Topics in Analysis 1 – Real Functions

Assignment 2

1. Absolute continuity.

(a) Let $f:[a,b]\to\mathbb{R}$ be continuously differentiable. Show that there exists a constant M such that

$$\sum_{i=1}^{n} |f(b_i) - f(a_i)| \le M \sum_{i=1}^{n} |b_i - a_i|$$

for any mutually disjoint intervals (a_i, b_i) , i = 1, ..., n, in [a, b]. Is f absolutely continuous?

(b) Is $f(x) = \sqrt{x}$, $x \in [0, 1]$, absolutely continuous?

A function $f:[a,b]\to\mathbb{R}$ is called $H\"{o}lder$ continuous with exponent α if there exists a constant C such that

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$
 for all $x, y \in [a, b]$.

Here $\alpha > 0$.

- (c) Show that every function on [a, b] that is Hölder continuous with exponent $\alpha \geq 1$ is absolutely continuous.
- (d) Can you describe "all" functions that are Hölder continuous with exponent 2?

2. Sturm-Liouville problem with Neumann boundary conditions. Consider

$$\begin{cases} -u''(x) + xu(x) = f(x), & x \in (0,1), \\ u'(0) = 0, & u'(1) = 0. \end{cases}$$
 (1)

(A fixed value for u at a boundary is called a *Dirichlet* boundary condition, a fixed value for u' at a boundary is called a *Neumann* boundary condition.)

(a) Show that for each $f \in L^2[0,1]$ there exists a unique $u \in W^{1,2}[0,1]$ such that

$$\int_0^1 (u'(x)v'(x) + xu(x)v(x)) dx = \int_0^1 f(x)v(x) dx \text{ for all } v \in W^{1,2}[0,1].$$

(b) Show that if $f \in C[0,1]$, then the weak solution u of (a) satisfies

$$\int_0^1 (u'(x) - H(x))v'(x) dx + H(1)v(1) - H(0)v(0) = 0 \text{ for all } v \in W^{1,2}[0,1],$$

where

$$H(x) = \int_0^x (tu(t) - f(t)) dt.$$

- (c) Show that for each $f \in C[0,1]$ there exists a unique $u \in C^2[0,1]$ such that (1) holds. (Hint: use (b) first for all $v \in W^{1,2}[0,1]$ with v(0) = v(1) = 0 and then for $v \equiv 1$.)
- 3. Derivative in sense of distribution.
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and with distributional derivative in $C^1(\mathbb{R})$ (i.e., continuously differentiable). Show that f is twice continuously differentiable.
 - (b) Let $f:[a,b]\to\mathbb{R}$ be integrable and such that its distributional derivative is identically zero. Show that f is constant.
 - (c) (i) Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1, & x \in [0, 1], \\ 0, & x \in \mathbb{R} \setminus [0, 1]. \end{cases}$$

Compute its derivative in sense of distribution.

(ii) Let $f:(0,1)\to\mathbb{R}$ be given by

$$f(x) = 1, \quad x \in (0, 1).$$

Compute its derivative in sense of distribution.

(d) Compute the second order distributional derivative of

$$f(x) = \begin{cases} x, & x \in [0, 1], \\ 2 - x, & x \in [1, 2], \\ 0, & \mathbb{R} \setminus [0, 2]. \end{cases}$$

— Please hand in before April 8, 2008 —

Onno van Gaans