Schertz style class invariants for quartic CM fields

Marco Streng (Universiteit Leiden) joint work with Andreas Enge (Université de Bordeaux)

$A G C^{2} T$ CIRM

3 June 2021

Schertz style class invariants for quartic CM fields

Marco Streng (Universiteit Leiden)
joint work with Andreas Enge (Université de Bordeaux)

$A G C^{2} T$ CIRM (online)
3 June 2021

Goal

Our results are about $2=2$ (or more generally $g=g$).

Class invariants only give an improvement by a constant factor.

This talk is mostly about $1=1$.

Goal

Our results are about $2=2$ (or more generally $g=g$).

- Constructing varieties that are simple, so we can't use the a $1+1=2$ approach (as Jeroen Sijsling called it on Monday).

Class invariants only give an improvement by a constant factor.

- But such a constant factor was essential for the computation of modular polynomials for $g=1$, as in the discussion after Jean Kieffer's talk on Monday.

This talk is mostly about $1=1$.

Elliptic curves with complex multiplication (CM)

Let k be a field of characteristic not 2 or 3 .
An elliptic curve is a smooth projective curve of the form $E: y^{2}=x^{3}+A x+B$ with $A, B \in k$.

An endomorphism of E is an algebraic group homomorphism $E \rightarrow E$ with $O \mapsto O$.

If $\operatorname{char}(k)=0$, then "usually" $\operatorname{End}(E)=\mathbb{Z}$.
If $\operatorname{End}(E) \supsetneq \mathbb{Z}$, then we say that E has CM.
Example

- if $E: y^{2}=x^{3}+x$ and $i=\sqrt{-1} \in k$, then $f:(x, y) \mapsto(-x, i y)$.
- $\operatorname{End}(E)=\mathbb{Z}[f] \cong \mathbb{Z}[\sqrt{-1}]$

The Hilbert class polynomial

Definition: The j-invariant of the elliptic curve $y^{2}=x^{3}+A x+B$ is

$$
j(E)=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}} .
$$

Fact: $\quad j(E)=j(F) \Longleftrightarrow E \cong_{{ }_{k}} F$
Definition: Let K be an imaginary quadratic number field. Its Hilbert class polynomial is

$$
\begin{aligned}
& \qquad H_{K}=\prod_{\substack{E / \mathbb{C} \\
\operatorname{End}(E) \cong \mathcal{O}_{K}}}(X-j(E)) \in \mathbb{Z}[X] . \\
& \text { (e.g., } \left.H_{\mathbb{Q}(\sqrt{-1})}=X-1728\right)
\end{aligned}
$$

Application 1: roots generate the Hilbert class field of K Application 2: elliptic curves of prescribed order

Application 2: elliptic curves of prescribed order

Algorithm:

1. If $p=\pi \bar{\pi}$ with $\pi \in \mathcal{O}_{K}$,

$$
\text { (e.g., } p=a^{2}+b^{2} \text { for } K=\mathbb{Q}(\sqrt{-1}) \text {) }
$$

2. then $\left(H_{K} \bmod p\right) \in \mathbb{F}_{p}[X]$ splits into linear factors.
3. Let $j_{0} \in \mathbb{F}_{p}$ be a root and take E / \mathbb{F}_{p} with $j(E)=j_{0}$.
4. Then (possibly after taking a twist), we have "Frob $=\pi$ " and

$$
\# E\left(\mathbb{F}_{p}\right)=p+1-\operatorname{tr}(\pi)
$$

$$
\text { (e.g., } p+1-2 a \text {). }
$$

By choosing K and p well, get elliptic curves for cryptography, including pairing based cryptography.

Computing the Hilbert class polynomial

- $\{$ elliptic curves $E / \mathbb{C}\} / \cong \longleftrightarrow \quad\{$ lattices $\wedge \subset \mathbb{C}\} / \cong$
- $\operatorname{End}(E)=\{\alpha \in \mathbb{C}: \alpha \Lambda \subset \Lambda\}$

Then

$$
H_{K}=\prod_{[\mathfrak{a}] \in \mathcal{C} \mathcal{L}(K)}(X-j(\mathfrak{a})) \in \mathbb{Z}[X] .
$$

Write $\Lambda=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$ such that
$\tau=\omega_{1} / \omega_{2} \in \mathcal{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
Then $j(E)=j(\Lambda)=j(\tau)$.

