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Goal

Our results are about 2 = 2 (or more generally g = g).

I Constructing varieties that are simple, so we can’t use the a
1 + 1 = 2 approach (as Jeroen Sijsling called it on Monday).

Class invariants only give an improvement by a constant factor.

I But such a constant factor was essential for the computation
of modular polynomials for g = 1, as in the discussion after
Jean Kieffer’s talk on Monday.

This talk is mostly about 1 = 1.
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Elliptic curves with complex multiplication (CM)

Let k be a field of characteristic not 2 or 3.

An elliptic curve is a smooth projective curve of the form
E : y2 = x3 + Ax + B with A,B ∈ k.

An endomorphism of E is an algebraic group homomorphism
E → E with O 7→ O.

If char(k) = 0, then “usually” End(E ) = Z.
If End(E ) ) Z, then we say that E has CM.

Example

I if E : y2 = x3 + x and i =
√
−1 ∈ k , then

f : (x , y) 7→ (−x , iy).

I End(E ) = Z[f ] ∼= Z[
√
−1]
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The Hilbert class polynomial

Definition: The j-invariant of the elliptic curve y2 = x3 +Ax +B is

j(E ) = 1728
4A3

4A3 + 27B2
.

Fact: j(E ) = j(F ) ⇐⇒ E ∼=k F

Definition: Let K be an imaginary quadratic number field.
Its Hilbert class polynomial is

HK =
∏
E/C

End(E)∼=OK

(
X − j(E )

)
∈ Z[X ].

(e.g., HQ(
√
−1) = X − 1728)

Application 1: roots generate the Hilbert class field of K
Application 2: elliptic curves of prescribed order
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Application 2: elliptic curves of prescribed order

Algorithm:

1. If p = ππ with π ∈ OK ,
(e.g., p = a2 + b2 for K = Q(

√
−1))

2. then (HK mod p) ∈ Fp[X ] splits into linear factors.

3. Let j0 ∈ Fp be a root and take E/Fp with j(E ) = j0.

4. Then (possibly after taking a twist), we have “Frob = π” and

#E (Fp) = p + 1− tr(π)

(e.g., p + 1− 2a).

By choosing K and p well, get elliptic curves for cryptography,
including pairing based cryptography.
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Computing the Hilbert class polynomial

I {elliptic curves E/C}/ ∼= ←→ {lattices Λ ⊂ C}/ ∼=
I End(E ) = {α ∈ C : αΛ ⊂ Λ}

Then
HK =

∏
[a]∈CL(K)

(X − j(a)) ∈ Z[X ].

Write Λ = ω1Z + ω2Z such that
τ = ω1/ω2 ∈ H = {z ∈ C : Im(z) > 0} .

Then j(E ) = j(Λ) = j(τ).
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The size

I The Hilbert class polynomial of K = Q(
√
−71) is

X 7 + 313645809715X 6 − 3091990138604570X 5

+ 98394038810047812049302X 4

− 823534263439730779968091389X 3

+ 5138800366453976780323726329446X 2

− 425319473946139603274605151187659X

+ 737707086760731113357714241006081263.

I Weber (around 1900) replaces this by

X 7 + X 6 − X 5 − X 4 − X 3 + X 2 + 2X − 1

using class invariants.
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Replace j by a more general modular function.

Let FN = Q(ζN)(X (N))

=



meromorphic f : H 99K C such that

(1) f
(

aτ+b
cτ+d

)
= f (τ) for all

A = ( ac
b
d ) ∈ SL2(Z) with A ≡ ( 1

0
0
1 ) mod N

(2) f ∈ Q(ζN)[[q1/N ]] for q = exp(2πiτ)
(3) f is meromorphic at the cusps


Examples:

I Example: F1 = Q(j).

I Weber used f(τ) = ζ−1
48

η( τ+1
2 )

η(τ)
∈ F48, where

η(τ) = q1/24
∞∏
n=1

(1− qn),

ζ48 = e2πi/48.

I Then (f24 − 16)3 − j f24 = 0, which explains a factor
3 · 24 = 72 reduction in number of digits.

I Even better reduction for modular polynomials
(assuming gcd(`, 48) = 1).
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Galois groups of modular functions

I Let HN = K (f (τ) : f ∈ FN), where τZ + Z has CM by OK .

I H1 = K (j(τ)) is the Hilbert class field of K .

I Call f (τ) a class invariant if f (τ) ∈ H1.

I Weber’s f(τ) is a class invariant for Z[
√
−71].

