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1 Partial differential equations and numerical methods

1.1 Diffusion, convection and reaction

We shall use the following notations for the so-called gradient and divergence operators,

grad f(x, y, z) =




∂
∂x
f(x, y, z)

∂
∂y
f(x, y, z)

∂
∂z
f(x, y, z)


 ,

div



f1(x, y, z)

f2(x, y, z)

f3(x, y, z)


 =

∂

∂x
f1(x, y, z) +

∂

∂y
f2(x, y, z) +

∂

∂z
f3(x, y, z).

We consider a chemical species in a three-dimensional region Ω, and denote its concentration

(in mass per unit volume), at the time t and location p = (x, y, z) in Ω, by u(p, t) = u(x, y, z, t).

We denote the rate of generation of the chemical species per unit volume, due to some

chemical reaction, by r(p, t, u(p, t)). This rate thus depends on the position p, time t and actual

concentration u(p, t). The rate can have a positive or negative value, and be zero for a nonreacting

species. If there would be no flow of the species through Ω, e.g. if Ω consists of a substance

impermeable to the species, the concentration would satisfy the differential equation

∂

∂t
u(p, t) = r(p, t, u(p, t)).

But, in many cases of practical interest (fluids or gasses) we have to consider a flux through

Ω influencing u(p, t). We represent this flux by a vector F (p, t) ∈ R
3 with components F1(p, t),

F2(p, t), F3(p, t). This vector has a direction coinciding with the direction of the flux, and its

Euclidean length equals the amount of species flowing per time unit through a unit surface that is

perpendicular to the flux (at the position p and time t). In order to determine the effect of the flux

F on ∂
∂tu(p, t) we consider a small cube ∆Ω in Ω with center at p = (x, y, z). Let ∆Ω be bounded

by surfaces perpendicular to the x−, y− and z− axes with distances from p equal to ∆x
2 , ∆y

2 ,
∆z
2 ,

respectively. By simple geometric arguments it is possible to determine the effect of the flux on the

increase of the amount of species, per time unit, in the cube. This effect is approximately equal to

[
F1(x− ∆x

2
, y, z, t) − F1(x+

∆x

2
, y, z, t)

]
∆y∆z +

[
F2(x, y −

∆y

2
, z, t) − F2(x, y +

∆y

2
, z, t)

]
∆x∆z

+
[
F3(x, y, z −

∆z

2
, t) − F3(x, y, z +

∆z

2
, t)

]
∆x∆y,

that is to

−div F (p, t) · ∆x∆y∆z.

Therefore the effect of the flux on the increase of u(p, t), per time unit, equals −div F (p, t). The

total effect of reaction and flux is expressed in

∂

∂t
u(p, t) = −div F (p, t) + r(p, t, u(p, t)),

which we shall call the conservation of mass equation.
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In general the flux vector F (p, t) can be decomposed,

F (p, t) = u(p, t) · V (p, t) +W (p, t).

Here the first term in the right-hand member is the convection flux of the species. It is caused

by a general flow field V (p, t) ∈ R
3 which is independent of the concentration of the chemical

species. The amount of the species transported with the motion V (p, t) is represented by the

vector u(p, t) · V (p, t). The second term is called the diffusion flux. It is due to the molecular,

thermal agitation, and is also present in fluids or gasses at rest. According to Ficks’ law

W (p, t) = −k(p, t) · grad u(p, t),

where k(p, t) is called the diffusion coefficient at p and at time t.

Substituting the above expressions in the conservation of mass equation we obtain the partial

differential equation

(1.1.1)
∂

∂t
u(p, t) = div [k(p, t) grad u(p, t)] − div [u(p, t)V (p, t)] + r(p, t, u(p, t)).

It is called a transport equation, or also a diffusion-convection-reaction equation, for u(p, t).

In practical situations one may be interested in computing the solution u(p, t) to (1.1.1) for

p ∈ Ω, t > 0, under an initial condition of the form

(1.1.2) u(p, 0) = f(p) for p ∈ Ω,

with given function f(p). In general, the relations (1.1.1), (1.1.2) are supplemented by conditions

for t > 0 at the points p belonging to the boundary ∂Ω of Ω. These boundary conditions are usually

of one of the following three types,

u(p, t) = g(p, t),(1.1.3a)

∂

∂n
u(p, t) = g(p, t),(1.1.3b)

∂

∂n
u(p, t) = c(p, t) · [g(p, t) − u(p, t)].(1.1.3c)

Here g(p, t) and c(p, t) are given functions. Further, n denotes the outward normal to ∂Ω at p, with

length 1, so that ∂
∂nu(p, t) is equal to the inner product of n and grad u(p, t).

Condition (1.1.3a) is called a Dirichlet boundary condition. It occurs if there is free contact

between the interior and exterior of Ω at p ∈ ∂Ω, and the concentration outside Ω is known to be

equal to u0(p, t). If the medium in which the chemical species is solved is the same —outside and

inside of ∂Ω — we have g(p, t) = u0(p, t).

Condition (1.1.3b) is called a Von Neumann boundary condition. E.g. if the boundary ∂Ω

is impermeable to the chemical species, and the normal component Vn(p, t) of V (p, t) at p ∈ ∂Ω

vanishes, we have (1.1.3b) with g(p, t) = 0.

Condition (1.1.3c) is a mixed condition. E.g. if the boundary is semipermeable with regard

to the chemical species, we may have c(p, t) > 0 and g(p, t) as in (1.1.3a).

In cases where ∂
∂zu(p, t) = 0, or ∂

∂zu(p, t) = ∂
∂yu(p, t) = 0, throughout Ω and for all t ≥ 0, it

may be convenient to consider the concentration as a function only of the variable (x, y, t) or (x, t),

respectively. In this way one can arrive e.g. at the following four lower-dimensional versions of the

above.
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∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(0, t) = g0(t), u(1, t) = g1(t),(1.1.4)

u(x, 0) = f(x), where 0 ≤ x ≤ 1, t ≥ 0.

This is the pure diffusion equation with Dirichlet boundary conditions in 1 dimension.

∂

∂t
u(x, t) =

∂

∂x
[b(x)u(x, t)] + c(x, t), u(0, t) = 0,(1.1.5)

u(x, 0) = f(x), where 0 ≤ x ≤ 1, t ≥ 0.

This is a one-dimensional convection-reaction equation, where the rate c(x, t) of the chemical reac-

tion is independent of the concentration u(x, t).

∂

∂t
u(x, t) =

∂

∂x
[a(x)

∂

∂x
u(x, t)] +

∂

∂x
[b(x)u(x, t)] + c(x)u(x, t) + d(x),(1.1.6)

u(0, t) = g(t),
∂

∂x
u(1, t) = 0, u(x, 0) = f(x), where 0 ≤ x ≤ 1, t ≥ 0.

This is a one-dimensional diffusion-convection-reaction equation. In case b(0) < 0, the convection at

x = 0 is from left to right, and the boundary point x = 0 lies upwind, sometimes called upstream, of

the calculation domain. Correspondingly, the condition u(0, t) = g(t) is called an inflow boundary

condition. In case b(0) > 0, the same condition would be called an outflow boundary condition.

In the following example we consider the square Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, with

boundary ∂Ω = {(x, y) : (x, y) ∈ Ω, and x(x− 1) y(y − 1) = 0}.

∂

∂t
u(x, y, t) =

∂2

∂x2
u(x, y, t) +

∂2

∂y2
u(x, y, t) for (x, y) ∈ Ω,(1.1.7)

u(x, y, t) = g(x, y, t) for (x, y) ∈ ∂Ω,

u(x, y, 0) = f(x, y) for (x, y) ∈ Ω,

where t ≥ 0.

This is a pure diffusion equation with Dirichlet boundary conditions in 2 dimensions.

1.2 Semi-discretization by finite difference methods

1.2.1 Basic finite difference approximations

The finite difference method can be used for obtaining numerical approximations to the solutions

of the partial differential equations reviewed above under given initial-boundary conditions. The

method essentially consists in replacing the partial derivatives in the original problem by finite

difference quotients so as to obtain a related problem which is easier to solve than the original

one. In this section we focus on such replacements for the derivatives with respect to the space

variables (x, y and z) only. This process, where derivatives with respect to t are not affected, is

called semi-discretization.

We start by listing various difference approximations to the derivatives of a function v(x)

defined for 0 ≤ x ≤ 1. We assume v(x) to have continuous derivatives of the orders occurring in
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the following expressions, and for integer values p ≥ 1 we denote by v(p)(x) the p-th derivative of

v(x). Further, we use the notation

∣∣v(p)
∣∣
∞

= max
0≤x≤1

∣∣v(p)(x)
∣∣.

All arguments of v, occurring below, belong to the interval [0, 1], and δ = ∆x denotes a positive

increment of the variable x. The following six relations are valid:

v′(x) = δ−1[v(x+ δ) − v(x)] +R,(1.2.1a)

with |R| ≤ δ

2
|v(2)|∞ (forward difference approximation).

v′(x) = δ−1[v(x) − v(x− δ)] +R,(1.2.1b)

with |R| ≤ δ

2
|v(2)|∞ (backward difference approximation).

v′(x) = (2δ)−1[v(x+ δ) − v(x− δ)] +R,(1.2.1c)

with |R| ≤ δ2

6
|v(3)|∞ (centered approximation).

(1.2.2a) v′′(x) = δ−2[v(x− δ) − 2v(x) + v(x+ δ)] +R, with |R| ≤ δ2

12
|v(4)|∞.

v′′(x) =
1

12
δ−2[−v(x− 2δ) + 16v(x − δ) − 30v(x) + 16v(x + δ) − v(x+ 2δ)] +(1.2.2b)

+R, with |R| ≤ δ4

90
|v(6)|∞.

1

12
[v′′(x− δ) + 10v′′(x) + v′′(x+ δ)] = δ−2[v(x− δ) − 2v(x) + v(x+ δ)] +R,(1.2.2c)

with |R| ≤ δ4

240
|v(6)|∞ (Numerov’s approximation).

The above upper bounds for |R| can be obtained by expanding R in powers of δ, with

the use of Taylor’s formula applied to the function v. In order to arrive at the bounds in (1.2.2b),

(1.2.2c) one has to express the remainder term associated with the Taylor polynomial as an integral

involving the 6-th derivative of v. Further, in proving (1.2.2c), Taylor’s formula should as well be

applied to the function v′′.

The left-hand members in the formulas (1.2.1), (1.2.2) can be approximated by the corre-

sponding right-hand members in which the residual R is suppressed.

1.2.2 Finite difference approximations using non-equidistant arguments

It is also possible to establish finite difference approximations with nonuniformly distributed argu-

ments. For instance, let δ1 > 0, δ2 > 0 and consider the expression

β · v(x− δ1) + α · v(x) + γ · v(x+ δ2),

where α, β, γ are coefficients which are still to be determined. By Taylor’s formula this expression

equals

(α + β + γ)v(x) + (γδ2 − βδ1)v
′(x) +

[
γ(δ2)

2 + β(δ1)
2
]v′′(x)

2
−R,

where
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|R| ≤
[
|γ|(δ2)3 + |β|(δ1)3

]1

6
|v′′′|∞.

Suppose one wants to approximate v′′(x). Then the requirements on α, β, γ should be that

α+ β + γ = 0, γδ2 − βδ1 = 0, γ(δ2)
2 + β(δ1)

2 = 2,

which yields

α =
−2

δ1δ2
, β =

2

δ1(δ1 + δ2)
, γ =

2

δ2(δ1 + δ2)
.

From the above it can be seen that

v′′(x) =
2

δ1(δ1 + δ2)
v(x− δ1) −

2

δ1δ2
v(x) +

2

δ2(δ1 + δ2)
v(x+ δ2) +R,(1.2.3)

with |R| ≤ 1

3
· max(δ1, δ2) · |v′′′|∞.

1.2.3 Semi-discretization in one space variable

In the process of semi-discretization by finite differences we choose gridpoints p in the calculation

domain, and we approximate the values u(p, t) by quantities U(p, t) for all gridpoints p.

For instance, consider the approximation of the solution to (1.1.4) on a so-called nonuniform

grid using formula (1.2.3). We choose δ1 > 0, δ2 > 0, . . . , δs+1 > 0 with δ1 + δ2 + · · · + δs+1 = 1,

and define gridpoints p = xj by x0 = 0, xj+1 = xj + δj+1 (for j = 0, 1, . . . , s) . In view of (1.2.3)

we define approximations Uj(t) = U(xj , t) ≈ u(xj , t) by requiring, for 1 ≤ j ≤ s,

d

dt
Uj(t) =

2

δj(δj + δj+1)
Uj−1(t) −

2

δjδj+1
Uj(t) +

2

δj+1(δj + δj+1)
Uj+1(t), Uj(0) = f(xj),

and by putting U0(t) = g0(t), Us+1(t) = g1(t). These requirements can be cast in the compact

form

(1.2.4)
d

dt
U(t) = AU(t) + r(t) for t ≥ 0, U(0) = u0.

Here A is a tridiagonal s × s matrix, r(t) and u0 are given vectors in the s-dimensional complex

vector space C
s, and U(t) ∈ C

s has components U1(t), U2(t), · · · , Us(t). The solution to the system

of ordinary differential equations in (1.2.4) thus provides an approximation to the solution of the

partial differential equation in (1.1.4).

The use of variable increments δj can be advantageous in cases where the smoothness of the

true solution u(x, t) varies significantly when x runs through [0, 1]. In such cases one may choose

δj especially small in those parts of [0, 1] where u(x, t) is expected to be nonsmooth.

If the smoothness of u(x, t) is not expected to vary strongly with x it may be recommended

to use a so-called uniform grid, i.e. xj+1 = xj + δ with δ = (s+ 1)−1 for j = 0, 1, . . . , s. Similarly

as in the case of a nonuniform grid, we arrive at a semi-discrete problem of the form (1.2.4). But

now we can use simply (1.2.2a) instead of the more general formula (1.2.3). In this case the matrix

A is of the simple form

A = δ−2




−2 1

1 −2 1
. . .

. . .
. . .

. . .
. . . 1

1 −2



.
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More accurate approximations to the solution of (1.1.4) may be obtained, on a uniform grid,

if one replaces the second order derivatives ∂2

∂x2 u(xj , t) by the finite difference expression in (1.2.2b)

for j = 2, 3, . . . , s − 1 and only by the expression from (1.2.2a) for j = 1, s. In this way one again

arrives at a semi-discrete problem of the form (1.2.4) but now with a pentadiagonal matrix A.

Also Numerov’s approximation (1.2.2c) can be used to construct a semi-discrete version of

(1.1.4). On a uniform grid, where xj = j · δ, δ = (s + 1)−1, one arrives, for 1 ≤ j ≤ s, at the

requirements

1

12
[U ′

j−1(t) + 10U ′
j(t) + U ′

j+1(t)] = δ−2[Uj−1(t) − 2Uj(t) + Uj+1(t)], Uj(0) = f(xj).

By using U0(t) = g0(t), Us+1(t) = g1(t) these requirements can be formulated in the compact form

A1
d

dt
U(t) = A0U(t) + q(t) for t ≥ 0, U(0) = u0,

with known vectors q(t), u0 ∈ C
s, and tridiagonal s × s matrices A0, A1. Multiplying by (A1)

−1

we see that this initial value problem for U(t) is of the form (1.2.4) with A = (A1)
−1A0, r(t) =

(A1)
−1q(t).

1.2.4 Semi-discretization in more than one space variable

In the case of two or three space variables we can proceed similarly as above.

As an illustration we consider the semi-discretization of problem (1.1.7) using the finite

difference approximation (1.2.2a). Choose an integer N ≥ 1, δ = (N + 1)−1, and define the

gridpoints pjk = (jδ, kδ) for j = 0, 1, . . . , N + 1 and k = 0, 1, . . . , N + 1. Replacing the partial

derivatives ∂2

∂x2u(pjk, t),
∂2

∂y2 u(pjk, t) occurring in (1.1.7) (when x = jδ, y = kδ) by the finite

difference approximations

δ−2[u(pj−1,k, t) − 2u(pjk, t) + u(pj+1,k, t)], δ−2[u(pj,k−1, t) − 2u(pjk, t) + u(pj,k+1, t)],

respectively, one obtains the system of ordinary differential equations





d

dt
U(pjk, t) = δ−2[U(pj−1,k, t) + U(pj+1,k, t) + U(pj,k−1, t) + U(pj,k+1, t) − 4U(pjk, t)],

where j = 1, 2, . . . , N and k = 1, 2, . . . , N.

In the right-hand members of this system we set U(pmn, t) = g(pmn, t) for all pmn ∈ ∂Ω (cf. (1.1.7)).

Moreover, we supplement the system by the initial conditions

U(pjk, 0) = f(pjk), where j = 1, 2, . . . , N and k = 1, 2, . . . , N,

in conformity with the initial condition in (1.1.7).

For t ≥ 0 we introduce a vector U(t) ∈ C
s, with s = N2, the components of which are,

in some fixed order, the values U(pjk, t) (with 1 ≤ j ≤ N, 1 ≤ k ≤ N). The above system of

N2 ordinary differential equations, together with the corresponding initial conditions, can again be

cast in the form (1.2.4). The components of u0 are equal to values f(pjk), and the components

of r(t) depend on values g(pmn, t). Further, each row of the matrix A contains at most 5 nonzero

entries. The entries on the main diagonal equal −4/δ2, and the nonzero off-diagonal elements are

equal to 1/δ2.
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1.2.5 Semi-discretization of diffusion and convection phenomena

1.2.5.1 Approximating diffusion and convection terms

We now consider in some detail various finite difference approximations to the diffusion and con-

vection terms occurring in (1.1.6).

We shall use, for any real ξ, the notations

ξ+ =

{
ξ if ξ > 0,

0 otherwise
and ξ− =

{
ξ if ξ < 0,

0 otherwise
.

One easily sees that

ξ = ξ+ + ξ−, |ξ| = ξ+ − ξ−, (−ξ)+ = −(ξ)−, (−ξ)− = −(ξ)+.

In the following we consider an increment δ > 0 and given function a(x), b(x), v(x). Further,

we denote by ε(x) certain parameter values to be specified below.

We consider the following four finite difference approximations.

(b(x)v(x))′ = {β · v(x− δ) + α · v(x) + γ · v(x+ δ)} +R, with(1.2.5a)

γ = γ(x) = δ−1
[1

2
b(x+ δ/2) + ε(x+ δ/2)

(
[b(x+ δ/2)]+ − 1

2
b(x+ δ/2)

)]
,

β = β(x) = δ−1
[
−1

2
b(x− δ/2) + ε(x− δ/2)

(1

2
b(x− δ/2) − [b(x− δ/2)]−

)]
,

α = α(x) = −β(x) − γ(x) + δ−1[−b(x− δ/2) + b(x+ δ/2)].

(b(x)v(x))′ = {β · v(x− δ) + α · v(x) + γ · v(x+ δ)} +R, with(1.2.5b)

γ = γ(x) = δ−1
[1

2
b(x+ δ) + ε(x+ δ)

(
[b(x+ δ)]+ − 1

2
b(x+ δ)

)]
,

β = β(x) = δ−1
[
−1

2
b(x− δ) + ε(x− δ)

(1

2
b(x− δ) − [b(x− δ)]−

)]
,

α = α(x) = δ−1ε(x)
(
[b(x)]− − [b(x)]+

)
.

