in(a, b]$. Similarly, f is càglàd if f is left continuous and has a right limit at every $x \in[a, b)$. (Authors avoiding french sometimes use 'RCLL' and 'LCRL'.)

1. Discontinuities of functions with left and right limits. Let $f:[a, b] \rightarrow \mathbb{R}$ be a functions that has a right limit at every $x \in[a, b)$ and a left limit at every $x \in(a, b]$. Let

$$
D=\{x \in[a, b]: f \text { is not continuous at } x\} .
$$

(a) Show that $D=\{x \in(a, b]: f(x-) \neq f(x)\} \cup\{x \in[a, b): f(x) \neq f(x+)\}$.
(b) Let $\varepsilon>0$. Show that for each $x \in(a, b)$ there exists a $\delta>0$ such that

$$
|f(y)-f(x-)|<\varepsilon \text { for all } y \in(x-\delta, x) \cap[a, b]
$$

and

$$
|f(x+)-f(y)|<\varepsilon \text { for all } y \in(x, x+\delta) \cap[a, b] .
$$

(c) Show that f is bounded.
(d) Show that for each $\alpha>0$ the set

$$
\{x \in(a, b]:|f(x-)-f(x)|>\alpha\}
$$

is finite.
(Hint: use (b) and compactness of $[a, b]$.)
(e) Show that D is at most countable.
2. Càdlàg versions. Let $f:[a, b] \rightarrow \mathbb{R}$ be a functions that has a right limit at every $x \in[a, b)$ and a left limit at every $x \in(a, b]$. Define

$$
h(x):= \begin{cases}f(x+), & x \in[a, b), \\ f(b), & x=b .\end{cases}
$$

(The function h is called a càdlàg version of f.)
(a) Show that h is a càdlàg function.
(b) Show that $\{x \in[a, b]: h(x) \neq f(x)\}$ is at most countable.
(c) Let $f:[a, b] \rightarrow \mathbb{R}$ be of bounded variation. Show that f has a right limit at every $x \in[a, b)$ and a left limit at every $x \in(a, b]$. (Hence f has a càdlàg version.)
3. An integral equation. Let a continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(0)=0$ and a constant $c \in \mathbb{R}$ be given. Consider the integral equation

$$
\begin{equation*}
y(t)=c+\int_{0}^{t} y(s) \mathrm{d} s+f(t), \quad t \geq 0 \tag{1}
\end{equation*}
$$

Show that there exists a unique continuous function $y:[0, \infty) \rightarrow \mathbb{R}$ satisfying (1).
4. Convex functions. If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function and $x \in(a, b)$, then we denote the left derivative of f at x by

$$
D_{l} f(x)=\lim _{y \uparrow x} \frac{f(y)-f(x)}{y-x}
$$

and the right derivative of f at x by

$$
D_{r} f(x)=\lim _{y \downarrow x} \frac{f(y)-f(x)}{y-x} .
$$

(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and let $x_{0} \in(a, b)$ be such that

$$
f\left(x_{0}\right) \leq f(x) \text { for all } x \in(a, b)
$$

Show that $D_{l} f\left(x_{0}\right) \leq 0$ and $D_{r} f\left(x_{0}\right) \geq 0$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and let $x_{0} \in(a, b)$. Show that for $\alpha \in \mathbb{R}$ we have

$$
D_{l} f\left(x_{0}\right) \leq \alpha \leq D_{r} f\left(x_{0}\right) \quad \Longleftrightarrow \quad \alpha\left(x-x_{0}\right)+f\left(x_{0}\right) \leq f(x) \forall x \in[a, b] .
$$

(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function which is coercive, that is,

$$
\lim _{x \rightarrow-\infty} f(x)=\infty \text { and } \lim _{x \rightarrow \infty} f(x)=\infty .
$$

Show that there exists $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}\right) \leq f(x)$ for all $x \in \mathbb{R}$.
(d) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be strictly convex, that is,

$$
\left.\begin{array}{l}
x, y \in \mathbb{R}, x \neq y \\
\lambda \in(0,1)
\end{array}\right\} \Longrightarrow f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

Show that there exists at most one $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}\right) \leq f(x)$ for all $x \in \mathbb{R}$. (Hence (c) and (d) together yield: a strictly convex coercive function from \mathbb{R} to \mathbb{R} has a unique minimizer.)
(e) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Show that there exists an affine function $g(x)=\alpha x+\beta, x \in \mathbb{R}$, such that $f(x) \geq g(x)$ for all $x \in \mathbb{R}$.