The size

- The Hilbert class polynomial of $K=\mathbb{Q}(\sqrt{-71})$ is

$$
\begin{aligned}
& X^{7}+313645809715 X^{6}-3091990138604570 X^{5} \\
& +98394038810047812049302 X^{4} \\
& -823534263439730779968091389 X^{3} \\
& +5138800366453976780323726329446 X^{2} \\
& -425319473946139603274605151187659 X \\
& +737707086760731113357714241006081263
\end{aligned}
$$

- Weber (around 1900) replaces this by

$$
X^{7}+X^{6}-X^{5}-X^{4}-X^{3}+X^{2}+2 X-1
$$

using class invariants.

Replace j by a more general modular function.

$$
\text { Let } \mathcal{F}_{N}=\mathbb{Q}\left(\zeta_{N}\right)(X(N))
$$

$$
\int \text { meromorphic } f: \mathcal{H} \rightarrow \mathbb{C} \text { such that }
$$

(2) $f \in \mathbb{Q}\left(\zeta_{N}\right)\left[\left[q^{1 / N}\right]\right]$ for $q=\exp (2 \pi i \tau)$
(3) f is meromorphic at the cusps

Examples:

- Example: $\mathcal{F}_{1}=\mathbb{Q}(j)$.
- Weber used $\mathfrak{f}(\tau)=\zeta_{48}^{-1} \frac{\eta\left(\frac{\tau+1}{2}\right)}{\eta(\tau)} \in \mathcal{F}_{48}$, where

$$
\begin{aligned}
\eta(\tau) & =q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \\
\zeta_{48} & =e^{2 \pi i / 48}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } f\left(\frac{a \tau+b}{c \tau+d}\right)=f(\tau) \text { for all } \\
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) \text { with } A \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N
\end{aligned}
$$

Replace j by a more general modular function.

$$
\text { Let } \mathcal{F}_{N}=\mathbb{Q}\left(\zeta_{N}\right)(X(N)) \quad \text { and } \quad q=\exp (2 \pi i \tau)
$$

Examples:

- Example: $\mathcal{F}_{1}=\mathbb{Q}(j)$.
- Weber used $\mathfrak{f}(\tau)=\zeta_{48}^{-1} \frac{\eta\left(\frac{\tau+1}{2}\right)}{\eta(\tau)} \in \mathcal{F}_{48}$, where

$$
\begin{aligned}
\eta(\tau) & =q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \\
\zeta_{48} & =e^{2 \pi i / 48}
\end{aligned}
$$

- Then $\left(f^{24}-16\right)^{3}-j f^{24}=0$, which explains a factor $3 \cdot 24=72$ reduction in number of digits.
- Even better reduction for modular polynomials (assuming $\operatorname{gcd}(\ell, 48)=1$).

Galois groups of modular functions

- Let $\mathcal{H}_{N}=K\left(f(\tau): f \in \mathcal{F}_{N}\right)$, where $\tau \mathbb{Z}+\mathbb{Z}$ has CM by \mathcal{O}_{K}.
- $\mathcal{H}_{1}=K(j(\tau))$ is the Hilbert class field of K.
- Call $f(\tau)$ a class invariant if $f(\tau) \in \mathcal{H}_{1}$.
- Weber's $\mathfrak{f}(\tau)$ is a class invariant for $\mathbb{Z}[\sqrt{-71}]$.

Galois groups:

$$
\begin{gathered}
f \longrightarrow f(\tau) \\
\mathcal{F}_{N} \ldots \mathcal{H}_{N} \\
\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) / \pm\left. 1\right|_{\mathbb{Q}(j) \longrightarrow} \mid\left(\mathcal{O}_{K} / N \mathcal{O}_{K}\right)^{*} / \mathcal{O}_{K}^{*}
\end{gathered}
$$

Galois groups of modular functions

Shimura's reciprocity law:
We have $f(\tau)^{x}=f^{g_{\tau}(x)}(\tau)$ for some map

$$
g_{\tau}:\left(\mathcal{O}_{K} / N \mathcal{O}_{K}\right)^{*} \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})
$$

Explicitly: $g_{\tau}(x)$ is the transpose of the matrix of multiplication by x w.r.t. the \mathbb{Q}-basis $\tau, 1$ of K

Note: If f is fixed under $g_{\tau}\left(\left(\mathcal{O}_{K} / N \mathcal{O}_{K}\right)^{*}\right)$, then $f(\tau) \in \mathcal{H}_{1}$.

The minimal polynomial of a class invariant

The full version of Shimura's reciprocity law gives the action of $G=\operatorname{Gal}\left(\mathcal{H}_{N} / K\right)$ on $f(\tau)$.