(a(x)v′(x))′ = {β · v(x− δ) + α · v(x) + γ · v(x+ δ)} +R, with(1.2.6a)

γ = γ(x) = δ−2a(x+ δ/2),

β = β(x) = δ−2a(x− δ/2),

α = α(x) = −β(x) − γ(x).

(a(x)v′(x))′ = {β · v(x− δ) + α · v(x) + γ · v(x+ δ)} +R, with(1.2.6b)

γ = γ(x) =
1

2
δ−2[a(x) + a(x+ δ)],

β = β(x) =
1

2
δ−2[a(x− δ) + a(x)],

α = α(x) = −β(x) − γ(x).

For a(x), v(x) sufficiently smooth the residuals R in (1.2.6a), (1.2.6b) can be seen to be O(δ2) —

which is similar to the residual in (1.2.2a). If ε(x) ≡ 0 and b(x), v(x) are sufficiently smooth, then
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also the residuals R in (1.2.5a), (1.2.5b) can be seen to be O(δ2)—which is similar to the residual

in (1.2.1c). But, in general, if the ε-values in (1.2.5a) or (1.2.5b) are nonvanishing parameters, then

the corresponding residuals are only O(δ).

In order to explain why parameter values different from zero may still be useful we focus on

the physical meaning of the convection term in (1.1.6). In fact, ∂
∂x [b(x)u(x, t)] can be interpreted

as the rate at which the concentration of a chemical species increases, at the position x and time

t, due to the 1-dimensional flow field V (x) = −b(x) (cf. Section 1.1).

For the time being assume b(x) > 0. Then the flow is from right to left, and therefore the

values u(x, t′) with t′ > t will be influenced by the so-called upwind values u(x′, t) with x′ > x. If

one wants to use a finite difference approximation to ∂
∂x [b(x)u(x, t)] for determining u(x, t′) with

t′ > t, it thus seems quite natural to choose the forward difference approximation (1.2.1a) (with

v replaced by b · u) and not (1.2.1b) or (1.2.1c). The last two approximations would force u(x, t ′)

with t′ > t to depend on concentration values u(x′, t), with x′ < x. But, these values should have

no influence on u(x, t′). Similarly, for b(x) < 0 it is natural to use (1.2.1b) (with v replaced by

b · u).
Putting ε(x− δ) = ε(x) = ε(x+ δ) = 1 in (1.2.5b), this formula reduces to (1.2.1a) (with v

replaced by b · v) if b(x− δ) > 0, b(x) > 0, b(x+ δ) > 0; and it reduces to (1.2.1b) (with v replaced

by b · v) if b(x − δ) < 0, b(x) < 0, b(x + δ) < 0. With all parameter values equal to 1 formula

(1.2.5b) is called an upwind finite difference approximation. Although, for small δ > 0, its accuracy

is lower than of (1.2.5b) with all ε-values equal to 0, it is the more natural approximation from a

physical point of view. In practical applications the upwind parameters ε(x) are often chosen such

that 0 < ε(x) < 1.

Arguments similar to the above apply to the finite difference approximation in (1.2.5a).

Again the values ε(x− δ/2) and ε(x+ δ/2) are called upwind parameters.

1.2.5.2 Semi-discretization of problem (1.1.6)

We shall construct a semi-discrete version of (1.1.6). We choose an integer s ≥ 2, we put δ =

s−1, xλ = λ · δ, and we define aλ = a(xλ), bλ = b(xλ), cλ = c(xλ), dλ = d(xλ). Approximations

Uj(t) ≈ u(xj , t) (for j = 1, 2, . . . , s) can be obtained by solving

(1.2.7a)
d

dt
U(t) = AU(t) + r(t) for t ≥ 0, U(0) = u0.

Here U(t) ∈ C
s has the components Uj(t) (for j = 1, 2, . . . , s), the initial vector u0 ∈ C

s has the

components f(xj) (for j = 1, 2, . . . , s), and the vectors r(t) ∈ C
s depend on dj , g(t). The s × s

matrix A is of the form

(1.2.7b) A = A2 + A1 +A0 ,

where A2, A1, A0 correspond to the first three terms in the right-hand member of the partial

differential equation in (1.1.6).

We define A0 to be the diagonal matrix

(1.2.8) A0 = (αjk) with αjj = cj , αjk = 0 (for 1 ≤ j ≤ s, 1 ≤ k ≤ s, j 6= k).

The s× s matrices A1, A2 are both tridiagonal; they can be constructed by using (1.2.5a),

(1.2.6a) or (1.2.5b), (1.2.6b). In all cases we denote the entries of A1, A2 by αjk (for 1 ≤ j ≤ s, 1 ≤
k ≤ s), and we define

αj,j+1 = γ(xj) (1 ≤ j ≤ s− 1),

αj,j−1 = β(xj) (2 ≤ j ≤ s− 1), αs,s−1 = β(xs) + γ(xs),

αj,j = α(xj) (1 ≤ j ≤ s).
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Here α(x), β(x), γ(x) are as in (1.2.5a), (1.2.6a), (1.2.5b) or (1.2.6b). In the above expression for

αs,s−1 we have included the term γ(xs) so as to express the boundary condition ∂
∂xu(1, t) = 0 (see

(1.1.6)).

Basing our construction on (1.2.5a), (1.2.6a) we arrive at the following definitions (1.2.9a),

(1.2.10a), and basing it on (1.2.5b), (1.2.6b) at the definitions (1.2.9b), (1.2.10b).

A1 = (αjk) with , for j = 1, 2, . . . , s,(1.2.9a)

αj,j+1 = δ−1
[1

2
bj+ 1

2

+ εj+ 1

2

(
b+
j+ 1

2

− 1

2
bj+ 1

2

)]
,

αj,j−1 = δ−1
[
−1

2
bj− 1

2

+ εj− 1

2

(1

2
bj− 1

2

− b−
j− 1

2

)]
+ δj,sαs,s+1,

αj,j = −αj,j−1 − αj,j+1 + δj,sαs,s+1 + δ−1[−bj− 1

2

+ bj+ 1

2

].

A1 = (αjk) with, for j = 1, 2, . . . , s,(1.2.9b)

αj,j+1 = δ−1
[1

2
bj+1 + εj+1

(
b+j+1 −

1

2
bj+1

)]
,

αj,j−1 = δ−1
[
−1

2
bj−1 + εj−1

(1

2
bj−1 − b−j−1

)]
+ δj,sαs,s+1,

αj,j = δ−1εj [b
−
j − b+j ].

A2 = (αjk) with(1.2.10a)

αj,j+1 = δ−2aj+ 1

2

( for 1 ≤ j ≤ s− 1),

αj,j−1 = δ−2[aj− 1

2

+ δj,sas+ 1

2

] ( for 2 ≤ j ≤ s),

αj,j = −δ−2[aj− 1

2

+ aj+ 1

2

] ( for 1 ≤ j ≤ s).

A2 = (αjk) with(1.2.10b)

αj,j+1 =
1

2
δ−2[aj + aj+1] ( for 1 ≤ j ≤ s− 1),

αj,j−1 =
1

2
δ−2[aj−1 + aj + δj,s(as + as+1)] ( for 2 ≤ j ≤ s),

αj,j = −δ−2
[1

2
aj−1 + aj +

1

2
aj+1

]
( for 1 ≤ j ≤ s).

In the above four definitions we have used the Kronecker index δjk defined by

δjk = 1 for j = k, and δjk = 0 for j 6= k.

Further, the values aλ = a(xλ), bλ = b(xλ) which occur above with xλ > 1 should be interpreted

as obtained by a mathematical extension of the given functions a(x), b(x) defined for 0 ≤ x ≤ 1.

These values aλ, bλ need not to have a relation to any physical quantities outside the computation

domain [0, 1]. In (1.2.9a) and (1.2.9b) the quantities ελ are upwind parameters, with 0 ≤ ελ ≤ 1,

and the quantities αs,s+1, α1,0 have been introduced only for notational convenience.
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1.3 Notes and remarks

For further discussion of the physical processes considered in Section 1.1, see e.g. Crank (1975),

Hirsch (1988), Patankar (1980) and Zlatev (1995). In these references the transport equation (1.1.1)

is discussed as well as various boundary conditions like those in (1.3).

There exists a vast literature on finite difference methods. The majority of the material

on finite difference approximations in Section 1.2 can be found in one of the numerous books on

this subject. We mention, in particular, the classical books Forsythe & Wasow (1960), Richtmyer

& Morton (1967) and the more recent works by Hirsch (1988), Meiss & Marcowitz (1981), Roos,

Stynes & Tobiska (1996), Shashkov (1996), Strikwerda (1989), Thomas (1995), Thomée (1990).

For the use of formula (1.2.2b), in deriving a semi-discrete version of a (nonlinear) diffusion-

reaction problem with Dirichlet boundary conditions, see Stys & Stys (1991).

Upwinding, as discussed in Section 1.2.5, is related to what some authors call the addition

of artificial diffusion. For relevant literature, see e.g. Griffiths, Christie & Mitchell (1980), Hirsch

(1988), Patankar (1980), Roos, Stynes & Tobiska (1996), Strikwerda (1989).

Semi-discretization of (1.1.1) can be achieved by methods different from those described in

Section 1.2, in particular by methods based on finite volumes, finite elements or (pseudo) spectral

approximations. For finite volume methods see e.g. Hirsch (1988), Patankar (1980), Roos, Stynes &

Tobiska (1996); for finite element methods see e.g. Hirsch (1988), Oden & Reddy (1976), Quarteroni

& Valli (1994), Roos, Stynes & Tobiska (1996), Strang & Fix (1973); and for pseudo spectral

methods see e.g. Canuto, Hussaini, Quarteroni & Zang (1988), Fornberg (1996), Gottlieb & Orszag

(1977), Quarteroni & Valli (1994).
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2 Analysis

2.1 Basic material

2.1.1 Definitions

Let ϕ(t) denote a real function of a real variable t. This function is said to be isotone if ϕ(t1) ≤ ϕ(t2)

for all t1 ≤ t2 in the domain of definition of ϕ. Conversely, if ϕ(t1) ≥ ϕ(t2) for all such t1, t2, then

the function is called antitone.

Let f denote any scalar function. If the k-th derivative of f exists, it will be denoted by

f (k). We define

f (0) = f.

Let γ = α + iβ = ρ eiθ denote any complex number, with real α, β, θ and ρ ≥ 0. Then we

write

α = Re (γ), β = Im (γ), γ∗ = α− iβ,

to denote the real part , imaginary part and the complex conjugate of γ, respectively. Further, if

γ 6= 0, we define Arg (γ), the principal value of the argument, to be equal to θ with −π < θ ≤ π.

We define Arg (0) = 0, so that

−π < Arg (γ) ≤ π for all γ ∈ C.

Let γ be any complex number, and ρ ≥ 0. We denote the circle and disk in the complex

plane with center γ and radius ρ by

Γ[γ, ρ] = {ζ : |ζ − γ| = ρ}, D[γ, ρ] = {ζ : |ζ − γ| ≤ ρ},

respectively.

Let V be an arbitrary subset of the complex plane. The intersection of all convex sets W

with V ⊂W ⊂ C is called the convex hull of V , and is denoted by

conv V.

Note that conv V is the smallest convex set in C containing the set V . The interior, closure and

boundary of V are denoted by

int V, cl V, ∂V,

respectively. The distance from ζ ∈ C to V is

d(ζ, V ) = inf {|ζ − η| : η ∈ V }.

The left half-plane is denoted by

C− = {ζ : ζ ∈ C with Re (ζ) ≤ 0},

and for δ ≥ 0 the wedge W (δ) is defined by

W (δ) = {ζ : ζ ∈ C satisfies |Arg (−ζ)| ≤ δ}.
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Whenever m and n are integers with n < m, we adopt the conventions

max
m≤j≤n

· · · = 0,

n∑

j=m

· · · = 0,

n∏

j=m

· · · = 1,

and we put

0! = 1, 00 = 1.

2.1.2 Theorems

Let R(ζ) = P (ζ)/Q(ζ) be a given rational function, where P (ζ), Q(ζ) are polynomials of degrees

m and n, respectively. We assume that P (ζ) and Q(ζ) have no common zeros.

Suppose ζ1 is a zero of Q(ζ) with multiplicity k ≥ 1. Then ζ1 is called a pole of order k of

R(ζ). We have Q(ζ) = (ζ− ζ1)kQ1(ζ), with Q1(ζ) of degree (n−k) and Q1(ζ1) 6= 0. By expanding

P (ζ) and Q1(ζ) in powers of (ζ − ζ1) we see that, for ζ 6= ζ1 and |ζ − ζ1| sufficiently small,

R(ζ) = α−k(ζ − ζ1)
−k + · · · + α−1(ζ − ζ1)

−1 + α0 + α1(ζ − ζ1) + α2(ζ − ζ1)
2 + · · · .

The expression α−k(ζ − ζ1)
−k + · · · + α−1(ζ − ζ1)

−1 is called the principal part of R(ζ) at ζ1, and

α−1 is the residue of R(ζ) at ζ1.

By subtracting from R(ζ) the principal parts corresponding to all different zeros of Q(ζ) we

are left with a function f(ζ) that is holomorphic on C. There are constants K, ρ0 such that for all

ζ with |ζ| ≥ ρ0 we have the inequality

|f(ζ)| ≤ K · |ζ|m−n.

Further, for all ζ ∈ C the value f(ζ) can be represented as the sum of a convergent power series

f(ζ) = γ0 + γ1ζ + γ2ζ
2 + · · · .

Consequently, for any ρ ≥ ρ0, integration along the positively oriented circle Γ[0, ρ] yields

|γk| =
∣∣∣

1

2πi

∮
f(ζ)

ζk+1
dζ

∣∣∣ ≤ K · ρm−n−k.

By letting ρ→ ∞, we see that γk = 0 for all k > m− n. We thus arrive at the following.

Theorem 2.1.1 (Partial fraction decomposition) Let P (ζ), Q(ζ) be nonzero polynomials of de-

grees m, n, respectively. Let ζ1, ζ2, . . . , ζq be the zeros of Q(ζ), with multiplicities k1, k2, . . . , kq ,

respectively. Then, for ζ 6= ζ1, . . . , ζq, we have

P (ζ)

Q(ζ)
= R0(ζ) +R1(ζ) + · · · +Rq(ζ).

Here R0(ζ) is a nonzero polynomial of degree (m − n) if m ≥ n, and R0(ζ) ≡ 0 if m < n, so that

we can write

R0(ζ) =
m−n∑

l=0

αl,0 ζ
l.

Further, for 1 ≤ j ≤ q, the quantities Rj(ζ) are the principal parts of P (ζ)/Q(ζ) at ζj , so that we

can write

Rj(ζ) =

kj∑

l=1

α−l,j (ζ − ζj)
−l ( for 1 ≤ j ≤ q).
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Without proof we state the following important theorem concerning the factorial function

n!

Theorem 2.1.2 (Stirlings formula) For each integer n ≥ 1 there is a number θ, with 0 < θ < 1,

such that

n! =
(n

e

)n√
2πn exp

( θ

12n

)
.

2.2 Estimates for the arc length of curves in the complex plane

2.2.1 The arc length

Let α < β. Suppose g(t) and h(t) are piecewise continuously differentiable real functions defined

for α ≤ t ≤ β. The function f(t) = g(t) + ih(t) defines a curve Γ in the complex plane. The length

of the curve Γ can be specified by

(2.2.1) L =

∫ β

α

|f ′(t)|dt.

For each t ∈ [α, β] there is a real ω such that g′(t) = |f ′(t)| cosω, h′(t) = |f ′(t)| sinω, which

implies ∫ 2π

0

|g′(t) cos θ + h′(t) sin θ|dθ =

∫ 2π

0

| cos(ω − θ)| · |f ′(t)|dθ = 4|f ′(t)|.

We thus arrive at the representation

L = 1
4

∫ 2π

0

{∫ β

α

|g′(t) cos θ + h′(t) sin θ|dt
}
dθ.

For each θ the quantity

L(θ) =

∫ β

α

∣∣∣
d

dt

{
g(t) cos θ + h(t) sin θ

}∣∣∣dt

is equal to the length of the projection of the curve Γ onto the straight line passing through the

origin with angle θ to the real axis. Therefore, we have proved the following expression of Cauchy

for the length of a curve in terms of the length of its projections:

(2.2.2) L = 1
4

∫ 2π

0

L(θ) dθ.

2.2.2 The image of a circle under a rational function

We define a rational function R(ζ) = P (ζ)/Q(ζ) to be of order s if P (ζ), Q(ζ) are polynomials of

degrees not exceeding s. We shall estimate the arc length of the image of a circle Γ[γ, ρ] under a

rational function of order s. This length can be written in the form

L =

∫ 2π

0

∣∣∣
d

dt
R(γ + ρeit)

∣∣∣dt =

∫

Γ[γ,ρ]

|R′(ζ)| |dζ|.

We shall relate the length L to the quantity

M = max
{
|R(ζ)| : ζ lies on Γ[γ, ρ]

}
.
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The main result of this subsection, Theorem 2.2.2, states that

L ≤ 2πs ·M,

whenever R(ζ) is a rational function of order s without poles on Γ[γ, ρ].

This result is equivalent to the following remarkable fact. Denote the quantities L, M

corresponding to the rational function P (ζ) = (ζ − γ)s by LP , MP , respectively. Since LP =

2π s · ρs, MP = ρs, we see that, for all R(ζ) under consideration, the ratio L/M will never exceed

the ratio LP /MP .

Our proof of Theorem 2.2.2 will rely on the following lemma.

Lemma 2.2.1 (On the arc length of the image of a circle under a rational function) Let R(ζ) =

P (ζ)/Q(ζ) be a rational function of order s without poles on Γ[γ, ρ]. Denote by M(θ) the maximum

value of the projection of R(ζ) (where ζ runs through Γ[γ, ρ]) on the straight line passing through

the origin with angle θ to the real axis, i.e.

M(θ) = max
{

Re
(
e−iθR(ζ)

)
: ζ lies on Γ[γ, ρ]

}
.

Then the length L of the image of Γ[γ, ρ] under the mapping R satisfies

L ≤ s

∫ 2π

0

M(θ) dθ.

Proof. 1. With no loss of generality we assume γ = 0, ρ = 1. In view of Cauchy’s expression (2.2.2)

it is sufficient to prove

(2.2.3) L(θ) ≤ 2s[M(θ) +M(θ + π)] for 0 ≤ θ ≤ 2π,

with

f(t) = g(t) + ih(t) = R(eit), 0 ≤ t ≤ 2π.

2. Let θ ∈ [0, 2π] be given, and write

F (t) = g(t) cos θ + h(t) sin θ.

