I. (a) (Exercise 17 of Chapter 13 of Rudin’s book Functional Analysis): Show that the spectrum of an operator $T : \mathcal{D}(T) \to H$ on a complex Hilbert space is a closed subset of \mathbb{C}. Hint: if $ST \subset TS = I$ for a bounded operator S on H, and $|\lambda|$ is small, then $S(I - \lambda S)^{-1}$ (why is this well defined?) is a bounded inverse of $T - \lambda$.

(b) Let $\mathcal{D}(T) \subseteq H$ be a proper dense subspace of the complex Hilbert space H. Let $\lambda_0 \in \mathbb{C}$ be given, and define $T : \mathcal{D}(T) \to \mathbb{C}$ by $Tx = \lambda_0 x$, for $x \in \mathcal{D}(T)$. Determine the spectrum of T.

II. Let $T : \mathcal{D}(T) \to H$ be a closed operator on the complex Hilbert space H.

(a) Let $S : H \to H$ be bounded. Show that $T + S$ is a closed operator on H.

(b) The resolvent set of T consists of those $\lambda \in \mathbb{C}$ such that there exists a bounded $R : H \to H$ such that $R(T - \lambda) \subset (T - \lambda)R = I$. In this case, the requirement that R should be bounded is redundant: this is automatic, as a consequence of the fact that T is closed. Why?

III. Let $\{e_n\}_{n=1}^\infty$ be an orthonormal basis of the complex Hilbert space ℓ^2. Fix complex numbers $\lambda_1, \lambda_2, \lambda_3, \ldots$, let

$$\mathcal{D}(T) = \left\{ \sum_{n=1}^\infty x_n e_n \in \ell^2 : \sum_{n=0}^\infty |\lambda_n x_n|^2 < \infty \right\},$$

and define $T : \mathcal{D}(T) \to H$ as

$$T \left(\sum_{n=1}^\infty x_n e_n \right) = \sum_{n=1}^\infty \lambda_n x_n e_n,$$

for $\sum_{n=1}^\infty x_n e_n \in \mathcal{D}(T)$.

(a) Determine the spectrum of T. You may find it helpful to use that the spectrum of an arbitrary operator is always closed.

(b) T is densely defined. Why?

(c) Determine the adjoint T^* of T. Finite dimensional subspaces can be helpful for a precise argumentation that the domain of T^* is what you think it is.

See reverse side
IV. Let \((H, (\cdot, \cdot))\) be a complex Hilbert space and let \(A: D(A) \to H\) be a densely defined closed operator on \(H\). Suppose that
\[
(Ax, x) \leq 0 \text{ for all } x \in D(A) \text{ and }
\lambda I - A \text{ is surjective for every } \lambda > 0.
\]
Such an operator \(A\) is called \textit{m-dissipative}. Prove that \(A\) is the infinitesimal generator of a \(C_0\)-semigroup in \(H\), that is, a semigroup \(\{Q(t)\}\) satisfying the conditions of Definition 13.34(a)–(c) of Rudin’s book.

Hint: show first that for each \(\lambda > 0\) the operator \(\lambda I - A\) has a bounded inverse with norm \(\leq \frac{1}{\lambda}\).

— Due: January 21, 2014 —

— One point subtraction deadline: January 28, 2014 —

Teaching Assistant: Willem van Zuijlen, \texttt{willem.van.zuijlen@math.leidenuniv.nl}
If handed in by email, send the work as 1 (!) PDF, and make sure your name, university and student number are in the file.
Please add your postal address to your work, so that it may be returned to you.

Postal address:
Mathematical Institute
Leiden University
P.O. Box 9512
2300 RA Leiden

Leiden University
Marcel de Jeu
Onno van Gaans