This allows us to

- check if $f(\tau)$ is a class invariant, i.e., $K(f(\tau)) \subseteq \mathcal{H}_{1}$
- compute the minimal polynomial of $f(\tau)$ over K :

$$
H_{f}=\prod_{x \in G}\left(X-f(\tau)^{x}\right) \in K[X]
$$

Schertz style class invariants

Idea of Schertz: apply Shimura reciprocity once and for all to get one easily-usable theorem for many different f and K.

Theorem (Schertz) Let N be a positive integer.
Let f be a modular function such that $f(\tau)$ and $f(-1 / \tau)$ have rational q-expansion and such that f is invariant under

$$
\Gamma^{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): N \mid b\right\} .
$$

Let K be an imaginary quadratic number field such that all primes $p \mid N$ are split in K or have $\operatorname{ord}_{p}(N)=1$ and are ramified in K.

Then there is a $\tau \in K$ with $f(\tau) \in \mathcal{H}_{1}$.
Moreover, Schertz gives a method for finding $\tau_{1}, \tau_{2}, \cdots, \tau_{h}$ with

$$
\prod_{i=1}^{h}\left(X-f\left(\tau_{i}\right)\right) \in \mathbb{Q}[X]
$$

Beyond elliptic curves

Higher genus curves and higher-dimensional abelian varieties.
Replace j in a suitable way.
Get: class polynomials with similar applications.
Examples:

- $y^{2}=f(x)$ degree 5 or 6 (genus 2)
- $y^{2}=f(x)$ degree 7 or 8 (genus 3)
- $y^{3}=f(x)$ degree 4 (Picard curve of genus 3)
- smooth plane quartic curves (genus 3)
- $y^{5}=f(x)$ degree 5 (cyclic curve of genus 6)

Class invariants for $g>1$

An explicit version of Shimura's reciprocity law for Siegel modular functions [arxiv]
Rephrase Shimura's reciprocity law for $g \geq 1$ in a form that is explicit enough for doing calculations.
recip https://bitbucket.org/mstreng/recip Implementation of reciprocity law and many other CM-related formulas and algorithms.

Schertz style class invariants in dimension 2 [arxiv] With Andreas Enge: found a generalisation of Schertz' once-and-for-all method (for arbitrary g, but works best for $g \leq 2$).

Example

Consider thet double Igusa quotient $f=\frac{\Theta(\tau / 2) \Theta(\tau / 3)}{\Theta(\tau) \Theta(\tau / 6)}$, where Θ is the product of the 10 "even theta constants".

If K is a primitive quartic CM field with real quadratic subfield K_{0} and all primes of K_{0} dividing 6 are split in K, then there exists a τ such that $f(\tau)$ (or maybe only $f(\tau)^{2}$) is a class invariant.

This changes

$$
\begin{aligned}
& 2^{40} \cdot 13^{4} \cdot X^{5} \\
& +(-6140585422220204445794304 \omega-322904904921695447307780096) X^{4} \\
& +(-96632884032276403274175741952 \omega-4131427744203466842763320885248) X^{3} \\
& +(-961856435411091691207536138780672 \omega-19922426752533168631849612073238528) X^{2} \\
& +(-2810878875032206947279703590350876416 \omega-32507451628887950858017880191429021184) X \\
& +(-3949991728992949515358757855080152530801 \omega-59187968308773159157484805661633506074674),
\end{aligned}
$$

where $\omega=\frac{1}{2}(1+\sqrt{601})$, into \ldots

Example

Consider thet double Igusa quotient $f=\frac{\Theta(\tau / 2) \Theta(\tau / 3)}{\Theta(\tau) \Theta(\tau / 6)}$, where Θ is the product of the 10 "even theta constants".

If K is a primitive quartic CM field with real quadratic subfield K_{0} and all primes of K_{0} dividing 6 are split in K, then there exists a τ such that $f(\tau)$ (or maybe only $f(\tau)^{2}$) is a class invariant.

This changes ... into

$$
\begin{aligned}
& 2^{2} \cdot 13^{2} \cdot x^{5} \\
& +(1326 \omega+23894) \cdot x^{4} \\
& +(8833 \omega+1025477) \cdot x^{3} \\
& +(-14003 \omega-1482307) \cdot x^{2} \\
& +(-2040 \omega-6080) \cdot x \\
& -2^{2} \cdot 13^{2},
\end{aligned}
$$

where $\omega=\frac{1}{2}(1+\sqrt{601})$.

Open:

- Consequences for modular polynomials (decreasing size while still keeping the same applications).
- Statements about the quality of the class invariants.
- Finding more good functions.
- Polynomials relating the class invariants with the usual invariant (e.g., Igusa invariants).