Galois groups:

f f (τ)

FN HN

Q(j) H1

GL2(Z/NZ)/±1 (OK/NOK )∗/O∗K
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Galois groups of modular functions

f f (τ)

FN HN

Q(j) H1

GL2(Z/NZ)/±1 (OK/NOK )∗/O∗K

Shimura’s reciprocity law:
We have f (τ)x = f gτ (x)(τ) for some map

gτ : (OK/NOK )∗ → GL2(Z/NZ)

Explicitly: gτ (x) is the transpose of the matrix of multiplication
by x w.r.t. the Q-basis τ , 1 of K

Note: If f is fixed under gτ ((OK/NOK )∗), then f (τ) ∈ H1.
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The minimal polynomial of a class invariant

The full version of Shimura’s reciprocity law gives the action of
G = Gal(HN/K ) on f (τ).

This allows us to

I check if f (τ) is a class invariant, i.e., K (f (τ)) ⊆ H1

I compute the minimal polynomial of f (τ) over K :

Hf =
∏
x∈G

(X − f (τ)x) ∈ K [X ]
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Schertz style class invariants

Idea of Schertz: apply Shimura reciprocity once and for all to get
one easily-usable theorem for many different f and K .

Theorem (Schertz) Let N be a positive integer.
Let f be a modular function such that f (τ) and f (−1/τ) have
rational q-expansion and such that f is invariant under

Γ0(N) =

{(
a

c

b

d

)
∈ SL2(Z) : N | b

}
.

Let K be an imaginary quadratic number field such that all primes
p | N are split in K or have ordp(N) = 1 and are ramified in K .

Then there is a τ ∈ K with f (τ) ∈ H1.

Moreover, Schertz gives a method for finding τ1, τ2, · · · , τh with

h∏
i=1

(X − f (τi )) ∈ Q[X ].
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Beyond elliptic curves

Higher genus curves and higher-dimensional abelian varieties.

Replace j in a suitable way.

Get: class polynomials with similar applications.

Examples:

I y2 = f (x) degree 5 or 6 (genus 2)

I y2 = f (x) degree 7 or 8 (genus 3)

I y3 = f (x) degree 4 (Picard curve of genus 3)

I smooth plane quartic curves (genus 3)

I y5 = f (x) degree 5 (cyclic curve of genus 6)
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Class invariants for g > 1

An explicit version of Shimura’s reciprocity law for Siegel modular
functions [arxiv]
Rephrase Shimura’s reciprocity law for g ≥ 1 in a form that is
explicit enough for doing calculations.

recip https://bitbucket.org/mstreng/recip

Implementation of reciprocity law and many other CM-related
formulas and algorithms.

Schertz style class invariants in dimension 2 [arxiv]
With Andreas Enge: found a generalisation of Schertz’
once-and-for-all method (for arbitrary g , but works best for g ≤ 2).
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Example

Consider thet double Igusa quotient f = Θ(τ/2)Θ(τ/3)
Θ(τ)Θ(τ/6) , where Θ is

the product of the 10 “even theta constants”.

If K is a primitive quartic CM field with real quadratic subfield K0

and all primes of K0 dividing 6 are split in K , then there exists a τ
such that f (τ) (or maybe only f (τ)2) is a class invariant.

This changes

240 · 134 · X 5

+ (−6140585422220204445794304ω − 322904904921695447307780096)X 4

+ (−96632884032276403274175741952ω − 4131427744203466842763320885248)X 3

+ (−961856435411091691207536138780672ω − 19922426752533168631849612073238528)X 2

+ (−2810878875032206947279703590350876416ω − 32507451628887950858017880191429021184)X

+ (−3949991728992949515358757855080152530801ω − 59187968308773159157484805661633506074674),

where ω = 1
2 (1 +

√
601), into ...

Marco Streng (Leiden) Schertz style class invariants AGC2T 2021



Example

Consider thet double Igusa quotient f = Θ(τ/2)Θ(τ/3)
Θ(τ)Θ(τ/6) , where Θ is

the product of the 10 “even theta constants”.

If K is a primitive quartic CM field with real quadratic subfield K0

and all primes of K0 dividing 6 are split in K , then there exists a τ
such that f (τ) (or maybe only f (τ)2) is a class invariant.

This changes ... into

22 · 132 · X 5

+ (1326ω + 23894) · X 4
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,
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2 (1 +

√
601).
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Open:

I Consequences for modular polynomials (decreasing size while
still keeping the same applications).

I Statements about the quality of the class invariants.

I Finding more good functions.

I Polynomials relating the class invariants with the usual
invariant (e.g., Igusa invariants).
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