Since L(θ) =
∫ 2π

0
|F ′(t)| dt, we can assume with no loss of generality, that F ′(t) does not vanish

identically on [0, 2π]. Therefore

L(θ) =

k∑

j=1

∣∣∣
∫ tj

tj−1

F ′(t) dt
∣∣∣,

where t0 = 0 < t1 < . . . < tk = 2π and F ′(t) 6= 0 on each open interval (tj−1, tj).

We introduce the notations

a = min
0≤t≤2π

F (t), b = max
0≤t≤2π

F (t),

and we denote the range of values F (t) obtained when t runs through the interval (tj−1, tj) by

F (tj−1, tj). Defining

ϕj(x) = 1 for x ∈ F (tj−1, tj) and ϕj(x) = 0 for x ∈ [a, b]\F (tj−1, tj),
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we have

L(θ) =

k∑

j=1

∫ b

a

ϕj(x) dx =

∫ b

a

k∑

j=1

ϕj(x) dx.

Below we shall prove

(2.2.4)

k∑

j=1

ϕj(x) ≤ 2s for a ≤ x ≤ b.

Applying (2.2.4) we obtain

L(θ) ≤ 2s(b− a) = 2s

[
max

0≤t≤2π
Re

(
e−iθR(eit)

)
− min

0≤t≤2π
Re

(
e−iθR(eit)

)]

which proves (2.2.3).

3. In order to prove (2.2.4) we assume x ∈ [a, b] to be given, and we write ζ = eit for

0 ≤ t ≤ 2π. A straightforward calculation shows that

(2.2.5) F (t) = x

is equivalent to

e−iθP (ζ)[Q(ζ)]∗ + eiθ[P (ζ)]∗Q(ζ) − 2xQ(ζ)[Q(ζ)]∗ = 0

(where γ∗ denotes the complex conjugate of γ). Multiplying the latter equality by ζ s we arrive, in

view of ζ∗ = ζ−1, at a relation

p(ζ) = 0,

where p(ζ) is a polynomial of a degree not exceeding 2s. Moreover p(ζ) does not vanish identically

(since F ′(t) does not). Therefore, there exist at most 2s different values t ∈ (0, 2π) with (2.2.5).

This implies that x ∈ F (tj−1, tj) for at most 2s different values j, so that (2.2.4) is fulfilled.

Theorem 2.2.2 (On the arc length of the image of a circle under a rational function) Let R(ζ)

be a rational function of order s without poles on Γ[γ, ρ]. Then the length L of the image of Γ[γ, ρ]

under the mapping R satisfies

L ≤ 2πs · max{|R(ζ)| : ζ lies on Γ[γ, ρ]}.

Proof. Immediate from Lemma 2.2.1.

2.3 Notes and remarks

The partial fraction decomposition given in Section 2.1.2, as well as elementary properties of holo-

morphic functions, can be found in most of the numerous handbooks on complex analysis, e.g.

Ahlfors (1966), Henrici (1974), Rudin (1974).

For Stirling’s formula, given in Section 2.1.2, see e.g. Henrici (1974); for Cauchy’s derivation

of formula (2.2.2), see Cauchy (1888).
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In the special case where R(ζ) is a rational function of order s, with all of its (possible) poles

at ζ = γ, Theorem 2.2.2 is an easy consequence of Bernstein’s inequality (see e.g. Edwards (1967)).

This inequality tells us that, for any such R(ζ), we have

ρ · max
|ζ−γ|=ρ

|R′(ζ)| ≤ s · max
|ζ−γ|=ρ

|R(ζ)|.

In view of

L ≤ 2πρ · max
|ζ−γ|=ρ

|R′(ζ)|,

one arrives immediately at the inequality given by Theorem 2.2.2.

For the case of general rational fuctions R(ζ), Theorem 2.2.2 was proved in Spijker (1991).

The arguments used above in the proof of Lemma 2.2.1 are similar to those in that reference.

A beautiful extension of Theorem 2.2.2, dealing with the image of a circle under the mapping

R(ζ) on the Riemann sphere, was given by Wegert & Trefethen (1994). These authors gave a short

proof of their extension by using a general formula, for the arc length of curves lying on a sphere,

due to H. Poincaré.
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3 Linear algebra

3.1 The Jordan canonical form

The set of all s × s matrices A = (αjk), with complex entries αjk, is denoted by C
s,s. With the

usual addition A+ B and multiplication γ · A, for A,B ∈ C
s,s and γ ∈ C, the set C

s,s becomes a

complex vector space of dimension s2.

The s× s identity matrix and zero matrix are denoted by

I and O ,

respectively. Further, for all s× s matrices A we define

A0 = I.

For any square matrix A we denote the set of its eigenvalues by σ[A]. This set is called the

spectrum of A. The spectral radius is defined by

ρ(A) = max{|λ| : λ ∈ σ[A]}.
Note that A is regular , i.e. A−1 exists, if and only if 0 6∈ σ[A].

Without proof we state the following fundamental theorem.

Theorem 3.1.1 (Jordan canonical form) Let A be a given s×s matrix. Then there exist a regular

T ∈ Cs,s and block-diagonal J = diag (J1, J2, . . . , Jr) ∈ Cs,s with

A = TJT−1.

Here the blocks Jk are bidiagonal matrices of order sk,

Jk =




λk 1 0
λk 1

. . .
. . .
. . . 1

0 λk



, with λk ∈ σ[A] for k = 1, 2, . . . , r.

The Jordan matrix J is unique up to permutations of the Jordan blocks Jk.

Since the order of Jk is sk we see that, for λ ∈ σ[A], the sum
∑

λk=λ

sk

is equal to the so-called algebraic multiplicity of λ, i.e. the multiplicity of λ as a zero of the

characteristic polynomial of A. Clearly

s1 + s2 + · · · + sr = s.

We denote the identity matrix of order sk by Ik, and define Ek by

Jk = λkIk +Ek.

Further we define s× s matrices Pk, Rk by

Pk = T diag (O , . . . ,O , Ik,O , . . . ,O) T−1, Rk = T diag (O , . . . ,O , Ek,O , . . . ,O) T−1.

From the above one easily obtains the following theorem (in which δjk is the Kronecker index

already introduced in Subsection 1.2.5.2).
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Theorem 3.1.2 (Spectral representation theorem) Let A be a given s × s matrix. Then there is

an integer r, with 1 ≤ r ≤ s, such that A can be represented in the form

A =

r∑

k=1

(λkPk +Rk).

Here λk ∈ σ[A], PjPk = δjkPj , PkRk = RkPk = Rk for 1 ≤ k ≤ r, 1 ≤ j ≤ r, and P1 + P2 +

· · · + Pr = I. Further, for 1 ≤ k ≤ r, we have Pk 6= O , and there are integers sk ≥ 1 such that

(Rk)m = O if and only if m ≥ sk. The integers sk satisfy s1 + s2 + · · · + sr = s.

For ζ 6∈ σ[A] we shall often deal with the matrix

(ζI −A)−1.

It is called the resolvent of A at ζ. From the spectral representation of A one easily obtains the

representation of the resolvent as given in the following theorem.

Theorem 3.1.3 (Representation for the resolvent) Let A ∈ C
s,s and ζ 6∈ σ[A]. Then

(ζI −A)−1 =

r∑

k=1

[
(ζ − λk)−1Pk + (ζ − λk)−2Rk + · · · + (ζ − λk)−sk (Rk)sk−1

]
,

where λk, Pk, Rk, sk are as in the spectral representation theorem.

We denote the complex conjugate of any complex number γ by γ∗, and recall that the

Hermitian adjoint A∗ of A = (αjk) ∈ C
s,s is the s× s matrix whose entry in the j-th row and k-th

column equals α∗
kj (for 1 ≤ j ≤ s, 1 ≤ k ≤ s). The matrix A is said to be normal if AA∗ = A∗A,

and unitary if AA∗ = I.

Without proof we state the following important theorem about normal matrices.

Theorem 3.1.4 (Jordan canonical form of normal matrices) Let A be a given s× s matrix. Then

A is normal if and only if a Jordan decomposition A = TJT −1 exists with T unitary and all blocks

Jk of order 1.

3.2 Norms and ε-pseudo-eigenvalues

With C
s we denote the vector space of all column vectors

x =




ξ1
ξ2
...

ξs


 , with complex ξ1, ξ2, . . . , ξs.

We recall that the Hermitian adjoint x∗ of x is the row vector given by

x∗ = (ξ∗1 , ξ
∗
2 , . . . , ξ

∗
s ).

Arbitrary norms on C
s will be denoted by | · |, and the so-called Hölder norms by
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|x|p =





s∑

j=1

∣∣ξj
∣∣p





1/p

for 1 ≤ p <∞,

|x|p = max
1≤j≤s

|xj | for p = ∞.

We thus have |x|2 =
√
x∗x, also called the Euclidean norm of x.

By a linear functional on C
s we mean a linear mapping from C

s to C. Such a mapping can

be represented by a row vector with s complex components. Without proof we state the following

lemma, which is useful in various practical situations.

Lemma 3.2.1 (On linear functionals) Let | · | be an arbitrary norm on C
s, and y ∈ C

s. Then

there exists a linear functional F on C
s such that

F (y) = |y| and |F (x)| ≤ |x| for all x in C
s.

Let | · | be an arbitrary vector norm on C
s. For any s× s matrix A we write

‖A‖ = sup |Ax|/|x|,

the supremum being over all x ∈ C
s, x 6= 0. The function ‖ · ‖ is easily seen to be a norm on C

s,s,

the so-called matrix norm induced by the vector norm | · |. We denote the matrix norms, induced

by the Hölder norms, by ‖ · ‖p. We have

‖A‖∞ = max
1≤j≤s

s∑

k=1

∣∣αjk

∣∣, ‖A‖1 = ‖A∗‖∞, ‖A‖2 =
√
ρ(A∗A).

The norm ‖A‖2 is also called the spectral norm of A. Clearly, for unitary A we have ‖A‖2 = 1.

In the rest of this Section 3.2, ‖ · ‖ will stand for a matrix norm induced by an arbitrary

vector norm | · | on C
s.

Since ‖ · ‖ is a norm on the vector space C
s,s, we can measure the ‘distance’ between two

s × s matrices A and B by the quantity ‖A − B‖. Accordingly, for given Ak ∈ C
s,s, we shall

write lim
k→∞

Ak = B and
∑∞

k=0Ak = B to denote the situation where B ∈ C
s,s is such that

lim
k→∞

‖B − Ak‖ = 0 or lim
n→∞

‖B −
∑n

k=0Ak‖ = 0, respectively. We note that the limit concept

thus defined in C
s,s is independent of the underlying norm ‖ · ‖. This is a consequence of the fact

that for any two norms, say ‖ · ‖ and ‖ · ‖′, there is a constant α > 0 such that ‖A‖′ ≤ α · ‖A‖ (for

all A ∈ C
s,s).

It is easily seen that, for any A,B ∈ C
s,s, we have

‖AB‖ ≤ ‖A‖ ‖B‖, and ‖I‖ = 1.

From Theorem 3.1.2 (or from the arguments to be given in Example 3.3.7) one can obtain the

spectral radius formula

lim
n→∞

‖An‖1/n = ρ(A).

In the following definition we denote by ε an arbitrary, nonnegative real constant.
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Definition 3.2.2 λ is an ε-pseudo-eigenvalue of A ∈ C
s,s if

(i) there is an E ∈ C
s,s with ‖E‖ ≤ ε such that λ ∈ σ[A+E].

The set of all ε-pseudo-eigenvalues of A is called the ε-pseudospectrum, and is denoted by σε[A].

Note that in general the answer to the question of whether λ is an ε-pseudo-eigenvalue of A

not ony depends on ε and A, but also on the vector norm in C
s by which the matrix norm ‖ · ‖ is

induced. Clearly, for ε = 0, the ε-pseudospectrum of A is equal to the spectrum σ[A].

The concept of an ε-pseudo-eigenvalue can be related to the following properties.

(ii) There is an s× s matrix E with ‖E‖ = ε such that λ ∈ σ[A+E].

(iii) There is an s× s matrix U with ‖U‖ = 1 and ‖(A− λI)U‖ ≤ ε.

(iv) There is a vector u ∈ C
s with |u| = 1 and |(A− λI)u| ≤ ε.

(v) A− λI is singular, or A− λI is regular with ‖(A − λI)−1‖−1 ≤ ε.

Theorem 3.2.3 (Characterizations of ε-pseudo-eigenvalues) For given ε > 0, s ≥ 2, A ∈ C
s,s the

properties (i)–(v) are equivalent to each other.

3.3 The Dunford-Taylor integral

Let ϕjk(ζ) be holomorphic complex functions on an open subset Ω of the complex plane, where

1 ≤ j ≤ s, 1 ≤ k ≤ s. We define the mapping Φ, from Ω into C
s,s, by

Φ(ζ) = (ϕjk(ζ)) for ζ ∈ Ω.

For any rectifiable curve Γ in Ω we define the integral of Φ(ζ) along Γ by

∫

Γ

Φ(ζ)dζ =
(∫

Γ

ϕjk(ζ)dζ
)

∈ C
s,s.

Let ‖ · ‖ be any norm on C
s,s. Then the inequality

∥∥∥∥
∫

Γ

Φ(ζ)dζ

∥∥∥∥ ≤
∫

Γ

‖Φ(ζ)‖ |dζ|

holds. It is a consequence of the fact that the norm of a sum does not exceed the sum of the norms

of the individual terms, and that the integral of Φ(ζ) along Γ can be seen to be a limit of Riemann

sums.

Let A be a given s × s matrix, and f(ζ) holomorphic on Ω. Under the assumption that

σ[A] ⊂ Ω we define f(A) by the so-called Dunford-Taylor integral .

f(A) =
1

2πi

∫

Γ

f(ζ)(ζI −A)−1dζ.

Here Γ consists of a finite number of rectifiable simple closed curves Γk with positive orientation.

The interiors Ωk of Γk are assumed to be mutually disjoint and to be such that

σ[A] ⊂
⋃

k

Ωk,
⋃

k

(Ωk ∪ Γk) ⊂ Ω.

We note that f(A) does not depend on Γ as long as Γ satisfies these conditions. This follows by

applying Cauchy’s integral theorem to the entries ϕjk(ζ) of Φ(ζ) = f(ζ)(ζI − A)−1 and using the

above definition of the integral along Γ.

Without proof we state the following basic theorem about the Dunford-Taylor integral.
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Theorem 3.3.1 Let A ∈ C
s,s and f(ζ), g(ζ) holomorphic on an open set Ω with σ[A] ⊂ Ω. Then

(a) f(ζ · I) = f(ζ) · I for all ζ ∈ Ω,

(b) (α · f + β · g)(A) = α · f(A) + β · g(A) for all α, β ∈ C,

(c) (f · g)(A) = f(A) · g(A),

(d) σ[f(A)] = f(σ[A]).

Assume, additionally: B ∈ C
s,s with AB = BA; Ω is connected and, for each λ ∈ σ[A], the closed

disk with center λ and radius ρ(B) belongs to Ω. Then σ[A+B] ⊂ Ω and

(e) f(A+B) =
∞∑

k=0

1

k!
f (k)(A)Bk.

Note that the addition and multiplications in the left-hand members of (b), (c) involve scalar

functions, whereas those in the right-hand members s× s matrices. The right-hand member of (d)

stands for {f(λ) : λ ∈ σ[A]}.

Example 3.3.2 Let R(ζ) = P (ζ)/Q(ζ) be a rational function and A an s × s matrix. We shall

say that R(A) exists if Q(λ) 6= 0 for all λ ∈ σ[A]. In this case the matrix Q(A) is regular by (d),

and from (c) it can be deduced that

R(A) = P (A)
[
Q(A)

]−1
=

[
Q(A)

]−1
P (A).

Using (b), (c) it can also be shown that the partial fraction decomposition of R(ζ) (see Theo-

rem 2.1.1) applies to R(A). If R(A) exists, we have





R(A) = R0(A) +R1(A) + · · · +Rq(A),

R0(A) =

m−n∑

l=0

αl,0A
l, Rj(A) =

kj∑

l=1

α−l,j(A− ζjI)
−l (for 1 ≤ j ≤ q),

where the coefficients αl,j and the integers q, kj are as in Theorem 2.1.1.

Example 3.3.3 Let f(ζ) = eζ . Writing eA = exp (A) = f(A), it follows from (e) that

eA =
∞∑

k=0

1

k!
Ak.

Further, for real t and positively oriented circle Γ = Γ[0, ρ] with ρ sufficiently large, we have

etA =
1

2πi

∫

Γ

eξ(ξI − tA)−1dξ =
1

2πi

∫

Γ

etζ(ζI −A)−1dζ.

Using the last of these two integral representations it can easily be seen that, when h → 0, the

matrix h−1
[
e(t+h)A − etA

]
tends to AetA. We thus have

d

dt

(
etA

)
= AetA.
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Example 3.3.4 Let A, B be commuting s× s matrices. From (e) we have

(A+B)n =
n∑

k=0

(
n

k

)
AkBn−k

We state the following neat theorem without proof.

Theorem 3.3.5 Let f(ζ) be holomorphic on an open set Ω containing the spectrum of the matrix

A. Let g(ξ) be holomorphic on f(Ω), and define h(ζ) = g(f(ζ)) (for ζ ∈ Ω). Then h(A) = g(f(A)).

By substituting the representation for the resolvent, given in Theorem 3.1.3, in the Dunford-

Taylor integral one arrives after an easy calculation at the following theorem.

Theorem 3.3.6 (Spectral representation for f(A)) Let A be a given s × s matrix, and f(ζ)

holomorphic on an open set Ω containing σ[A]. Then

(3.3.1) f(A) =

r∑

k=1

[
f(λk)Pk + f ′(λk)Rk +

1

2!
f (2)(λk)(Rk)2 + · · ·+ 1

(sk − 1)!
f (sk−1)(λk)(Rk)sk−1

]
.

Here λk, Pk, Rk, sk are as in Theorem 3.1.2 (Spectral representation theorem).

Using the notations of Theorem 3.1.1 (Jordan canonical form), we can rewrite formula (3.3.1)

as

f(A) = TDT−1,(3.3.2a)

where

D = diag (D1, D2, . . . , Dr)(3.3.2b)

is a block-diagonal matrix composed of matrices Dk of order sk. Using the definition of Ek given

in Section 3.1, we see that Dk allows the elegant representation

(3.3.3c) Dk =

∞∑

j=0

f (j) (λk)

j!
(Ek)j .

¿From this representation it follows that Dk is an upper triangular matrix of the form

(3.3.3d) Dk =




f(λk)
f (1)(λk)

1!

f (2)(λk)

2!
· · · f (sk−1)(λk)

(sk − 1)!

0 f(λk)
f (1)(λk)

1!

. . .
...

...
. . .

. . .
. . .

f (2)(λk)

2!

...
. . .

. . .
f (1)(λk)

1!

0 · · · · · · 0 f(λk)




.
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Example 3.3.7. We illustrate Theorem 3.3.6 by using it in a short proof of the spectral radius

formula given in Section 3.2. For any integer n ≥ 1 and f(ζ) = ζn, we have by Theorem 3.3.1(c)

An = f(A),

and by Theorem 3.3.6

f(A) =

r∑

k=1

[
(λk)nPk+

n

1!
(λk)n−1Rk+

n(n− 1)

2!
(λk)n−2(Rk)2+· · ·+

(
n

sk − 1

)
(λk)n−sk+1(Rk)sk−1

]
.

