Gradient flows in measure spaces

(Topics in Analysis 2011)

Assignment 2

A map $F: H \to H$ on a Hilbert space (H, \langle, \rangle) is called monotone if

$$\langle F(x) - F(y), x - y \rangle \ge 0$$
 for all $x, y \in H$.

1. Let (H, \langle, \rangle) be a Hilbert space over \mathbb{R} and let $F: H \to H$ be a map such that its graph $\{(x, F(x)): x \in H\}$ is a c-monotone subset of $H \times H$, where

$$c(x,y) = ||x - y||_H^2, \quad x, y \in H.$$

Show that F is monotone.

2. Let (H, \langle, \rangle) be a Hilbert space over \mathbb{R} and let $\varphi \colon H \to \mathbb{R}$ be convex and differentiable. Show that $\{(x, \nabla \varphi(x)) \colon x \in H\}$ is a c-monotone subset of $H \times H$, where

$$c(x,y) = ||x - y||_H^2, \quad x, y \in H.$$

3. Let $F: \mathbb{R}^d \to \mathbb{R}^d$ be defined by

$$F(x) = ||x||^2 x, \quad x \in \mathbb{R}^d,$$

where $\|\cdot\|$ is the usual Euclidean norm. Show that F is monotone (with respect to the standard inner product on \mathbb{R}^d).

4. Let $F: \mathbb{R}^d \to \mathbb{R}^d$ be monotone (with respect to the standard inner product on \mathbb{R}^d). Suppose that for every $u \in \mathbb{R}^d$ there exists a differentiable function $y_u: [0, \infty) \to \mathbb{R}^d$ such that

$$y'_u(t) = -F(y_u(t))$$
 for all $t \ge 0$ and $y_u(0) = u$.

Show that

$$||y_u(t) - y_v(t)|| \le ||u - v||$$
 for all $t \ge 0$,

for each $u, v \in \mathbb{R}^d$.

5. Consider X = [0,1] with the metric $d(x,y) = |x-y|, x,y \in [0,1]$. Let $f,g:[0,1] \to (0,\infty)$ be continuous and such that

$$\int_0^1 f(x) \, dx = \int_0^1 g(x) \, dx = 1$$

and let μ and ν be the Borel probability measures on [0,1] with density functions f and g, respectively, that is,

$$\mu([a,b]) = \int_a^b f(x) \, dx \text{ and } \nu([a,b]) = \int_a^b g(x) \, dx$$

for any $0 \le a < b \le 1$. Consider the cost function

$$c(x,y) = (x-y)^2, \quad x,y \in [0,1].$$

1

- (a) Show that there exists an optimal transport map $r\colon X\to X$ which transports μ to ν .
- (b) Show that an optimal transport map r must satisfy

$$\int_{a}^{x} f(s) ds = \int_{0}^{r(x)} g(s) ds$$

for all $x \in [0, 1]$.

(Hint: applying 1. might be useful.)

(c) Show that the map r defined by

$$r(x) = G^{-1}(F(x)), \quad x \in [0, 1],$$

is an optimal transport map which transports μ to ν , where

$$F(x) = \int_0^x f(s) ds$$
 and $G(x) = \int_0^x g(s) ds$

for $x \in [0, 1]$.

— Due: April 20, 2011 —