Gradient flows in measure spaces

(Topics in Analysis 2011)

Assignment 1

1. (Convergence in distribution) For a Borel probability measure μ on $\mathbb R$ its distribution function is defined by

$$F(x) := \mu((-\infty, x]), \quad x \in \mathbb{R}.$$

Let $\mu, \mu_1, \mu_2, \ldots$ be Borel probability measures on \mathbb{R} and let F, F_1, F_2, \ldots be their distribution functions. Show that $\mu_n \to \mu$ narrowly if and only if $F_n(x) \to F(x)$ for every $x \in \mathbb{R}$ at which F is continuous.

2. (Embedding of X into $\mathcal{P}(X)$) Let (X,d) be a metric space. Consider a modification of the bounded Lipschitz metric:

$$d_{bl}(\mu,\nu) := \sup\{\left| \int f \, d\mu - \int f \, d\nu \right| : f \in BL(X), \max\{\|f\|_{\infty}, Lip(f)\} \le 1\},$$

 $\mu, \nu \in \mathcal{P}(X)$.

(a) Show that d_{bl} is a metric on $\mathcal{P}(X)$ and that there exist $c, C \in (0, \infty)$ such that

$$cd_{BL}(\mu, \nu) \leq d_{bl}(\mu, \nu) \leq Cd_{BL}(\mu, \nu)$$
 for all $\mu, \nu \in \mathcal{P}(X)$.

- (b) Assume that $d(x,y) \leq 1$ for all $x,y \in X$. Show that $x \mapsto \delta_x \colon (X,d) \to (\mathcal{P}(X),d_{bl})$ is an isometry. Here δ_x denotes the point measure at $x \colon \delta_x(A) = 1$ if $x \in A$ and $\delta_x(A) = 0$ if $x \notin A$, $A \subset X$ Borel.
 - (If (X, d) is an arbitrary metric space, then the metric $\tilde{d}(x, y) = \min\{d(x, y), 1\}$ induces the same topology and same Cauchy sequences as d.)
- 3. (Krylov-Bogoliubov theorem) Consider a non-empty compact metric space (X,d) and a continuous map $T\colon X\to X$. We think of T as a transition map: a particle which is at the point x at time n will be at the point T(x) at time n+1. After n time steps a particle starting at x will be at $T^n(x)$. If we start with particles distributed according to a distribution $\mu\in\mathcal{P}(X)$, then at time n they will be distributed according to the distribution $(T^n)_{\#}\mu$.
 - (a) Show that there exists an *invariant distribution* for T, that is, show that there exists a $\nu \in \mathcal{P}(X)$ such that $(T^n)_{\#}\nu = \nu$ for all n.
 - (b) Explicit case: let X be the unit circle around the origin in \mathbb{R}^2 (or \mathbb{C}) and let T be rotation over an angle $\alpha \in \mathbb{R}$. Give an explicit invariant distribution for T. Give an example where there are at least two distinct invariant distributions.

- 4. (Sufficient conditions for tightness) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
 - (a) Let \mathcal{A} be a set of measurable real valued functions on $(\Omega, \mathcal{F}, \mathbb{P})$ such that there exists an $M \in \mathbb{R}$ such that

$$\int_{\Omega} |f(\omega)| \, d\mathbb{P}(\omega) \le M \text{ for all } f \in \mathcal{A}.$$

Show that $\{f_{\#}\mathbb{P} \colon f \in \mathcal{A}\}$ is tight.

(Hint: $\int_{\Omega} |f(\omega)| d\mathbb{P}(\omega) \ge \int_{\Omega} n \mathbb{1}_{\{\omega: |f(\omega)| > n\}} d\mathbb{P}(\omega)$.)

(b) Let $(E, \|\cdot\|)$ be a Banch space and let F_t , $t \in [a, b]$, be a family of \mathcal{F} -Borel-measurable functions from Ω to E such that

$$\int_{\Omega} ||F_t(\omega)||_E d\mathbb{P}(\omega) \text{ is finite for all } t \in [a, b].$$

Assume that $t \mapsto F_t$ is continuous in the sense that

$$\lim_{s \to t} \int_{\Omega} \|F_s(\omega) - F_t(\omega)\|_E d\mathbb{P}(\omega) = 0 \text{ for all } t \in [a, b].$$

Show that $\{(F_t)_{\#}\mathbb{P}: t \in [a,b]\}$ is tight.

(Hint: not as in (a)!)

- 5. (Disintegration with densities)
 - (a) Let γ be a Borel probability measure on \mathbb{R}^2 and μ a Borel probability measure on \mathbb{R} such that $\gamma(A \times \mathbb{R}) = \mu(A)$ for every Borel set $A \subseteq X$. Assume that γ has a density h with respect to the Lebesgue measure on \mathbb{R}^2 and that μ has a density f with respect to the Lebesgue measure on \mathbb{R} . Find a formula for Borel probability measures ν_x on \mathbb{R} , $x \in \mathbb{R}$, in terms of h and f, such that

$$\int_{\mathbb{R}^2} u(x,y) \, d\gamma(x,y) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} u(x,y) \, d\nu_x(y) \right) d\mu(x)$$

for all bounded Borel functions $u \colon \mathbb{R}^2 \to \mathbb{R}$.

(b) Let γ_{12} and γ_{13} be Borel probability measures on \mathbb{R}^2 with densities h_{12} and h_{13} , respectively, with respect to the Lebesgue measure on \mathbb{R}^2 . Assume that $\gamma_{12}(A \times \mathbb{R}) = \gamma_{13}(A \times \mathbb{R})$ for every Borel set $A \subseteq \mathbb{R}$. Find a Borel measure μ on \mathbb{R}^3 such that

$$\gamma_{12}(A \times B) = \mu(A \times B \times \mathbb{R})$$

and

$$\gamma_{13}(A \times B) = \mu(A \times \mathbb{R} \times B)$$

for all Borel sets $A, B \subseteq \mathbb{R}$.

— Due: March 9, 2011 —

Onno van Gaans Spring 2011