In view of the last two equalities there is a constant γ such that for n = 1, 2, 3, . . .

‖An‖ ≤ γ np[ρ (A)]n, with p = max
k

(sk − 1).

Since ‖An‖ ≥ ρ (An) = [ρ (A)]n there follows

ρ (A) ≤ ‖An‖1/n ≤ (γ np)1/nρ (A),

from which we obtain the spectral radius formula by letting n→ ∞.

3.4 The logarithmic norm

Throughout this section | · | denotes an arbitrary norm on C
s, and ‖ · ‖ stands for the corresponding

induced matrix norm.

Consider the initial value problem

U ′(t) = AU(t), U(0) = v,

where v is a given vector in C
s with norm |v| = 1. ¿From the relation d

dt (e
tA) = AetA (obtained

in Example 3.3.3), the solution U(t) ∈ C
s can be seen to be equal to U(t) = etAv (for t ∈ R). The

logarithmic norm of A, to be defined below, is useful in estimating the norm of etAv.

For real t with t 6= 0 and v, w ∈ C
s we define the difference quotient

m(v, w; t) = t−1[|v + tw| − |v|].
The following simple lemma is quite useful. It can be proved by elementary considerations.

Lemma 3.4.1 For fixed vectors v, w the quantity m(v, w; t) is isotone with respect to t ∈ R \ {0}.
Further −|w| ≤ m(v, w; t) ≤ |w|.

In view of this lemma we can define the (finite) quantities

m−(v, w) = lim
t→0−

m(v, w; t), m+(v, w) = lim
t→0+

m(v, w; t).

For A ∈ C
s,s we introduce the notations

m−(A) = sup
|v|=1

m−(v,Av), m+(A) = sup
|v|=1

m+(v,Av).

Further, for A ∈ C
s,s and t 6= 0, we define

µ(A; t) = sup
|v|=1

m(v,Av; t).

Using the definition of ‖ · ‖, in terms of the norm | · | on C
s, it can be seen that

µ(A; t) = t−1
[∥∥(I + tA)−1

∥∥−1 − 1
]

for t < 0, |t|ρ(A) < 1,

and

µ(A; t) = t−1
[∥∥I + tA

∥∥ − 1
]

for t > 0.

Theorem 3.4.2 (Representations of the logarithmic norm) We have

lim
t→0−

µ(A; t) = m−(A) = m+(A) = lim
t→0+

µ(A; t).
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Any of the four quantities in the theorem is called the logarithmic norm of A, and will be

denoted by

µ(A).

Theorem 3.4.3 (Characterization of the logarithmic norm) The logarithmic norm of A is equal

to the smallest constant ω such that
∥∥etA

∥∥ ≤ etω for all t > 0.

Proof. 1. From elementary numerical analysis it is known that the explicit Euler method, for the

numerical solution of the initial value problem U ′(t) = AU(t), U(0) = v, is convergent. Hence

(I + t
n
A)nv tends to etAv as n→ ∞. Therefore (I + t

n
A)n tends to etA (for n→ ∞). We have, for

t > 0, ∥∥(I + t
nA)n

∥∥ ≤ {1 + t
nµ(A; t

n )}n = {1 + t
n [µ(A) + εn]}n,

with εn → 0 for n→ ∞. Consequently ‖etA‖ ≤ etµ(A) for t > 0.

2. Suppose ω is such that ‖etA‖ ≤ etω (for all t > 0).

Let v ∈ C
s with |v| = 1, and let U(t) denote the solution to the initial value problem

U ′(t) = AU(t), U(0) = v.

For t > 0 we have

m(v,Av; t) = t−1
[
|v + tAv| − 1

]
= t−1

[
|U(t)| + ε(t) − 1

]
,

where

lim
t→0+

t−1 · ε(t) = 0.

Hence

m+(v,Av) = lim
t→0+

m (v,Av; t) ≤ lim
t→0+

[
t−1(etω − 1) + t−1ε(t)

]
= ω.

Since µ(A) = m+(A), it follows that µ(A) ≤ ω.

Theorem 3.4.4 (Properties of the logarithmic norm) Let A,B ∈ C
s,s and γ ∈ C. Then the

following relations are valid.

(i) −‖A‖ ≤ µ(A) ≤ ‖A‖,
(ii) µ(I) = 1, µ(O) = 0, µ(A+ γ · I) = µ(A) + Re γ,

(iii) µ(γ · A) = γ · µ(A) provided γ ≥ 0 (positive homogeneity),

(iv) µ(A+B) ≤ µ(A) + µ(B) (sub-additivity),

(v) |µ(A) − µ(B)| ≤ ‖A−B‖ (continuity),

(vi) max{Re λ : λ ∈ σ[A]} ≤ µ(A).

We denote the logarithmic norm of A corresponding to the norm | · |p on C
s by

µp(A).

Theorem 3.4.5 (Expressions for µp(A)) For arbitrary A ∈ C
s,s we have

µ∞(A) = max
j

(
Re (αjj) +

∑

k 6=j

|αjk|
)
, µ1(A) = µ∞(A∗),

µ2(A) = max
|v|=1

Re (v∗Av) = max{ λ : λ ∈ σ[ 12 (A+A∗)]}.

For normal matrices A we have

µ2(A) = max{ Re λ : λ ∈ σ[A]}.
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Definition 3.4.6 The matrix A ∈ C
s,s is said to satisfy a circle condition, with respect to the disk

D[γ, ρ], if

‖A− γ · I‖ ≤ ρ.

In some of the following it will be important to check whether A satisfies a circle condition,

and to interprete such a condition in terms of ‖A‖ and µ(A). The following theorem is useful in

this context.

Theorem 3.4.7 (On circle conditions) Let A ∈ C
s,s and α > ω.

a) If ‖A+ 1
2 (α− ω)I‖ ≤ 1

2 (α+ ω) then ‖A‖ ≤ α, µ(A) ≤ ω.

b) Assume all diagonal elements αjj of A = (αjk) are real, and p = 1 or p = ∞. Then

‖A+ 1
2
(α− ω)I‖p ≤ 1

2
(α+ ω) if and only if ‖A‖p ≤ α, µp(A) ≤ ω.

Proof. a) Since

‖A‖ − 1
2 (α− ω) ≤ ‖A+ 1

2 (α− ω)I‖ ≤ 1
2 (α + ω),

we have ‖A‖ ≤ α.

Writing γ = 1
2 (α− ω) we obtain

µ(A) = µ(A+ γI) − γ ≤ ‖A+ γI‖ − γ ≤ (γ + ω) − γ,

and therefore µ(A) ≤ ω.

b) Since for any matrix A we have ‖A‖1 = ‖A∗‖∞, µ1(A) = µ∞(A∗), it is sufficient to

prove the statement for p = ∞.

Let ‖A‖∞ ≤ α, µ∞(A) ≤ ω. For 1 ≤ j ≤ s we introduce

σj =
∑

k 6=j

|αjk|.

From the expressions, given in the above for ‖A‖∞, µ∞(A), we see that

|αjj | + σj ≤ α, αjj + σj ≤ ω.

In order to prove ‖(A+ 1
2 (α− ω)I‖∞ ≤ 1

2 (α+ ω) we only have to show that

|αjj + 1
2
(α− ω)| + σj ≤ 1

2
(α+ ω)

for 1 ≤ j ≤ s.

Fix j, and define θ by

θ = 0 if αjj + 1
2
(α− ω) ≥ 0,

θ = 1 if αjj + 1
2 (α− ω) < 0.

We have

|αjj + 1
2 (α− ω)| + σj = θ{−αjj − 1

2 (α − ω) + σj} + (1 − θ){αjj + 1
2 (α− ω) + σj}

≤ θ{|αjj | − 1
2
(α− ω) + σj} + (1 − θ){αjj + 1

2
(α− ω) + σj}

≤ θ{α− 1
2 (α− ω)} + (1 − θ){ω + 1

2 (α− ω)}
= 1

2
(α+ ω).
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3.5 The M-numerical range

The classical numerical range of a given matrix A ∈ C
s,s is defined as the set of complex numbers

{x∗Ax : x ∈ C
s with x∗x = 1}.

It is known to be a convex set containing all eigenvalues of A. Below we consider a generalization

which will be useful in the following sections.

Let | · | be an arbitrary norm on C
s, and M ≥ 1. For a given matrix A ∈ C

s,s we define the

disk D[γ, ρ] to be suitable if

(3.5.1)
∥∥(A− γI)k

∥∥ ≤Mρk for k = 1, 2, 3, . . . .

Using the spectral radius formula (Section 3.2) we see that, for any suitable disk D[γ, ρ], the

inclusion σ[A− γI] ⊂ D[0, ρ] is valid. This implies that

(3.5.2) σ[A] ⊂ D[γ, ρ].

In view of (3.5.2), the best enclosure of σ[A] obtainable from relations of the form (3.5.1)

equals the intersection of all suitable disks. This is a motivation for the following definition.

Definition 3.5.1 The M -numerical range of A with respect to the norm | · | is the set τ [A] given

by

τ [A] =
⋂

D[γ, ρ],

where the intersection is over all disks that are suitable. If we want to express the dependence of

τ [A] on M , we write

τ [A] = τ [A,M ],

and the numerical ranges corresponding to the Hölder norms | · |p are denoted by

τp[A,M ].

Theorem 3.5.2 (Basic properties of the M -numerical range) For arbitrary norm | · | and constant

M ≥ 1 the following holds:

(i) τ [A,M ] is a closed, bounded, convex subset of the complex plane,

(ii) τ [ζ0I + ζ1A,M ] = ζ0 + ζ1 · τ [A,M ] for all ζ0, ζ1 ∈ C,

(iii) τ [A,M2] ⊂ τ [A,M1] for 1 ≤M1 ≤M2,

(iv) conv σ[A] ⊂ τ [A,M ],

(v)
⋂

M≥1

τ [A,M ] = conv σ[A].

Proof. The first four properties follow easily from the above definition. In order to prove property

(v), choose any γ0 ∈ C, ρ0 > 0 such that conv σ[A] lies in the interior of the disk D[γ0, ρ0]. Since

ρ(A− γ0I) < ρ0 the spectral radius formula (Section 3.2) tells us that

lim
k→∞

∥∥(A− γ0I)
k
∥∥

1
k < ρ0.

Therefore, there is an M0 with
∥∥(A− γ0I)

k
∥∥ ≤M0(ρ0)

k for k = 1, 2, 3, . . . ,

so that τ [A,M0] ⊂ D[γ0, ρ0].

Since conv σ[A] is equal to the intersection of all disks D[γ0, ρ0] of the above type, we see

that conv σ[A] must be equal to the intersection of all sets τ [A,M ] with M ≥ 1, i.e. (v).
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Let W be an arbitrary convex subset of C, and let ζ ∈ C. The distance from ζ to W is

defined by

d(ζ,W ) = inf {|ζ − ξ| : ξ ∈W}.
If ξ belongs to the boundary ∂W of W and

Re(e−iθ(ζ − ξ)) ≤ 0 for all ζ ∈W,

where θ is a real constant, then θ is said to be a normal direction to W at ξ.

We shall deal with the following four conditions on A ∈ C
s,s with respect to W ⊂ C.

(I) τ [A,M ] ⊂W .

(II) ζI − A is regular and
∥∥(ζI − A)−k

∥∥ ≤ M ·
[
d(ζ,W )

]−k
for all ζ ∈ C \ W and

k = 1, 2, 3, . . ..

(III)
∥∥exp [te−iθ(A− ξI)]

∥∥ ≤M for all t ≥ 0, ξ ∈ ∂W , and normal directions θ to W at ξ.

(IV) There is a vector norm | · |0 on C
s such that the corresponding 1-numerical range

satisfies τ0[A, 1] ⊂W and |x| ≤ |x|0 ≤M · |x| (for all x ∈ C
s).

Theorem 3.5.3 (Main theorem on the M -numerical range) Let | · | be an arbitrary norm on C
s,

and A ∈ C
s,s. Let M ≥ 1, and W an arbitrary nonempty, closed, and convex subset of C. Let

τ [A,M ] be the M -numerical range of A with respect to | · |. Then the conditions (I)–(IV) are

equivalent to each other.

Clearly, τ [A,M ] is the smallest nonempty, closed and convex set W ⊂ C with property (I).

Therefore, the above theorem reveals three new characterizations of the M -numerical range. We

see that τ [A,M ] equals the smallest nonempty, closed and convex set W ⊂ C with property (II),

and the same holds with regard to the properties (III) and (IV).

We note that, for M = 1, further characterizations of the set τ [A,M ] are possible. One

of these is easily obtained by applying the characterization of the logarithmic norm (see Theorem

3.4.3 with ω = 0) to the norm-inequality in (III). We see that, for M = 1 and | · |, A, W as in the

above theorem, the conditions (I)–(IV) become equivalent to the condition

(V) µ
(
e−iθA

)
≤ Re(e−iθξ) for all ξ ∈ ∂W , and normal directions θ to W at ξ.

Theorem 3.5.4 (Expressions for τp[A, 1]) For arbitrary A = (αjk) ∈ Cs,s let A′ = (α′
jk) with

α′
jk = αkj, and let

Dj = D[αjj , σj ], σj =
∑

k 6=j

|αjk| for j = 1, 2, . . . , s.

We have

τ∞[A, 1] = conv
s⋃

j=1

Dj , τ1[A, 1] = τ∞[A′, 1],

τ2[A, 1] = {x∗Ax : x ∈ C
s with x∗x = 1}.

For normal A one has

τ2[A, 1] = conv σ[A].
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Using the above expressions for τp[A, 1] with p = 1,∞ one can establish a simple relation

between circle conditions and the set τp[A, 1]. We have the following theorem.

Theorem 3.5.5 (Relation between circle conditions and τp[A, 1] for p = 1,∞) Let D[γ, ρ] be an

arbitrary disk, A = (αjk) ∈ C
s,s and p = 1 or ∞. Then A satisfies a circle condition with respect

to D[γ, ρ] and ‖ · ‖p, if and only if τp[A, 1] ⊂ D[γ, ρ].

Proof. Since ‖A‖1 = ‖A′‖∞, τ1[A, 1] = τ∞[A′, 1], where A′ is as in Theorem 3.5.4, we only have

to consider the case p = ∞.

If A satisfies a circle condition with respect to D[γ, ρ], we have τ∞[A, 1] ⊂ D[γ, ρ] by the

definition of the 1-numerical range.

Conversely, assume τ∞[A, 1] ⊂ D[γ, ρ]. In view of Theorem 3.5.4, and with the notations of

that theorem, there follows

D[αjj , σj ] ⊂ D[γ, ρ],

and consequently |αjj − γ| + σj ≤ ρ (for j = 1, 2, . . . , s). Hence ‖A− γI‖∞ ≤ ρ.

3.6 Linear algebra concepts and semi-discretization

We shall illustrate some of the above concepts and theorems by applying them to the matrices A

originating in the process of semi-discretization described in Section 1.2.5.

Consider problem (1.1.6) and assume

(3.6.1) a(x) > 0, b(x) ≤ 0, c(x) ≤ 0, and b(x) is antitone .

We shall deal with the matrix A defined by (1.2.7b), (1.2.8), (1.2.9a), (1.2.10a). Assume, with

regard to (1.2.9a), that

(3.6.2) all upwind parameters satisfy ελ = 1.

In this situation the matrix A = (αjk) is tridiagonal; we have

αj,j+1 = δ−2aj+ 1

2

(for 1 ≤ j ≤ s− 1),(3.6.3)

αj,j−1 = δ−2aj− 1

2

− δ−1bj− 1

2

(for 2 ≤ j ≤ s− 1),

αj,j−1 = δ−2
[
as− 1

2

+ as+ 1

2

]
− δ−1bs− 1

2

(for j = s),

αj,j = −δ−2
[
aj− 1

2

+ aj+ 1

2

]
+ δ−1bj+ 1

2

+ cj (for 1 ≤ j ≤ s).

From (3.6.1) we have, for 2 ≤ j ≤ s, the inequalities

αjj +
∑

k 6=j

∣∣αjk

∣∣ = δ−1
[
bj+ 1

2

− bj− 1

2

]
+ cj ≤ 0,

and

α11 +
∑

k 6=1

∣∣α1k

∣∣ = −δ−2a 1

2

+ δ−1b 3

2

+ cj ≤ 0.

Therefore, by Theorem 3.4.5,

(3.6.4) µ∞(A) ≤ 0.
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By virtue of Theorem 3.4.3 there follows

‖exp (tA)‖∞ ≤ 1 for all t > 0.

The last conclusion can be interpreted as a stability result for the semi-discrete problem

(1.2.7a). Suppose Ũ (t) is a solution to (1.2.7a) with u0 replaced by ũ 0. Then

Ũ (t) − U(t) = exp (tA)( ũ 0 − u0),

and since the above matrix norm of exp (tA) does not exceed 1, we have
∣∣ Ũ (t) − U(t)

∣∣
∞

≤ | ũ0 − u0|∞ .

This means that any perturbation in the initial vector u0 is not amplified, when the time t increases

and differences between solutions are measured in the maximum norm |·|∞. This stability result for

(1.2.7a) is a semi-discrete analogue of a stability property for (1.1.6) which is plausible from (3.6.1)

when viewing a(x), b(x), c(x) as corresponding to diffusion, convection and reaction, respectively.

An essential point in the above derivation of (3.6.4) is the property of A that all of its off-

diagonal entries are nonnegative. If (3.6.2) is not fulfilled, then this property need not be present,

and accordingly (3.6.4) can be violated. This explains once more why upwind approximations are

advantageous.

In the situation (3.6.2) one can estimate µ∞(A), similarly as above, also for arbitrary a(x) >

0 and b(x), c(x) not necessarily satisfying (3.6.1). In this case (3.6.4) is replaced by an inequality

(3.6.5) µ∞(A) ≤ ω

with a constant ω, depending only on the functions b(x), c(x).

The above estimates for µ∞(A) can still be established for values ελ somewhat smaller than

1. In fact, if

(3.6.6) ελ ≥ 1 − 2aλ

δ|bλ|
for λ =

3

2
,
5

2
, . . . ,

2s+ 1

2
,

then all off-diagonal entries of A are still nonnegative, and the same estimates are valid as for the

fully upwind approximations defined by (3.6.2). The ratio

Pλ =
δ|bλ|
aλ

is called the (mesh-)Péclet number at the location xλ = λ · δ. If diffusion dominates convection, we

have small Péclet numbers, and (3.6.6) may be fulfilled with ελ ≡ 0. But, for strongly convection

dominated problems the Péclet number is large, and (3.6.6) forces ελ to be close to 1.

We turn again to the situation (3.6.1), (3.6.2). From the general expression for ‖A‖∞ (cf.

