Topics in Analysis 1 - Real Functions

Assignment 1

1. Dini derivatives. (The right upper, right lower, left upper, and left lower derivatives of a function are sometimes called its four Dini derivatives.) Let $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(x)=2^{-n}$ on $\left(2^{-n}, 2^{-n+1}\right], n \in \mathbb{N}$, and $f(0)=0$.
(a) Show that f is increasing.
(b) Compute the right upper derivative $D^{r} f(0)$ and the right lower derivative $D_{r} f(0)$ of f at 0 . (In Royden's book these are denoted by $D^{+} f(0)$ and $D_{+} f(0)$, respectively.)
(c) Does there exist a continuous increasing function f such that $D^{r} f(0) \neq D_{r} f(0)$?
(d) Construct an increasing function $f:[-1,1] \rightarrow \mathbb{R}$ such that none of the four Dini derivatives at 0 are equal.

2. Bounded variation.

(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function of bounded variation. Let $c \in(a, b)$. Prove that $\lim _{x \downarrow c} f(x)$ and $\lim _{x \uparrow c} f(x)$ exist.
(Hint: try first for an increasing function.)
(b) Compute for $n \in \mathbb{N}$ the total variation of $f: x \mapsto \sin (1 / x)$ on the interval $\left[\frac{1}{n \pi}, \frac{1}{\pi}\right]$. Is f of bounded variation on $[0,1]$?
(c) Let $f:[a, b] \rightarrow \mathbb{R}$ and let $V_{[x, y]}(f)$ be the total variation of f on $[x, y]$, where $a \leq x<y \leq b$. Let $x \in(a, b)$. Prove or disprove each of the following two statements.
(i) $\lim _{n \rightarrow \infty} V_{[x-1 / n, x+1 / n]}(f)=0 \Longrightarrow f$ is continuous at x;
(ii) f is continuous at $x \Longrightarrow \lim _{n \rightarrow \infty} V_{[x-1 / n, x+1 / n]}(f)=0$.
3. Derivative of the total variation function. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function of bounded variation and let $V(x):=V_{[a, x]}(f)$ be its total variation on $[a, x]$, for $x \in[a, b]$. Follow the steps below to show that

$$
V^{\prime}=\left|f^{\prime}\right| \text { a.e. }
$$

(a) Let $a=x_{0}<x_{1}<\cdots<x_{m}=b$ be a partition of $[a, b]$. Denote $y_{k}:=f\left(x_{k}\right)$, $k=0, \ldots, m$. Define a function $g:[a, b] \rightarrow \mathbb{R}$ by

$$
\text { for } x \in\left[x_{0}, x_{1}\right]: \quad g(x):= \begin{cases}f(x)-y_{0} & \text { if } y_{0} \leq y_{1}, \\ y_{0}-f(x) & \text { if } y_{0}>y_{1}\end{cases}
$$

and, inductively,

$$
\text { for } x \in\left(x_{k}, x_{k+1}\right]: \quad g(x):= \begin{cases}g\left(x_{k}\right)+\left(f(x)-y_{k}\right) & \text { if } y_{k} \leq y_{k+1}, \\ g\left(x_{k}\right)+\left(y_{k}-f(x)\right) & \text { if } y_{k}>y_{k+1} .\end{cases}
$$

Show that
(i) $\left|g^{\prime}\right|=\left|f^{\prime}\right|$ a.e.;
(ii) on each $\left(x_{k}, x_{k+1}\right]$, either $g-f$ or $g+f$ is constant;
(iii) the total variation of g on $[a, x]$ equals $V_{[a, x]}(g)=V(x)$ for all $x \in[a, b]$;
(iv) $V-g$ is positive and increasing;
(v) $g(b)=\sum_{k=0}^{m-1}\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|$.
(b) Let $\varepsilon>0$. Show that there exists a partition of $[a, b]$ such that the corresponding function g of (a) satisfies $0 \leq V(x)-g(x) \leq \varepsilon$ for all $x \in[a, b]$.
(c) Show that there exists a sequence $\left(g_{n}\right)$ of functions on $[a, b]$ such that $0 \leq$ $V(x)-g_{n}(x) \leq 2^{-n}, x \mapsto V(x)-g_{n}(x)$ is increasing, and $\left|g_{n}^{\prime}\right|=\left|f^{\prime}\right|$ a.e. for every $n \in \mathbb{N}$.

Consider the sequence $\left(g_{n}\right)$ of (c) and let $h_{n}:=V-g_{n}, n \in \mathbb{N}$.
(d) Show that the sequence $\left(h_{n}\right)$ satisfies:
(i) $s(x):=\sum_{n=1}^{\infty} h_{n}(x)$ exists for all $x \in[a, b]$;
(ii) $x \mapsto s_{N}(x):=\sum_{n=1}^{N} h_{n}(x)$ is increasing and $s_{N+1}-s_{N}$ is increasing for each $N \in \mathbb{N}$;
(iii) $s_{1}^{\prime}(x) \leq s_{2}^{\prime}(x) \leq \cdots \leq s^{\prime}(x)$ for almost every $x \in[a, b]$;
(iv) $\lim _{N \rightarrow \infty} s_{N}^{\prime}(x)$ exists for almost every $x \in[a, b]$.
(e) Show that $V^{\prime}=\left|f^{\prime}\right|$ a.e.
4. Another application of Vitali's lemma. Follow the steps below to prove the following theorem of Lusin: Let $f:[a, b] \rightarrow \mathbb{R}$ be an arbitrary function. Define

$$
D:=\left\{x \in(a, b): f \text { is differentiable at } x \text { and } f^{\prime}(x)=0\right\} .
$$

Then $f(D)$ is a null set.
(a) Let $y \in f(D), \varepsilon>0$, and $\alpha>0$. Show that there exist an $x \in D$ and a $\delta>0$ such that

- $f(u) \in[y-\delta \varepsilon, y+\delta \varepsilon]$ for all $u \in(x-\delta, x+\delta)$
- the length of $[y-\delta \varepsilon, y+\delta \varepsilon]$ is less than α.
(b) Find a suitable collection of closed intervals that is a Vitali cover of $f(D)$ and apply Vitali's lemma to show that $m^{*}(f(D))=0$.
(Hint: it may help to consider $E=f(D) \cap[-M, M]$, suppose that $m^{*}(E)>0$, set $\varepsilon:=\frac{1}{2} m^{*}(E) /(1+b-a)$ and obtain a contradiction.)

