Topics in Analysis 1 - Real Functions

Assignment 2

1. Absolute continuity.

(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuously differentiable. Show that there exists a constant M such that

$$
\sum_{i=1}^{n}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right| \leq M \sum_{i=1}^{n}\left|b_{i}-a_{i}\right|
$$

for any mutually disjoint intervals $\left(a_{i}, b_{i}\right), i=1, \ldots, n$, in $[a, b]$. Is f absolutely continuous?
(b) Is $f(x)=\sqrt{x}, x \in[0,1]$, absolutely continuous?

A function $f:[a, b] \rightarrow \mathbb{R}$ is called Hölder continuous with exponent α if there exists a constant C such that

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha} \quad \text { for all } x, y \in[a, b]
$$

Here $\alpha>0$.
(c) Show that every function on $[a, b]$ that is Hölder continuous with exponent $\alpha \geq 1$ is absolutely continuous.
(d) Can you describe "all" functions that are Hölder continuous with exponent 2?
2. Sturm-Liouville problem with Neumann boundary conditions. Consider

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+x u(x)=f(x), \quad x \in(0,1), \tag{1}\\
u^{\prime}(0)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

(A fixed value for u at a boundary is called a Dirichlet boundary condition, a fixed value for u^{\prime} at a boundary is called a Neumann boundary condition.)
(a) Show that for each $f \in L^{2}[0,1]$ there exists a unique $u \in W^{1,2}[0,1]$ such that

$$
\int_{0}^{1}\left(u^{\prime}(x) v^{\prime}(x)+x u(x) v(x)\right) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \text { for all } v \in W^{1,2}[0,1] .
$$

(b) Show that if $f \in C[0,1]$, then the weak solution u of (a) satisfies

$$
\int_{0}^{1}\left(u^{\prime}(x)-H(x)\right) v^{\prime}(x) \mathrm{d} x+H(1) v(1)-H(0) v(0)=0 \text { for all } v \in W^{1,2}[0,1]
$$

where

$$
H(x)=\int_{0}^{x}(t u(t)-f(t)) \mathrm{d} t .
$$

(c) Show that for each $f \in C[0,1]$ there exists a unique $u \in C^{2}[0,1]$ such that (1) holds. (Hint: use (b) first for all $v \in W^{1,2}[0,1]$ with $v(0)=v(1)=0$ and then for $v \equiv 1$.)

3. Derivative in sense of distribution.

(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and with distributional derivative in $C^{1}(\mathbb{R})$ (i.e., continuously differentiable). Show that f is twice continuously differentiable.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable and such that its distributional derivative is identically zero. Show that f is constant.
(c) (i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}1, & x \in[0,1], \\ 0, & x \in \mathbb{R} \backslash[0,1] .\end{cases}
$$

Compute its derivative in sense of distribution.
(ii) Let $f:(0,1) \rightarrow \mathbb{R}$ be given by

$$
f(x)=1, \quad x \in(0,1) .
$$

Compute its derivative in sense of distribution.
(d) Compute the second order distributional derivative of

$$
f(x)= \begin{cases}x, & x \in[0,1] \\ 2-x, & x \in[1,2], \\ 0, & \mathbb{R} \backslash[0,2]\end{cases}
$$