Section 3.2) we see that the tridiagonal matrix A defined by (3.6.3) satisfies

‖A‖∞ ≤ α,(3.6.7)

with

α = 4δ−2|a|∞ + 2δ−1|b|∞ + |c|∞.(3.6.8)

By applying Theorem 3.4.7 (part b), with ω = 0 and p = ∞, it follows that A satisfies the circle

condition

(3.6.9) ‖A+
α

2
I‖∞ ≤ α

2
.

This inequality implies that the 1-numerical range τ∞[A, 1] is contained in the disk D[−α
2
, α

2
]. More

refined information about the shape of τ∞[A, 1] can be obtained by using Theorem 3.5.4.
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3.7 Notes and Remarks

A proof of Theorem 3.1.1 (Jordan canonical form) and Theorem 3.1.4 (Jordan canonical form of

normal matrices) can be found e.g. in Horn & Johnson (1990). The representation Theorems 3.1.2,

3.1.3 can be derived directly, without using Theorem 3.1.1, by using complex integration theory,

see e.g. Kato (1976).

For further discussion of norms in C
s and C

s,s we refer to Horn & Johnson (1990). Lemma

3.2.1 (Linear functionals) can be viewed as a corollary to the so-called Hahn-Banach theorem from

functional analysis, cf. Rudin (1973). For a direct derivation of Lemma 3.2.1, in the context of the

finite dimensional space C
s, see e.g. Horn & Johnson (1990).

The spectral radius formula (Section 3.2) is a special case of a general result valid in complex

Banach algebras, cf. Rudin (1973). For further discussion of the spectral radius formula, for

matrices A ∈ C
s,s, we refer to Horn & Johnson (1990).

The concept of the ε-pseudospectrum was introduced and studied a.o. by Landau (1975),

Reddy & Trefethen (1990, 1992), Varah (1979). Very interesting properties of the ε-pseudospectrum,

as well as a wealth of applications, were discovered by L.N. Trefethen, see Trefethen (1996). The

focus in the works just mentioned is on the (weighted) spectral norms ‖A‖2 for A ∈ C
s,s. The

ε-pseudospectrum for the case of arbitrary norms ‖A‖ in C
s,s was discussed in Dorsselaer, Kraaije-

vanger & Spijker (1993). Theorem 3.2.3 (Characterizations of the ε-pseudo-eigenvalues) has been

taken from that paper.

For additional reading about the Dunford-Taylor integral, see Conway (1985), Dowson

(1978), Dunford & Schwartz (1958), Kato (1976). A direct and neat proof of the Theorems 3.3.1,

3.3.5, valid for the general case of linear operators in a Banach space, is given in Dowson(1978).

We note that the parts (a)–(d) of Theorem 3.3.1 can also be proved easily by using Theorem 3.3.6.

For further discussion of the latter theorem, see e.g. Dunford & Schwartz (1958), Kato (1976).

The logarithmic norm was introduced independently by Dahlquist (1959) and Lozinskij

(1958). Subsequently, various properties of the logarithmic norm were established by Desoer &

Haneda (1972) and Ström (1975). The last equality in Theorem 3.4.2 (m+(A) = lim
t→0+

µ(A; t)) and

the Theorems 3.4.3, 3.4.4, 3.4.5 can be found, with complete proofs, in the above four references.

Lemma 3.4.1 has been taken from Martin (1976, p.37). A proof of the second equality in Theorem

3.4.2 (m−(A) = m+(A)) can also be found in Martin (1976, p.246) — even for the general situation

of operators acting on a Banach space. The fact that lim
t→0−

µ(A; t) = lim
t→0+

µ(A; t) was proved in

Dorsselaer & Spijker (1994). Theorem 3.4.7 (Circle conditions) has been taken from Spijker (1985).

There exists a vast literature on the classical numerical range and closely related issues, see

Horn & Johnson (1994). For M = 1, the M -numerical range (Definition 3.5.1) can be seen to be

equal to the so-called algebra numerical range, well known in some parts of functional analysis, see

Bonsall & Duncan (1973, p.42) and (1980, p.35). The M -numerical range, for general M ≥ 1, was

introduced in Lenferink & Spijker (1990). In that paper Theorem 3.5.2 and part of Theorem 3.5.3

(equivalence of (I), (II) and (III)) was proved. The equivalence of (I) and (IV) was obtained in

Spijker (1993). The expressions for τp[A, 1], given in Theorem 3.5.4, have been known for a long

time, cf. Lenferink & Spijker (1990), Spijker (1993) for corresponding historical remarks.
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4 The problem of stability in the numerical solution

of differential equations

4.1 Linear stability analysis

We shall deal with step-by-step methods for the numerical solution of linear differential equations.

Both initial-boundary value problems in partial differential equations and initial value problems in

ordinary differential equations will be included in our considerations.

A crucial question in the step-by-step solution of such problems is whether the method

will behave stably or not. Here we use the term stability to designate that any numerical errors,

introduced at some stage of the calculations, are propagated in a mild fashion – i.e. do not blow

up in the subsequent steps of the method.

Classical tools to assess the stability a priori, in the numerical solution of partial differential

equations, include Fourier transformation and the corresponding famous Von Neumann condition

for stability. Further tools of recognized merit for assessing stability, in the solution of ordinary

differential equations, comprise so-called stability regions in the complex plane. Since the mid sixties

these stability regions have been studied extensively; numerous papers have appeared dealing with

the shape and various peculiarities of these regions.

However, the above tools are based on the behaviour that the numerical method would have

when applied to quite simple test problems. Accordingly, in the case of partial differential equations

Fourier transformation provides a straightforward and reliable stability criterion primarily only for

certain numerical methods applied to pure initial value problems in linear differential equations with

constant coefficients. In many cases of practical interest, Fourier transformation is not relevant to

analysing stability: e.g. for pseudo-spectral methods applied to initial-boundary value problems,

for finite difference or finite element methods related to highly irregular grids, and for methods

applied to equations with strongly varying coefficients. Similarly, in the case of ordinary differential

equations, stability regions are primarily relevant only to numerical methods when applied to scalar

equations

(4.1.1) U ′(t) = λU(t) for t ≥ 0,

with given complex constant λ.

Clearly, rigorous stability criteria with a wider scope than the simple classical test equations

are important – both from a practical and a theoretical point of view. It is equally important to

know to what extent stability regions can be relied upon in assessing stability in the numerical

solution of differential equations more general than (4.1.1). In the following we shall discuss var-

ious theories which are relevant to these two questions. No essential use will be made of Fourier

transformation.

4.2 Stability and power boundedness

In the following we shall deal with numerical processes of the form

(4.2.1) un = Bun−1 + rn for n = 1, 2, 3, . . . ,

with a given square matrix B of order s ≥ 1 and given vectors rn ∈ C
s. The s-dimensional vectors

un are computed sequentially from (4.2.1) starting from a given vector u0 ∈ C
s.
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Processes of the form (4.2.1) occur in the numerical solution of linear initial value problems

that are essentially more general than the simple classical test problems mentioned above. The

vectors un provide numerical approximations to the true solution of the initial(-boundary) value

problem under consideration.

As an illustration to (4.2.1) we consider again the one-dimensional diffusion-convection-

reaction problem (1.1.6) of Section 1.1,

∂

∂t
u(x, t) =

∂

∂x
[a(x)

∂

∂x
u(x, t)] +

∂

∂x
[b(x)u(x, t)] + c(x)u(x, t) + d(x),(4.2.2)

u(0, t) = g(t),
∂

∂x
u(1, t) = 0, u(x, 0) = f(x), where 0 ≤ x ≤ 1, t ≥ 0.

We choose positive increments ∆t = h, ∆x = δ = 1/s and consider the approximation of u(x, t)

at x = xj = jδ, t = nh. We denote these approximations by un
j . The following finite difference

scheme has been constructed by applying the 2-stage θ–Runge–Kutta method (a11 = a12 = 0,

a21 = b1 = 1 − θ, a22 = b2 = θ) to (1.2.7), (1.2.8), (1.2.9a) (with all ελ = 1), (1.2.10a).

h−1(un
j − un−1

j ) =δ−2
{
aj+1/2

[
θun

j+1 + (1 − θ)un−1
j+1

]
− (aj+1/2 + aj−1/2)

[
θun

j +

+ (1 − θ)un−1
j

]
+ aj−1/2

[
θun

j−1 + (1 − θ)un−1
j−1

]}

+δ−1
{
bj+1/2

[
θun

j +(1 − θ)un−1
j

]
−bj−1/2

[
θun

j−1+(1 − θ)un−1
j−1

]}
+

+ cj
[
θun

j + (1 − θ)un−1
j

]
+ dj ,

un−1
0 = g((n− 1)h), un−1

s+1 = un−1
s−1 , u0

j = f(xj),

where j = 1, 2, . . . , s and n = 1, 2, 3, . . .. In the above θ denotes a parameter, with 0 ≤ θ ≤ 1,

specifying the numerical process, and xλ = λδ, aλ = a(xλ), bλ = b(xλ), cλ = c(xλ), dλ = d(xλ).

Defining vectors un by

un =




un
1

un
2

...

un
s


 '




u(x1, nh)

u(x2, nh)
...

u(xs, nh)




one easily verifies that the un satisfy a relation of the form (4.2.1). Here

(4.2.3) B = (I + (1 − θ)hA)(I − θhA)−1,

where A = (αjk) is an s× s tridiagonal matrix with its (nonzero) entries given by

αj,j+1 = δ−2aj+ 1

2

(for 1 ≤ j ≤ s− 1),(4.2.4)

αj,j−1 = δ−2aj− 1

2

− δ−1bj− 1

2

(for 2 ≤ j ≤ s− 1),

αj,j−1 = δ−2
[
as− 1

2

+ as+ 1

2

]
− δ−1bs− 1

2

(for j = s),

αj,j = −δ−2
[
aj− 1

2

+ aj+ 1

2

]
+ δ−1bj+ 1

2

+ cj (for 1 ≤ j ≤ s).

Clearly this matrix A equals the matrix given by (1.2.7b), (1.2.8), (1.2.9a) (with all ελ = 1),

(1.2.10a), and it coincides with (3.6.3).

Suppose the numerical calculations based on the general process (4.2.1) were performed

using a perturbed starting vector ũ 0, instead of u0. We would then obtain approximations that
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we denote by ũn. For instance ũ 0 may stand for a finite-digit representation in a computer of the

true u0, and the ũn then stand for the numerical approximations obtained in the presence of the

rounding error v0 = ũ0 − u0.

In the stability analysis of (4.2.1) a crucial question is whether the difference vn = ũn − un

(for n ≥ 1) can be bounded suitably in terms of the perturbation v0 = ũ 0 − u0. Since

vn = ũn − un = [B ũn−1 + rn] − [Bun−1 + rn]

we have

vn = Bvn−1,

and consequently

vn = Bnv0.

The last expression makes clear that a central issue in our stability analysis is the question

of whether given matrices have powers that are uniformly bounded. Accordingly, in the following

we focus, for an arbitrary s× s matrix B, on the stability property

(4.2.5) ‖Bn‖ ≤M0 for n = 0, 1, 2, . . . ,

where M0 is a positive constant. Throughout this Chapter 4 we denote by ‖ · ‖ the spectral norm

(see Section 3.2).

4.3 Power boundedness and the eigenvalue criterion

For any given matrix B one can easily deduce a criterion for the existence of an M0 with property

(4.2.5). In view of the Theorems 3.3.1, 3.3.6 we have

Bn =
r∑

k=1

[
(λk)nPk +

(
n

1

)
(λk)n−1Rk +

(
n

2

)
(λk)n−2(Rk)2 + · · · +

(
n

sk − 1

)
(λk)n−sk+1(Rk)sk−1

]

(cf. Example 3.3.7). Here λk, Pk and Rk are related to the Jordan decomposition of our matrix B

similarly as they were related to the decomposition of A in Section 3.1.

From this representation for Bn we easily conclude that ‖Bn‖ remains bounded when n→ ∞
if and only if

|λk| ≤ 1, and sk = 1 when |λk| = 1.

We thus arrive at the following theorem.

Theorem 4.3.1 (The eigenvalue criterion) For a given matrix B there exists a constant M0 with

property (4.2.5) if and only if

(4.3.1)

{
all eigenvalues λ of B have a modulus |λ| ≤ 1, and any Jordan

block corresponding to an eigenvalue λ with |λ| = 1 has order 1 .
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However, in the stability analysis of numerical processes one is often interested in property

(4.2.5) for all B belonging to some infinite family F of matrices. The crucial question then is of

whether a single finite M0 exists such that (4.2.5) holds simultaneously for all B belonging to F .

In this situation, (4.3.1) may only provide a condition that is necessary (and not sufficient) for such

an M0 to exist.

For instance, in the example of Section 4.2 one can only expect great accuracy in the ap-

proximations un
j to u(xj , nh) when δ (and h) become very small. Accordingly one is primarily

interested in bounds for Bn that are valid uniformly for all B of the form (4.2.3), (4.2.4) with

arbitrarily small δ = 1/s.

An instructive counterexample, illustrating the fact that the criterion (4.3.1) can be mis-

leading for the case of families F , is provided by the s× s bidiagonal matrices

(4.3.2) B =




−1/2 0 0 · · · 0

3/2 −1/2
. . .

. . .
...

... 3/2
. . .

. . . 0
...

. . .
. . . 0

0 · · · · · · 3/2 −1/2




.

Matrices of the form (4.3.2) may be thought of as arising in the numerical solution of the

initial-boundary value problem

∂

∂t
u(x, t) = − ∂

∂x
u(x, t), u(0, t) = 0, u(x, 0) = f(x), where 0 ≤ x ≤ 1, t ≥ 0.

This problem is the same as (1.1.5) with b(x) = −1, c(x, t) = 0. Application of the (forward) Euler

method to a fully upwind semi-discrete approximation, based on (1.2.1b), yields the numerical

process

h−1(un
j − un−1

j ) = δ−1(un−1
j−1 − un−1

j ),

un−1
0 = 0, u0

j = f(j/s).

Here ∆t = h > 0, ∆x = δ = 1/s, and un
j approximates u(jδ, nh) for j = 1, 2, . . . , s and n =

1, 2, 3, . . .. Clearly, with the choice hs = 3/2 this numerical process can be written in the form

(4.2.1) with a matrix B as in (4.3.2).

For each s ≥ 1 the matrix (4.3.2) satisfies the eigenvalue condition (4.3.1).

Defining the s× s shift matrix E by

(4.3.3) E =




0 · · · · · · · · · 0

1
. . .

...

0 1
. . .

...
...

. . .
. . .

...

0 · · · · · · 1 0



,

we have from (4.3.2) the expression

B = −1

2
I +

3

2
E.

Consequently (cf. Example 3.3.4),

Bn =
n∑

k=0

(
n

k

)
(−1/2)n−k(3/2)kEk.
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Defining x to be the s-dimensional vector whose j-th component equals ξj = (−1)j , and denoting

the j-th component of y = Bnx by ηj we easily obtain, from the above expression for Bn,

|ηj | =
n∑

k=0

(
n

k

)
(1/2)n−k(3/2)k = 2n for n+ 1 ≤ j ≤ s.

For s > n we thus have 


s∑

j=1

|ηj |2



1/2

≥
√
s− n · 2n.

Since 


s∑

j=1

|ξj |2



1/2

=
√
s,

the spectral norm of Bn satisfies ‖Bn‖ ≥
√

1 − n/s · 2n. Denoting the s × s matrix B by Bs we

thus have

‖(B2n)n‖ ≥ 2n−1/2 for n = 1, 2, 3, . . .

Clearly, no M0 can exist such that (4.2.5) is valid for all B belonging to F = {Bs : s = 1, 2, 3, . . .}.
It should be noted that in some special cases the eigenvalue criterion can be reliable. For

normal matrices B we have, with the notation of Theorem 3.1.4 applied to the matrix B,

Bn = (TJT−1)n = T diag(λn
1 , λ

n
2 , . . . , λ

n
s )T−1,

so that (4.3.1) implies ‖Bn‖ ≤ ‖T‖ · ‖T−1‖. Since T−1 = T ∗ we have ‖T‖ = ‖T−1‖ = 1, and we

arrive at the following theorem.

Theorem 4.3.2 (The eigenvalue criterion for normal matrices) Let the matrix B be normal, and

‖ · ‖ denote the spectral norm. Then the following three statements are equivalent to each other.

(i) There is an M0 such that (4.2.5) is fulfilled.

(ii) ‖Bn‖ ≤ 1 for n = 1, 2, 3, . . ..

(iii) All eigenvalues λ of B have a modulus |λ| ≤ 1.

But, in general the matrices B in (4.2.1) are not normal, and one has to look for conditions

different from (4.3.1). In the following chapters we shall deal with conditions which are still reliable

for the case of non normal matrices.

4.4 Notes and remarks

For a discussion of Fourier transformations and the corresponding Von Neumann condition for

analysing stability we refer to the classical work Richtmyer & Morton (1967) and to Strikwerda

(1989).

Already in the pioneering work by F. John (1952) the scope of Fourier transformation was

widened in that it was used in deriving sufficient conditions for stability in the numerical solution

of linear partial differential equations with mildly variable coefficients. For subsequent related

work, relevant to equations with variable coefficients and also to initial-boundary value problems,

the reader may consult Gustafsson, Kreiss & Sundström (1972), Kreiss (1966), Meis & Marcowitz

(1981), Richtmyer & Morton (1967), Strikwerda (1989), Thomée (1990) and the references therein.
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Stability regions, related to numerical methods for ordinary differential equations, are dis-

cussed extensively in the excellent works by Butcher (1987) and Hairer & Wanner (1996).

The fact that the eigenvalue criterion (4.3.1) can be a misleading guide to stability was

already known in the sixties, see e.g. Parter (1962). A related, but stronger, necessary requirement

for stability is the so-called Godunov–Ryabenkii stability condition, a discussion of which can be

found e.g. in Morton (1980), Richtmyer & Morton (1967), Thomée (1990). The latter condition is

not satisfied in example (4.3.2).

The counterexample (4.3.2) is similar to examples in Kreiss (1990), Reddy & Trefethen

(1992), Richtmyer & Morton (1967), Spijker (1985). Further examples of instability under the

eigenvalue condition (4.3.1) can be found in Griffiths, Christie & Mitchell (1980), Kraaijevanger,

Lenferink & Spijker (1987), Lenferink & Spijker (1991b). The matrices B in these references have

s different eigenvalues λ with |λ| < 1, and occur in the numerical solution of problems of the form

(4.2.2). See Reddy & Trefethen (1992), Trefethen (1988) for related counterexamples in spectral

methods.



37

5 Stability estimates under resolvent conditions

on the numerical solution operator B

5.1 Power boundedness and the Kreiss resolvent condition

By ‖ · ‖ we denote, in this Section 5.1, the spectral norm.

In the early sixties H. -O. Kreiss established an important theorem, nowadays called the

Kreiss matrix theorem, dealing with the uniform boundedness of ‖Bn‖. Here n = 1, 2, 3, . . . and B

belongs to a given, possibly infinite, family F of s × s matrices (with fixed s ≥ 1). The theorem

gives a series of conditions which are equivalent to the existence of a constant M0 such that

(5.1.1) ‖Bn‖ ≤M0 for n = 0, 1, 2, . . . ,

simultaneously for all B ∈ F .

One of the conditions in the Kreiss theorem involves the resolvent (ζI − B)−1 of B, and

amounts to the requirement that

ζI −B is invertible, and ‖(ζI −B)−1‖ ≤M1 · (|ζ| − 1)−1,(5.1.2)

for all complex numbers ζ ∈ C \D.
Here M1 is a positive constant, and D denotes the closed unit disk {ζ : ζ ∈ C with |ζ| ≤ 1}. We

shall refer to (5.1.2) as the Kreiss resolvent condition. In many cases of practical interest it is easier

to verify (5.1.2) than (5.1.1).

Let B be a given s × s matrix satisfying (5.1.1). Then, by Theorem 4.3.1 (Eigenvalue

criterion), all eigenvalues of B lie in D. For ζ ∈ C \D, the matrix ζI −B is thus invertible and, in

view of Theorem 3.3.1,

(ζI −B)−1 =
∞∑

n=0

ζ−n−1Bn.

It follows that

‖(ζI −B)−1‖ ≤
∞∑

n=0

|ζ|−n−1 · ‖Bn‖ ≤ M0

∞∑

n=0

|ζ|−n−1 = M0 · (|ζ| − 1)−1.

We see that (5.1.1) implies (5.1.2) with M1 = M0.

The Kreiss matrix theorem asserts that, conversely, (5.1.2) implies (5.1.1) withM0 depending

only on M1 and on the dimension s, but otherwise independent of the matrix B.

The Kreiss theorem has often been used in the stability analysis of numerical methods for

solving initial value problems for partial differential equations. In the classical situation, considered

in the sixties, the matrices B are obtained by Fourier transformation of the numerical solution

operators, and they stand essentially for the so-called amplification matrices. These matrices are

of a fixed finite order s. On the other hand, the implication of (5.1.1) by (5.1.2) can also be used

without Fourier transformation, with B standing for the numerical solution operator in (4.2.1). In

this situation we may be dealing with a family of matrices B of finite – but not uniformly bounded

– order s. Therefore, of particular interest is the dependence of the stability constant M0 in (5.1.1)

on the dimension s.

Since the work of Kreiss many authors studied the size of (the optimal) M0 as a function of

M1 and s, and eventually in the ninetees some open problems in this field were settled. Moreover,

the implication of (5.1.1) by (5.1.2) as discussed above was generalized in several directions. More

general norms than the spectral norm were dealt with and the resolvent condition (5.1.2) was

adapted to domains different from the unit disk D. In the following we shall discuss some of the

results just mentioned as well as closely related ones.
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5.2 Stability estimates for arbitrary M1 ≥ 1 and arbitrary norms

In this section we consider the relation between (5.1.1) and (5.1.2) for the case where ‖ · ‖ is a

matrix norm on C
s,s induced by an arbitrary vector norm | · | on C

s. Throughout this section ‖ · ‖
denotes such a matrix norm.

Theorem 5.2.1 Let s ≥ 1, B ∈ C
s,s.

(a) If (5.1.1) holds for some M0, then (5.1.2) holds with M1 = M0 ;

(b) If (5.1.2) holds for some M1, then

(5.2.1) ‖Bn‖ ≤ (1 + 1/n)n min{n+ 1, s}M1 ≤ e · min{n+ 1, s}M1 for n = 1, 2, 3, . . . .

Proof. 1. The proof of (a) is the same as the proof in Section 5.1 for the spectral norm.

In order to prove (b) we consider an arbitrary but fixed n ≥ 1 and B satisfying (5.1.2). In

view of Theorem 3.3.1(c) we can express the n-th power Bn as a Dunford-Taylor integral

Bn =
1

2πi

∫

Γ

ζn(ζI −B)−1dζ,

where Γ is any positively oriented circle |ζ| = 1 + ε with ε > 0. Taking norms and applying (5.1.2)

we obtain

‖Bn‖ ≤ 1

2π

∫

Γ

(1 + ε)nM1ε
−1|dζ| = (1 + ε−1)(1 + ε)nM1.

By choosing ε = 1/n there follows

‖Bn‖ ≤ (1 + 1/n)n (n+ 1)M1.

Clearly, the proof of (b) is complete if we can show

(5.2.2) ‖Bn‖ ≤ (1 + 1/n)nsM1 for n = 1, 2, 3, . . . .

2. We can regard C
s,s as the space C

t, with t = s2, and the norm ‖ · ‖ as a vector norm on

C
t. Applying Lemma 3.2.1 (Lineair functionals), with y = Bn and s replaced by t, we see that a

linear F : Cs,s → C exists with

|F (A)| ≤ ‖A‖ for all s× s matrices A,(5.2.3)

F (Bn) = ‖Bn‖.(5.2.4)

A combination of (5.2.4) and the above integral representation for Bn yields

‖Bn‖ =
1

2πi

∫

Γ

ζnR(ζ)dζ,

where R(ζ) = F
(
(ζI −B)−1

)
. Integrating by parts we obtain, with ε = 1/n,

(5.2.5) ‖Bn‖ =
−1

2πi(n+ 1)

∫

Γ

ζn+1R′(ζ)dζ ≤ 1

2πn
(1 + 1/n)n

∫

Γ

|R′(ζ)| |dζ|.

3. Let Ejk stand for the s× s matrix with entry in the j-th row and k-th column equal to

1, and all other entries 0. Denoting the entries of the matrix (ζI −B)−1 by rjk(ζ) we thus have

(ζI −B)−1 =
∑

j,k

rjk(ζ)Ejk,
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and therefore also

R(ζ) =
∑

j,k

rjk(ζ)F (Ejk).

We recall that a rational function is of order s if its numerator and denominator are polynomials of

a degree not exceeding s. By Cramer’s rule, the rjk(ζ) are rational functions of order s, and they

have the same denominator. Hence R(ζ) is also a rational function of order s.

By Theorem 2.2.2 we have

(5.2.6)

∫

Γ

|R′(ζ)| |dζ| ≤ 2πsmax
Γ

|R(ζ)|.

The proof of (5.2.2) now easily follows by a combination of (5.2.5), (5.2.6), (5.2.3) and (5.1.2).

In the following theorem we focus on the sharpness of the bound (5.2.1) in the case n = s−1.

Theorem 5.2.2 Let s ≥ 2. Then

(5.2.7) sup{‖Bs−1‖/M1(B) : B ∈ C
s,s, M1(B) <∞} =

(
1 +

1

s− 1

)s−1
s,

where M1(B) denotes the smallest M1 such that (5.1.2) holds (we define M1(B) = ∞ if (5.1.2) is

not fulfilled for any M1).

Proof. Define B ∈ C
s,s by B = γE, where γ > 0 is large and the s × s matrix E is defined by

(4.3.3). We have

M1(B) = sup
|ζ|>1

(|ζ| − 1) ‖(ζI −B)−1‖ = sup
|ζ|>1

|ζ| − 1

|ζ|

∥∥∥∥
s−1∑

j=0

(
γ

ζ
E

)j∥∥∥∥

≤
s−1∑

j=0

µjγ
j
∥∥Ej

∥∥ = µs−1γ
s−1

∥∥Es−1
∥∥
(
1 + O

(
γ−1

))
,

where

µj = sup
|ζ|>1

(|ζ| − 1)|ζ|−j−1 = max
0≤x≤1

(1 − x)xj = jj(j + 1)−j−1,

so that

‖Bs−1‖/M1(B) ≥ 1/µs−1 + O
(
γ−1

)

=
(
1 +

1

s− 1

)s−1

s+ O
(
γ−1

)
( as γ → ∞).

It follows that the left-hand member of (5.2.7) is not smaller than the right-hand member. In view

of (5.2.1) the proof is complete.

Corollary 5.2.3 For each s ≥ 1, let an induced matrix norm ‖ · ‖(s) be given on C
s,s. Then there

exist matrices Bs ∈ C
s,s for s = 1, 2, 3, . . ., such that M1(Bs) <∞ and

(5.2.8) ‖(Bs)
s−1‖(s) ∼ esM1(Bs) (as s→ ∞),

where M1(Bs) has the same meaning as in Theorem 5.2.2 (with ‖ · ‖ = ‖ · ‖(s)).
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Proof. Immediate from Theorem 5.2.2.

In view of (5.2.1), the estimate

(5.2.9) ‖Bn‖ ≤ e sM1 for n = 0, 1, 2, . . .

is valid for general induced matrix norms on C
s,s. By virtue of Corollary 5.2.3, this estimate is

sharp in the sense of (5.2.8). However, it should be emphasized that this does not resolve the

sharpness question for given fixed M1, since M1(Bs) in (5.2.8) may depend on s. In the next two

sections we will focus on the situation where M1 is a given fixed number.

5.3 Improved stability estimates for M1 = 1

5.3.1 The case of arbitrary norms

In the special situation where the resolvent condition (5.1.2) holds with M1 = 1, the upper bound

(5.2.1) can be improved in various ways. First we concentrate on arbitrary induced norms on C
s,s.

Theorem 5.3.1 Let s ≥ 1, B ∈ C
s,s and ‖ · ‖ denote an arbitrary induced matrix norm on C

s,s.

If (5.1.2) holds with M1 = 1, then

(5.3.1) ‖Bn‖ ≤ n! (e/n)n ≤
√

2π(n+ 1) for n = 1, 2, . . . .

Proof. Property (5.1.2) with M1 = 1 implies that condition (II)(of Section 3.5) is fulfilled by A = B

with M = 1, W = {ζ : |ζ| ≤ 1}. By virtue of Theorem 3.5.3 this A must satisfy the corresponding

condition (III) as well, i.e.
∥∥exp [t e−iθ(B − eiθI)]

∥∥ ≤M = 1 for all t ≥ 0 and real θ.

Consequently,

‖exp (ζB)‖ ≤ exp (|ζ|) for all complex ζ.

From the power series expansion for exp(A) (Example 3.3.3 in Section 3.3) with A = ζB, it

can be seen that

Bn =
n!

2πi

∫

Γ

ζ−n−1 exp (ζB)dζ,

where Γ is the positively oriented circle with radius n and center 0. Therefore ‖Bn‖ ≤ n! n−nen.

In view of Stirling’s formula (Theorem 2.1.2) we have

n! ≤ (n/e)n
√

2πn exp [(12n)−1],

from which it can be deduced that n! (e/n)n ≤
√

2π(n+ 1).

As the next theorem shows, the upperbound for ‖Bn‖ in (5.3.1) is not unnecessarily pes-

simistic.

Theorem 5.3.2 Let s ≥ 2, and let B = (βij) denote the s× s matrix with

βij = 1 (for j = i− 1), and βij = 0 (for j 6= i− 1).

Then there is a vector norm in C
s such that, for the corresponding induced matrix norm ‖ · ‖ on

C
s,s, we have

(i) ‖(ζI −B)−1‖ ≤ (|ζ| − 1)−1 for all ζ ∈ C with |ζ| > 1;

(ii) ‖Bn‖ = n! (e/n)n ≥
√

2π · n for n = 1, 2, . . . , s− 1.
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Proof. 1. For any column vector x in C
s, we denote its components by x0, x1, . . . , xs−1, and we

introduce the polynomial

x(t) = x0 + x1t+ · · · + xs−1t
s−1.

We define

|x| = inf

{ m∑

k=1

|αk| e|λk | : m ≥ 1, αk ∈ C, λk ∈ C with

m∑

k=1

αk eλkB = x(B)

}
.

Note that the relation
m∑

k=1

αk eλkB = x(B),

which occurs in our last definition, is valid if and only if α1, α2, . . . , αm satisfy the following system

of linear equations:
m∑

k=1

(λk)i · αk = i! xi (0 ≤ i ≤ s− 1).

From this we see that, for any given x ∈ C
s and m ≥ s, it is possible to find λk, αk such that the

above relation is valid. Consequently, |x| is a well defined real number.

In part 2 of the proof we show that |x| is a norm for the vectors x ∈ C
s.

2. a) Let x, y ∈ C
s, and

∑
k

αk eλkB = x(B),
∑
l

βl eµlB = y(B). We have

∑

k

αk eλkB +
∑

l

βl e
µlB = (x+ y)(B),

and therefore

|x+ y| ≤
∑

k

|αk| e|λk| +
∑

l

|βl| e|µl|.

This implies that

|x+ y| ≤ |x| + |y|.
b) For x ∈ C

s, λ ∈ C and any αk, λk ∈ C with
∑
k

αk eλkB = x(B),

we have
∑
k

(λαk) eλkB = (λx)(B), so that

|λx| ≤
∑

k

|λαk| e|λk| = |λ| ·
∑

k

|αk| e|λk|.

This implies that |λx| ≤ |λ| · |x|. For λ 6= 0 we thus have |x| = |λ−1(λx)| ≤ |λ−1| · |λx|, and therefore

|λx| ≥ |λ| · |x|, which implies

|λx| = |λ| · |x|.
The last equality is also valid for λ = 0.

c) Suppose |x| = 0. For each ε > 0 there are αk, λk with

∑

k

αk eλkB = x(B) and
∑

k

|αk| e|λk | < ε.

For all such αk, λk and 0 ≤ i ≤ s− 1 there follows

|xi| =

∣∣∣∣
∑

k

αk(λk)i/i!

∣∣∣∣ ≤
∑

k

|αk|
|λk|i
i!

≤
∑

k

|αk| e|λk| < ε.
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Consequently, |xi| = 0, and therefore x = 0.

d) We have proved that |x| is a norm for x ∈ C
s, and we denote the corresponding

matrix norm on C
s,s by ‖ · ‖.

3. In order to prove (i) we consider arbitrary x, y ∈ C
s and ζ ∈ C with

y = eζBx.

We have

yi =

i∑

j=0

ζj

j!
xi−j (i = 0, 1, . . . , s− 1),

and therefore also

y(B) = eζBx(B).

For any αk, λk ∈ C with
∑
k

αk eλkB = x(B) there follows y(B) =
∑
k

αk eζB eλkB. In view of

Theorem 3.3.1(c) we obtain

y(B) =
∑

k

αk e(ζ+λk)B .

Consequently

|y| ≤
∑

k

|αk| e|ζ+λk| ≤ e|ζ|
∑

k

|αk| e|λk|.

It follows that |y| ≤ e|ζ||x|. Hence

‖eζB‖ ≤ e|ζ| for all ζ ∈ C.

The matrix B thus satisfies condition III of Theorem 3.5.3 (with A = B, and with M = 1,

W = {ζ : |ζ| ≤ 1}). By virtue of that theorem, condition II is satisfied as well. This proves (i).

4. Let v ∈ C
s, with components v0 = 1, vi = 0 (1 ≤ i ≤ s − 1). Let 1 ≤ n ≤ s − 1 and

define the vector w ∈ C
s by

w = Bnv.

We shall show that

|v| ≤ 1,

and

|w| ≥ n! (e/n)n.

In view of the Theorems 5.3.1 and 2.1.2, the last two inequalities prove (ii).

The first of these inequalities follows from the fact that
m∑

k=1

αk eλkB = v(B) holds with

m = 1, α1 = 1, λ1 = 0.

In order to prove the second inequality we consider arbitrary αk, λk such that
∑
k

αk eλkB =

w(B). Since the components of w are given by

wi = 0 (0 ≤ i ≤ s− 1, i 6= n), wn = 1,

we have w(B) = Bn, and there follows

1 =

∣∣∣∣
∑

k

αk
(λk)n

n!

∣∣∣∣ ≤
∑

k

σk |αk| e|λk|,
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where

σk =
|λk|n e−|λk|

n!
≤ nn e−n

n!
.

Consequently,

n! (e/n)n ≤
∑

k

|αk| e|λk|,

and therefore |w| ≥ n! (e/n)n.

5.3.2 Improvements of (5.3.1) for the case of special norms

According to the following theorem the stability estimate (5.3.1) can be improved substantially for

the case of some important matrix norms.

Theorem 5.3.3 Let s ≥ 1, Q ∈ C
s,s invertible, and p = 1, 2 or ∞. Let the norm ‖ · ‖ on C

s,s be

defined by ‖A‖ = ‖QAQ−1‖p (for all A ∈ C
s,s). Then (5.1.2) with M1 = 1 implies that

‖Bn‖ ≤ M0 ( for n = 0, 1, 2, . . .),

with M0 = 1 (if p = 1 or ∞) or M0 = 2 (if p = 2).

Proof. Since the result for general invertible Q easily follows from the result for Q = I, it is sufficient

to consider the latter case only.

Let p = ∞. Suppose B = (βjk) satisfies (5.1.2) with ‖ · ‖ = ‖ · ‖∞, M1 = 1. Clearly (II)

(Section 3.5) holds with W = {ζ : |ζ| ≤ 1}, M = 1. By Theorem 3.5.3 we have τ∞[B, 1] ⊂ W . In

view of Theorem 3.5.5 the matrix B satisfies a circle condition with respect to the unit disk, which

means that ‖B‖∞ ≤ 1. Therefore (5.1.1) holds with M0 = 1.

For p = 1 the proof follows from the result for p = ∞ and the fact that ‖A‖1 = ‖A∗‖∞ for

all A ∈ C
s,s.

For p = 2 the proof runs as follows. Similarly as above it can be seen that (5.1.2) implies

τ2[B, 1] ⊂W = {ζ : |ζ| ≤ 1}. In view of Theorem 3.5.4 we thus have

{x∗Bx : x ∈ C
s with x∗x = 1} ⊂ W.

The proof continues by applying Berger’s inequality. This inequality reads

r(An) ≤ [r(A)]n for n = 1, 2, 3, . . .

where A is any s× s matrix, and r(A) denotes the so-called numerical radius of A defined by

r(A) = max {|x∗Ax| : x ∈ C
s with x∗x = 1}.

Since r(B) ≤ 1, there follows

r(Bn) ≤ 1.

We split Bn into a sum Bn = A1 + iA2 with Hermitian matrices A1 = 1
2
(A + A∗) and

A2 = 1
2i

(A−A∗). By noting that for any Hermitian A the relation ‖A‖2 = r(A) is valid, we finally

obtain

‖Bn‖ ≤ ‖A1‖ + ‖A2‖ = r(A1) + r(A2) ≤ 2 r(Bn) ≤ 2.
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5.4 The best stability estimates for fixed M1 > 1

Theorem 5.2.1 shows that if the resolvent condition (5.1.2) is satisfied with a fixed M1, then ||Bn||
can grow at most linearly with n or s. Corollary 5.2.3 reveals that the corresponding upper bound

is sharp—if we allow M1 to be variable.

For the special case M1 = 1, however, this linear growth with n or s is too pessimistic, as

can be seen from the Theorems 5.3.1 and 5.3.3 in the previous section.

For other fixed values M1 > 1, also, the question arises of whether the upper bound (5.2.1)

can be improved. According to Theorem 5.3.2, a growth of ‖Bn‖ at the rate
√
n or

√
s can occur

if arbitrary norms are considered. But, that theorem is not relevant to the important norms ‖ · ‖p,

with p = 1, 2,∞. In the following we present two results for these norms. The first result shows,

for p = 1,∞, that growth at the rate n and s can occur, whereas the second result establishes, for

p = 2, a growth which is almost at the rate
√

log n and
√

log s.

Theorem 5.4.1 Let M1 ≥ π+ 1, and p = 1 or p = ∞. Let s be a given integer, with s ≥ 1. Then

there is an s× s matrix B such that (5.1.2) is satisfied with ‖ · ‖ = ‖ · ‖p, and

‖Bn‖p ≥ n for n = 1, 2, . . . , s.

Theorem 5.4.2 Let M1 > π + 1 be given. Then there exist a constant C > 0 and matrices

Bs ∈ C
s,s for s = 2, 4, 6, . . ., such that all Bs satisfy (5.1.2) with ‖ · ‖ = ‖ · ‖2, and

‖(Bs)
s/2‖2 ≥ C

√
log s

log(log s)
.

Proof. By McCarthy & Schwartz (1965) it was shown that a constant γ > 0 and s × s matrices

Es,j (for all even positive s and j = 1, 2, . . . , s) exist with the following properties:

(Es,j)
2 = Es,j 6= O , Es,jEs,k = O (j 6= k),

s∑

j=1

Es,j = I;(5.4.1)

∥∥∥∥
∑

j odd

Es,j

∥∥∥∥
2

≥ γ(log s)1/2/ log log s;(5.4.2)

Bs =
s∑

j=1

e2πij/sEs,j satisfies (5.1.2) .(5.4.3)

For even s we have

(Bs)
s/2 =

s∑

j=1

(−1)jEs,j = I − 2
∑

j odd

Es,j .

In view of (5.4.2) this implies

‖(Bs)
s/2‖2 ≥ −1 + 2γ(log s)1/2/ log log s for s = 2, 4, 6, . . . .

Since all (Bs)
s/2 6= 0 there exists a constant C with the property stated in the theorem.
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5.5 Notes and remarks

The Kreiss matrix theorem was originally published in Kreiss (1962). Subsequent elaborations and

applications to so-called amplification matrices, originating from Fourier transformation, can be

found e.g. in Richtmyer & Morton (1967), Strikwerda (1989).

As already mentioned in Section 5.1, the Kreiss matrix theorem asserts, for the spectral norm,

that the resolvent condition (5.1.2) implies power boundedness (5.1.1) with a stability constant M0

depending only on M1 and the dimension s. According to Tadmor (1981), the original proof by

Kreiss (1962) yields an upper bound ‖Bn‖ ≤M0 with

M0 ' (M1)
ss
,

which is far from sharp. After successive improvements by various authors (cf. Morton (1964) and

Miller & Strang (1966)), it was Tadmor (1981) who succeeded in proving a bound that is linear in

s,

‖Bn‖ ≤ 32eπ−1sM1.

LeVeque & Trefethen (1984) lowered this upper bound to 2esM1, and conjectured that the latter

bound can be improved further to (5.2.9) (with ‖ ·‖ still standing for the spectral norm). Moreover,

these authors showed by means of a counterexample that the factor e in (5.2.9) cannot be replaced

by any smaller constant if the upper bound should be valid for arbitrary factors M1 in (5.1.2) and

arbitrarily large dimensions s.

Smith (1985) proved a result which, combined with the arguments of LeVeque & Trefethen

(1984), leads to the bound ‖Bn‖ ≤ π−1(π+2)esM1, which is an improvement over the upper bound

2esM1 but still weaker than (5.2.9). Eventually (5.2.9) was proved to be true (in Spijker (1991)).

For an interesting historical survey see Wegert & Trefethen (1994).

The proof in Section 5.2 of (5.2.1) has been taken from Dorsselaer, Kraaijevanger & Spijker

(1993), and is partly based on arguments used earlier by Lenferink & Spijker (1991a,b), Lubich &

Nevanlinna (1991), Reddy & Trefethen (1990). The crucial idea to use in the proof a relation of

the form (5.2.5) and to bound the integral
∫
Γ
|R′(ζ)| |dζ| in terms of max

Γ
|R(ζ)| was used earlier

by LeVeque & Trefethen (1984).

Corollary 5.2.3 was proved by LeVeque & Trefethen (1984) for the spectral norm. The proof

of Theorem 5.2.2 has been taken from Dorsselaer, Kraaijevanger & Spijker (1993).

The proof of (5.3.1) in Section 5.3.1 is essentially based on ideas taken from Bonsall &

Duncan (1980)(see also Bonsall & Duncan (1971)). Another proof can be given along the lines of

Lubich & Nevanlinna (1991) (Theorem 2.1).

Our proof of Theorem 5.3.2 strongly relies on ideas taken from Crabb (1970).

The value M0 = 2 (for p = 2) in Theorem 5.3.3 has been known already for some time

and was stated e.g. in Reddy & Trefethen (1992). For the inequality of Berger, used in the proof

of Theorem 5.3.3, we refer to Bonsall & Duncan (1980), Horn & Johnson (1990), Pearcy (1966),

Richtmyer & Morton (1967, p.89).

Theorem 5.4.1 follows easily from a clever counterexample presented in Kraaijevanger (1994).

Theorem 5.4.2 and its proof have been taken from Dorsselaer, Kraaijevanger & Spijker

(1993).
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6 Stability estimates under resolvent conditions on hA

6.1 Linear stability analysis and stability regions

Consider an initial value problem for a system of s ordinary differential equations of the form

(6.1.1)

{
U ′(t) = AU(t) + r(t) (t ≥ 0),

U(0) = u0.

Here A is a given constant s× s matrix, and u0, r(t) are given vectors in C
s. The vector U(t) ∈ C

s

is unknown for t > 0.

In this section we analyse the stability of numerical processes for approximating U(t). This

analysis will be relevant also to classes of numerical processes for solving partial differential equa-

tions.

To elucidate this relevance, we assume an initial-boundary value problem to be given for a

linear partial differential equation with variable coefficients (which depend on the space variable x

but not on the time variable t). Applying the method of semi-discretization, where discretization

is applied to the space variable x only, one can arrive at an initial value problem for a large

system of the form (6.1.1). In this case the matrix A, the inhomogeneous term r(t), and the

vector u0 are determined by the original initial-boundary value problem and by the process of

semi-discretization. The solution U(t) to (6.1.1) then provides an approximation to the solution

of the original initial-boundary value problem. For examples we refer to the Sections 1.2, 3.6, 4.2,

where semi-discretization by finite-difference methods is dealt with .

Many step-by-step methods for the numerical solution of ordinary differential equations, like

Runge-Kutta methods or Rosenbrock methods reduce — when applied to (6.1.1) — to processes

of the form

(6.1.2) un = ϕ(hA)un−1 + rn for n = 1, 2, 3, . . . .

Here ϕ(z) = P (z)/Q(z) is a rational function, depending only on the underlying step-by-step

method, and P (z), Q(z) are polynomials, without common zeros, such that ϕ(0) = ϕ′(0) = 1.

Further, h = ∆t > 0 is the stepsize, and ϕ(hA) = P (hA)[Q(hA)]−1 (when Q(hλ) 6= 0 for all

λ ∈ σ[A], cf. Example 3.3.2). The vectors rn ∈ C
s are related to r(t), and un ' U(nh) are

computed successively from (6.1.2). It is worth noting that many numerical processes in partial

differential equations which are not constructed with the process of semi-discretization in mind are

still of the form (6.1.2), and can a posteriori be conceived as relying on semi-discretization.

An example of (6.1.2) is provided by the, fully discrete, numerical process constructed in

Section 4.2 for the solution of (4.2.2). From (4.2.3) we see that this process is of the form (6.1.2)

with

ϕ(z) = (1 + (1 − θ)z) (1 − θz)−1

and the tridiagonal matrix A = (αjk) given by (4.2.4).

Since (6.1.2) is a special case of (4.2.1) the stability analysis of (6.1.2) amounts, as explained

at the end of Section 4.2, to investigating the growth of the matrices Bn specified by

(6.1.3) B = ϕ(hA).

In this analysis it is useful to introduce the stability region S, defined by

(6.1.4) S = {z : z ∈ C with Q(z) 6= 0 and |ϕ(z)| ≤ 1}.
The following theorem is a variant to Theorem 4.3.1. It is easier to apply than the latter,

since it gives a stability criterion in terms of ϕ(z) and hA rather than in terms of the (more

complicated) matrix B itself.
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Theorem 6.1.1 (The eigenvalue criterion) Let || · || be an arbitrary induced norm on C
s,s, and

B = ϕ(hA). Then there is an M0 such that (5.1.1) holds, if and only if

(6.1.5)





all eigenvalues of hA belong to S; and whenever Jk is a Jordan block

(with order sk > 1) of hA corresponding to an eigenvalue hλk ∈ ∂S,

then the derivatives ϕ(j)(hλk) vanish for j = 1, 2, . . . , sk − 1.

Proof. Applying Theorem 3.3.6 (with f, A replaced by ϕ, hA) we see that

Bn = ϕ(hA)n =
r∑

k=1

(Tk)n,

where

Tk = ϕ(hλk)Pk +Qk, Qk =

sk−1∑

j=1

ϕ(j)(hλk)

j!
(Rk)j , λk ∈ σ[A], sk ≥ 1.

There is an M0 with (5.1.1) if and only if, for each k, the powers (Tk)n remain bounded for n→ ∞.

Let k be given. From the above expressions for Tk, Qk we see that

(Tk)n = [ϕ(hλk)Pk +Qk]n =

mk∑

p=0

(
n

p

)
ϕ(hλk)n−p Qp

k Pk,

where mk = min(n, sk − 1). Moreover,

Qk = O if and only if ϕ(j)(hλk) = 0 for 1 ≤ j ≤ sk − 1.

The proof of the theorem is completed by noting that the following four implications are

valid.

(i) |ϕ(hλk)| < 1 ⇒ (Tk)n remains bounded for n→ ∞;

(ii) |ϕ(hλk)| = 1 and Qk = O ⇒ (Tk)n remains bounded for n→ ∞;

(iii) |ϕ(hλk)| = 1 and Qk 6= O ⇒ (Tk)n does not stay bounded for n→ ∞;

(iv) |ϕ(hλk)| > 1 ⇒ (Tk)n does not stay bounded for n→ ∞.

Many functions ϕ(z) of practical interest have non-vanishing derivatives ϕ′(z) on the whole

of ∂S. In this case (6.1.5) simply reduces to σ[hA] ⊂ S and the condition that the Jordan blocks

Jk of hA have order 1 whenever they correspond to an eigenvalue hλk ∈ ∂S.

Clearly, condition (6.1.5) always implies that

(6.1.6) σ[hA] ⊂ S.

Moreover, from Theorem 3.1.4 we see that (6.1.6) is equivalent to (6.1.5) if the matrix A is normal.

The analogue of Theorem 4.3.2, in the situation where B = ϕ(hA), is as follows.

Theorem 6.1.2 (The eigenvalue criterion for normal matrices) Let ‖·‖ denote the spectral norm,

and assume B = ϕ(hA) where A is normal. Then the following three statements are equivalent to

each other.

(i) There is an M0 such that (5.1.1) holds.

(ii) ‖Bn‖ ≤ 1 for n = 1, 2, 3, . . ..

(iii) σ[hA] ⊂ S.
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Proof. Suppose (5.1.1) holds for some constant M0. Then, in view of Theorem 6.1.1, condition

(6.1.6) is fulfilled.

Suppose (6.1.6) holds. By Theorem 3.1.4, all Jordan blocks of hA have an order 1, and

Theorem 3.3.6 thus yields the representation

B = ϕ(hA) =

r∑

k=1

ϕ(hλk)Pk = T diag [ϕ(hλ1), ϕ(hλ2), . . . , ϕ(hλs)]T
−1.

Consequently ‖Bn‖ ≤ ‖T‖ · ‖T−1|| = 1 as in the proof of Theorem 4.3.2.

In general (6.1.5) has similar advantages and disadvantages as the eigenvalue condition

(4.3.1). It is relatively simple to verify, and reliable in the situation of normal matrices, for which

it reduces to (6.1.6). But, it is unreliable for (families of) matrices that are not normal.

In the rest of this chapter we adapt (6.1.5) to conditions on hA that reliably predict

stability—also for nonnormal matrices and norms || · || on C
s,s different from the spectral norm.

An advantage of these conditions on hA over a resolvent condition on B = ϕ(hA) (as dealt with in

Chapter 5) lies in the circumstance that, in general, hA has simpler a structure than B, and that

knowledge available about S can be exploited.

The conditions on hA we shall deal with, are all of the following general form,

(zI − hA) is regular and ‖(zI − hA)−1‖ ≤ K · d(z, V )−1(6.1.7)

for all complex numbers z ∈ C \ V.

Here K is a constant, V a closed subset of C, ‖ · ‖ denotes an arbitrary induced norm on C
s,s, and

d(z, V ) is the distance from z to V .

In case V is bounded, we easily see from (6.1.7), by letting z → ∞, that

(6.1.8a) K ≥ 1.

In the following we shall always assume that this inequality is fulfilled.

We further note that if

(6.1.8b) V is a closed subset of S,

condition (6.1.7) implies (6.1.5). We shall focus on the situation where (6.1.8b) is fulfilled.

In the following sections, condition (6.1.7) will be seen to imply stability estimates of the

form

(6.1.9) ‖ϕ(hA)n‖ ≤ K · Φ(n, s) for n = 1, 2, 3, . . . ,

where the function Φ only depends on ϕ and V (and not on h,A,K or ‖ · ‖).

6.2 Stability estimates which grow linearly with n and s

6.2.1. Arbitrary subsets V of the stability region

The following general theorem is valid.

Theorem 6.2.1 There is a constant γ such that the stability estimate (6.1.9) holds, with

Φ(n, s) = γ · min{n, s},

whenever K, V satisfy (6.1.8) and hA ∈ C
s,s satisfies condition (6.1.7). Here γ only depends on

the rational function ϕ(z) (and not on V, n ≥ 1, s ≥ 1, hA ∈ C
s,s, ‖ · ‖ or K).
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This theorem will be proved below for the special case where

(6.2.1a) ϕ′(z) 6= 0 on ∂S,

and

(6.2.1b) S is bounded.

The proof will consist of two steps. First, it will be shown that B, given by (6.1.3), satisfies a

resolvent condition (5.1.2) (with the same norm ‖ · ‖ as appearing in (6.1.7), (6.1.9)). A subsequent

application of Theorem 5.2.1 (part (b)) will lead to (6.1.9) with Φ(n, s) as specified in Theorem

6.2.1.

In proving that B satisfies (5.1.2) we shall make use of two lemmas, the first of which reads

as follows.

Lemma 6.2.2 Let ρ > 1, M > 0, B ∈ C
s,s and ‖ · ‖ an induced norm on C

s,s. Assume

(6.2.2a) (ζI −B) is regular for all ζ with |ζ| > 1, and

(6.2.2b) ‖(ζI −B)−1‖ ≤M · (|ζ| − 1)−1 for all ζ with 1 < |ζ| < ρ.

Then (5.1.2) is satisfied with

M1 =

√
ρ+ 1

√
ρ− 1

·M.

Proof. For any ζ with |ζ| ≥ ρ we can write (ζI −B)−1 as a Dunford-Taylor integral,

(ζI −B)−1 =
1

2πi

∫

Γ

f(z)(zI −B)−1dz,

where f(z) = (ζ−z)−1 and Γ is any positively oriented circle Γ[0, σ] with 1 < σ < ρ. Consequently,

for such ζ, we obtain

‖(ζI −B)−1‖ ≤ (2π)−1

∫

Γ

|ζ − z|−1 ·M · (|z| − 1)−1|dz| ≤ M · σ
(|ζ| − σ)(σ − 1)

.

Choosing σ =
√
ρ we obtain, for |ζ| ≥ ρ,

(|ζ| − 1) ‖(ζI −B)−1‖ ≤ M · σ
σ − 1

(
1 +

σ − 1

|ζ| − σ

)
≤ σ + 1

σ − 1
·M.

Since M1 ≥M the proof is complete.

For α > 0, β > 0 we shall use, in the following, the notations

Dα = {ζ : ζ ∈ C with 1 < |ζ| ≤ 1 + α},
Sβ = {z : z ∈ C with 0 < d(z, S) ≤ β}.

For given ζ ∈ C we shall deal with the rational function

(6.2.3a) ψζ(z) = [ζ − ϕ(z)]−1.
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It is easily verified that the order of ψζ(z) does not exceed the order, say r, of ϕ(z). Therefore the

number of different poles of ψζ(z), denoted by q(ζ), satisfies

(6.2.3b) q(ζ) ≤ r.

We denote the poles of ψζ(z), and their corresponding orders, by

(6.2.3c) zj(ζ) and kj(ζ) ( for j = 1, 2, . . . , q(ζ)),

respectively. Finally, we use the notation

(6.2.3d) ϕ(∞) = lim
z→∞

ϕ(z).

Our second lemma only concerns ϕ(z) (and not the matrix B given by (6.1.3)):

Lemma 6.2.3 Let ϕ(z) satisfy (6.2.1a,b). Then there are positive α, β with the following proper-

ties.

(i) |ϕ(∞)| > 1 + α;

(ii) ϕ(z) is regular, and ϕ′(z) 6= 0 at all z ∈ Sβ ;

(iii) if ζ ∈ Dα, then zj(ζ) ∈ Sβ (for j = 1, 2, . . . , q(ζ));

(iv) if ζ ∈ Dα, then ψζ(z) = [ζ − ϕ(∞)]−1 −
q(ζ)∑
j=1

[
ϕ′(zj(ζ))

]−1(
z − zj(ζ)

)−1
;

(v) if ζ ∈ Dα, then |ζ| − 1 ≤ µ1 · d(zj(ζ), S) (for j = 1, 2, · · · , q(ζ)),
with µ1 = max{|ϕ′(z)| : z ∈ cl (Sβ)} <∞.

Proof. 1. Since S is bounded, ϕ(∞) satisfies 1 ≤ |ϕ(∞)| ≤ ∞. In case |ϕ(∞)| > 1, it is clear that

(i) holds for all α > 0 sufficiently small.

Suppose ϕ(∞) = η with |η| = 1. Then we can write

P (z) = αrz
r + · · · + α1z + α0, Q(z) = βrz

r + · · · + β1z + β0,

where αr = η ·βr 6= 0. Therefore, for w ∈ C with |w| > 0 sufficiently small, we have a representation

for ϕ(1/w) of the form

ϕ(1/w) = η · f(w) with f(w) =
1 + γ1w + · · · + γrw

r

1 + δ1w + · · · + δrwr
.

Since

f(w) = 1 + ε1 · wk + O(w2) ( for w → 0),

with ε1 6= 0, k ≥ 1, it follows that there exist w, arbitrarily close to 0, with |f(w)| < 1. This means

that ϕ(1/w) assumes values with modulus less than 1 for w arbitrarily close to 0. This contradicts

(6.2.1b).

We conclude that (i) holds for all α > 0 that are sufficiently small.

2. Denote the set of all poles of ϕ(z) and zeros of ϕ′(z) by T . By (6.1.4), (6.2.1a) the sets

∂S and T have no points in common. Since ∂S is closed and T finite, there exists a β > 0 such

that all points in T have a distance to ∂S greater than β.

Let z ∈ Sβ. Since d(z, ∂S) = d(z, S) it follows that 0 < d(z, ∂S) ≤ β. Consequently z does

not belong to T . Part (ii) has been proved.

3. We define

σ = inf {|ϕ(z)| : z ∈ C with d(z, S) > β}.
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First we assume σ > 1. We choose α satisfying (i) with 0 < α < σ− 1. Let ζ be given, with

ζ ∈ Dα. We then have 1 < |ζ| < σ. The definition of σ and (6.1.4) imply that all z with ϕ(z) = ζ

must belong to Sβ . Hence zj(ζ) ∈ Sβ for j = 1, 2, . . . , q.

Next we assume σ ≤ 1, which will be shown to lead to a contradiction. The definition of σ

implies that there is a sequence of complex numbers y1, y2, y3, . . . with

d(yk, S) > β and |ϕ(yk)| ≤ 1 + 1/k ( for k = 1, 2, 3, . . .).

From (i) we see that positive numbers ρ and ε exist such that |ϕ(z)| ≥ 1 + ε for all complex

z not belonging to the disk D[0, ρ]. Hence

yk ∈ D[0, ρ] for all k that are sufficiently large .

Since D[0, ρ] is compact, there is a convergent subsequence of {yk}, say {yk(j)} with limit y∞.

Since d(yk(j), S) > β, we have d(y∞, S) ≥ β. But, since ϕ(yk(j)) tends to ϕ(y∞) (for

j → ∞), we also have |ϕ(y∞)| ≤ 1. The last inequality means that d(y∞, S) = 0, and we have a

contradiction.

4. Let ζ ∈ Dα. In view of (ii), (iii) we see that at all poles zj(ζ) we have ϕ(zj(ζ)) 6= ∞ and

ϕ′(zj(ζ)) 6= 0. From (6.2.3a) it follows that the principal part of ψζ(z) at zj(ζ) equals

−
[
ϕ′(zj(ζ)

]−1(
z − zj(ζ)

)−1

Subtracting from ψζ(z) all its principal parts we obtain a function that we denote by ωζ(z).

In view of Theorem 2.1.1 the function ωζ(z) is a polynomial in the variable z. Since ψζ(z) tends

to [ζ − ϕ(∞)]−1 when z → ∞, we can conclude that

lim
z→∞

ωζ(z) =
[
ζ − ϕ(∞)

]−1
.

Clearly, ωζ(z) is a polynomial of degree zero, and (iv) thus holds.

5. Let ζ ∈ Dα and y ∈ ∂S. We have

|ζ| − 1 ≤ |ϕ(zj(ζ))| − |ϕ(y)| ≤ |ϕ(zj(ζ)) − ϕ(y)|.

Denote the straight line segment connecting zj(ζ) to y ∈ ∂S with |zj(ζ) − y| = d(zj(ζ), S) by L.

Since L is contained in cl (Sβ) we have

|ϕ(zj(ζ)) − ϕ(y)| ≤ µ1 · |zj(ζ) − y| = µ1 · d(zj(ζ), S),

with µ1 as in statement (v). This completes the proof of the lemma.

We now complete the proof of Theorem 6.2.1, making use of the Lemmas 6.2.2 and 6.2.3.

Proof of Theorem 6.2.1 for the case (6.2.1a,b). Assume (6.2.1), (6.1.7), (6.1.8). The matrix

B = ϕ(hA) exists (in the sense of Example 3.3.2) since σ[hA] ⊂ V ⊂ S and the denominator Q(z)

of ϕ(z) does not vanish on S. Moreover (ζI −B) is regular for all ζ with |ζ| > 1. This follows from

the fact that σ[B] = ϕ(σ[hA]) ⊂ {ζ : |ζ| ≤ 1} (by Theorem 3.3.1 (d) and (6.1.4)).

Choose α, β according to Lemma 6.2.3. Let ζ ∈ Dα. In view of Lemma 6.2.3 (iv) and

Example 3.3.2 we have

(
ζI −B

)−1
=

[
ζ − ϕ(∞)

]−1
I −

q(ζ)∑

j=1

[
ϕ′(zj(ζ))

]−1(
hA− zj(ζ)I

)−1
.
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By taking norms we obtain

∥∥(
ζI −B

)−1∥∥ ≤ α

|ϕ(∞)| − (1 + α)
·
(
|ζ| − 1

)−1
+

1

µ0

q(ζ)∑

j=1

∥∥(
zj(ζ)I − hA

)−1∥∥

where

µ0 = min {|ϕ′(z)| : z ∈ cl (Sβ)}

is positive by Lemma 6.2.3 (ii) and (6.2.1a).

The assumptions (6.1.7), (6.1.8b), in combination with Lemma 6.2.3 (v), yield

∥∥(
zj(ζ)I − hA

)−1∥∥ ≤ K · d
(
zj(ζ), V

)−1 ≤ K · d
(
zj(ζ), S

)−1 ≤ Kµ1 ·
(
|ζ| − 1

)−1
.

In view of (6.2.3b) we thus obtain

∥∥(
ζI −B

)−1∥∥ ≤ M ·
(
|ζ| − 1

)−1
,

with

M =
α

|ϕ(∞)| − (1 + α)
+ rK · µ1

µ0
.

Clearly, the assumptions of Lemma 6.2.2 are fulfilled with ρ = 1 +α. Therefore, our matrix

B satisfies (5.1.2) with

M1 =

√
1 + α + 1√
1 + α − 1

[
( |ϕ(∞)| − 1 − α )−1α + rµ1µ

−1
0 ·K

]
.

In view of (6.1.8a), the matrix B satisfies (5.1.2) with

M1 = γ1 ·K,

where γ1 only depends on the rational function ϕ(z).

An application of Theorem 5.2.1 (b) yields

‖Bn‖ ≤ (1 + 1/n)n min{n+ 1, s}γ1K ≤ 2eγ1 ·K · min{n, s}.

Theorem 6.2.1 has thus been proved, under the assumption (6.2.1a,b), with γ = 2eγ1.

6.2.2 An example in which V is a disk and S is bounded

Let ‖ · ‖ denote an arbitrary induced norm on C
s,s, and suppose A ∈ C

s,s satisfies the circle

condition

(6.2.4) ‖A− γI‖ ≤ ρ.

In applications of Theorem 6.2.1 the following lemma will be helpful.

Lemma 6.2.4 Assume (6.2.4). Then, for any h > 0, the matrix hA satisfies the resolvent condition

(6.1.7) with

V = D[hγ, hρ] and K = 1.
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Proof. From (6.2.4) it follows that

‖hA− hγI‖ ≤ hρ.

Denoting the 1-numerical range of hA by τ [hA] (see Definition 3.5.1) we thus have

τ [hA] ⊂ D[hγ, hρ].

An application of Theorem 3.5.3 (with hA replacing A, and withM = 1, W = D[hγ, hρ]) completes

the proof.

We shall illustrate Theorem 6.2.1 in the numerical solution of the diffusion-convection-

reaction problem (4.2.2). We define the tridiagonal s × s matrix A by (4.2.4). With regard to

the coefficients a(x), b(x), c(x) we make the assumption (3.6.1).

In Section 3.6 we showed that the matrix A satisfies a circle condition (6.2.4) with ‖·‖ = ‖·‖∞

and

γ = −α
2
, ρ =

α

2
, α = 4δ−2|a|∞ + 2δ−1|b|∞ + |c|∞.

By virtue of Lemma 6.2.4 the matrix hA satisfies the condition (6.1.7) with

‖ · ‖ = ‖ · ‖∞, K = 1 and(6.2.5)

V = D[−r0, r0], where r0 =
2h

δ2
|a|∞ +

h

δ
|b|∞ +

h

2
|c|∞.

We consider the, fully discrete, process of Section 4.2 with a matrix B given by (4.2.3),

(4.2.4). This amounts to (6.1.2) with ϕ(z) = (1 + (1 − θ)z) (1 − θz)−1. We consider a fixed θ with

0 ≤ θ < 1
2 . The corresponding stability region S = Sθ is given by the formula

Sθ = D[−r, r] with r =
1

1 − 2θ
for 0 ≤ θ < 1/2.

Clearly, all of the assumptions of Theorem 6.2.1 will be fulfilled as soon as r0 ≤ r, i.e.

(6.2.6)
2h

δ2
|a|∞ +

h

δ
|b|∞ +

h

2
|c|∞ ≤ 1

1 − 2θ
.

Under this condition we thus have stability, (6.1.8) with Φ as in Theorem 6.2.1.

As a numerical illustration we consider problem (4.2.2) with

a(x) ≡ 1, b(x) ≡ −103, c(z) ≡ 0,

and the corresponding numerical process with

θ =
1

4
, δ =

1

s
=

1

20
.

In this situation the sufficient condition for stability (6.2.6) amounts to the stepsize restriction

h ≤ h0 =
1

10 400
' 9.62 × 10−5.

Computer experiments show that with a stepsize h = 9 × 10−5 one has

‖ϕ(hA)n‖ ≤ 2.4 for n = 0, 1, 2, . . . .
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The last inequality expresses a stable behaviour, which is amply in agreement with Theorem 6.2.1.

It is instructive to compare the above stepsize restriction based on Theorem 6.2.1 with a

naive use of the eigenvalue condition as formulated in Theorem 6.1.1. In fact, for a(x), b(x), c(x)

and δ as specified above all eigenvalues λ of A can be shown to be different from each other and to

satisfy

−26 514 < λ < 0.

For θ = 1/4 we have S = D[−2, 2], so that the eigenvalue condition (6.1.5) is satisfied for all h > 0

with

h ≤ h1 =
4

26 514
' 15.1 × 10−5.

Computer experiments show that with a stepsize h = 15 × 10−5 one has

max
n≥0

‖ϕ(hA)n‖ ' 2.7 × 1012.

Hence from a practical point of view there is mere instability with this h, although h < h1 and

(6.1.5) is fulfilled.

6.2.3 An example in which V = C− ⊂ S

In the example of Section 6.2.2 we have seen that, in the situation (6.2.5), condition (6.1.8b) boils

down to a stepsize restriction of the form h ≤ h0, with finite h0. This is related to the fact that

the stability region S, dealt with in the example of Section 6.2.2, is bounded. In cases where S is

unbounded it may be possible to establish stability estimates which are valid for all h > 0.

In order to illustrate this point, we consider the tridiagonal matrix A given by (4.2.4) and

assume (3.6.1) to be fulfilled. In Section 6.2.2 we have seen that hA satisfies the resolvent condition

(6.1.7) with the specifications (6.2.5). Since D[−r0, r0] ⊂ C− it follows that hA also satisfies

condition (6.1.7) with

‖ · ‖ = ‖ · ‖∞, K = 1 and V = C− .

We again consider the fully discrete process of Section 4.2 with B specified by (4.2.3), (4.2.4).

But, now we consider a fixed θ with 1
2 ≤ θ ≤ 1. This amounts to (6.1.2) with a rational function

ϕ(z) the stability region S of which satisfies

C− ⊂ S.

An application of Theorem 6.2.1 shows that the process of Section 4.2, with 1
2 ≤ θ ≤ 1, is

stable in the sense that

||Bn||∞ ≤ γ · min {n, s} for all n ≥ 1, s ≥ 1.

Here γ only depends on θ, and the result is valid for any h > 0.

6.3 Stability estimates which grow slower than linearly with n

Under conditions on V which are (slightly) stronger than (6.1.8b) variants to Theorem 6.2.1 exist

in which

Φ(n, s) = γ · min {nα, s}
with α < 1. Below we formulate such a variant with α = 0.

We consider the situation where

0 ≤ θ < θ′ < π/2,(6.3.1a)

W (θ′) ⊂ S,(6.3.1b)

V = W (θ).(6.3.1c)

The following interesting theorem is valid.
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Theorem 6.3.1 Assume (6.3.1). Then there is a constant γ such that (6.1.7) implies (6.1.9) with

Φ(n, s) ≡ γ. Here γ only depends on ϕ(z) and V (i.e. on θ).

6.4 Resolvent conditions and the M-numerical range of hA

6.4.1 The construction of a set V as in the resolvent condition (6.1.7)

by using M-numerical ranges

Let || · || be an arbitrary induced norm on C
s,s, and K ≥ 1. Suppose A ∈ C

s,s, h > 0 and

W = τ [hA,K]

(cf. Section 3.5). From Theorem 3.5.3 we see that

{
zI − hA is regular and ‖(zI − hA)−1‖ ≤ K · [d(z,W )]−1

for all z 6∈W.

Therefore, we can make the following two observations.

(I) If V is any set with

τ [hA,K] ⊂ V ⊂ C,

then hA satisfies the resolvent condition (6.1.7).

(II) In order to construct a set V as in observation (I) we only have to determine a finite number

of pairs γj , ρj such that

‖(hA − γjI)
k‖ ≤ K(ρj)

k for k = 1, 2, 3, . . . .

In view of Definition 3.5.1 the set

V =
⋂

j

D[γj , ρj ]

is as required.

6.4.2 An illustration in the numerical solution of the pure diffusion equation

We consider an initial value problem of the form (6.1.1) originating from a semi-discretization of

the pure diffusion problem(1.1.4). We assume the semi-discretization to be based on the finite

difference formula (1.2.2a). The s × s matrix A = (αjk) in (6.1.1) thus equals the tridiagonal

matrix A displayed in Subsection 1.2.3, i.e.

(6.4.1)

{
αjj = −2/δ2, αjk = 1/δ2 for |j − k| = 1, αjk = 0 for |j − k| > 1,

and δ = (s+ 1)−1.

Without proof we state the following result on the matrix A.

Lemma 6.4.1 Let α be given with 0 < α < π/2. Then there exist constants K = Kα ≥ 1 and

R = Rα > 0 such that, for all s ≥ 1, the s× s matrix A = (αjk) given by (6.4.1) satisfies

∥∥(
I + ei(

π
2 −α)R−1δ2A

)k∥∥
∞

≤ K for k = 1, 2, 3, . . . .
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From this lemma we easily see that, for k = 1, 2, 3, . . . ,

∥∥(
hA− γ1I

)k∥∥
∞

≤ Kα(ρ1)
k with γ1 = − h

δ2
Rαei(α−

π
2 ), ρ1 = |γ1|,

and
∥∥(
hA− γ2I

)k∥∥
∞

≤ Kα(ρ2)
k with γ2 = (γ1)

∗, ρ2 = |γ2|.

In view of the above observations (I), (II) we deduce that, for 0 < α < π/2, the matrix hA

satisfies (6.1.7) with

K = Kα and V = Vα = D[γ1, ρ1]
⋂

D[γ2, ρ2].

We note that the set Vα satisfies

Vα ⊂ W (α).

This inclusion implies the important fact that for any α ∈ (0, π/2) there is a constant K = Kα

such that the matrix given by (6.4.1) satisfies (6.1.7) with V = W (α). Here Kα is independent of

s ≥ 1 and h > 0. Combining this fact with Theorem 6.3.1 we arrive at the following theorem.

Theorem 6.4.2 Let ϕ(z) be such that, for some β ∈ (0, π/2), the wedge W (β) is contained in the

stability region S. Let the s× s matrix A = (αjk) be defined by (6.4.1). Then there is a constant

γ such that ‖ϕ(hA)n‖∞ ≤ γ. Here γ only depends on ϕ(z) (and not on n ≥ 1, s ≥ 1 or h > 0).

6.4.3 An illustration in the numerical solution of a diffusion-convection-

reaction problem

In the following we illustrate the relevance of observation (I) of Subsection 6.4.1 with K = 1 and

‖ · ‖ = ‖ · ‖∞.

We consider the initial-boundary value problem

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) − 200

∂

∂x
u(x, t) − 137 000 · x · u(x, t),(6.4.2)

u(0, t) = g0(t), u(1, t) = g1(t), u(x, 0) = f(x), where 0 ≤ x ≤ 1 and t ≥ 0.

Here g0(t), g1(t), f(x) are given functions, and u(x, t) is unknown. We apply the method of

semi-discretization using the finite difference formulas (1.2.1c), (1.2.2a). In this way (6.4.2) is

transformed into a system of ordinary differential equations of the form (6.1.1) with a tridiagonal

s× s matrix A = (αjk) for which

(6.4.3)





αj,j−1 = δ−2 + 100 δ−1 for 2 ≤ j ≤ s,

αj,j = −2δ−2 − 137 000 · j · δ for 1 ≤ j ≤ s,

αj,j+1 = δ−2 − 100 δ−1 for 1 ≤ j ≤ s− 1,

with δ = (s+ 1)−1.

With this matrix A we first consider the numerical process (6.1.2) where

ϕ(z) = 1 + z + 0.5 z2 + 0.0625 z3.

The stability region S corresponding to this function ϕ(z) contains the real interval [−6, 0].
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Let s = 99, so that δ = 10−2. Now all eigenvalues λ of A are different from each other, and

real with −157 000 < λ < −20 000. Therefore the eigenvalue condition (6.1.5) is fulfilled whenever

the stepsize h > 0 satisfies

h ≤ 6

157 000
' 3.82 × 10−5.

We choose h = 3.4× 10−5 so that (6.1.5) is amply fulfilled. But, straightforward numerical experi-

ments show that

(6.4.4) max
n≥1

‖ϕ(hA)n‖∞ > 3 × 1011 ( for s = 99, h = 3.4 × 10−5).

This inequality once more illustrates the fact that Theorem 6.1.1 can be an unreliable guide to

stability.

Next we consider, with the same matrix A, the numerical process (6.1.2) where

ϕ(z) = 1 + z + 0.5 z2 + 0.0645 z3.

For σ ≥ 0, ρ ≥ 0 we introduce the subset V (σ, ρ) of the complex plane defined by

V (σ, ρ) = {z : z = x+ y with x ∈ R, y ∈ C, −σ − ρ ≤ x ≤ −ρ, |y| ≤ ρ}.
With σ0 = 4.67 and ρ0 = 0.68 the set V (σ0, ρ0) is contained in the stability region of ϕ(z), i.e.

V (σ0, ρ0) ⊂ S.

Using Theorem 3.5.4 we easily see from the expressions (6.4.3) that, for any δ > 0 with

δ ≤ 10−2, the 1-numerical range of A satisfies

τ∞[A, 1] ⊂ V (137 000 , 2δ−2).

In view of Theorem 3.5.2 (part (iii)) we thus arrive at

τ∞[hA, 1] ⊂ V (137 000 h , 2hδ−2).

so that observation (I) of Subsection 6.4.1 applies to the situation at hand.

By virtue of Theorem 6.2.1 we can conclude that

‖ϕ(hA)n‖ ≤ γ · min{n, s} for all n ≥ 1, s ≥ 99 and h with(6.4.5)

0 < h ≤ min
{ σ0

137 000
,
δ2

2
· ρ0

}
.

Here γ is a constant independent of n, s, h.

Let s = 99. Since now δ = 10−2 and therefore

min
{ σ0

137 000
,
δ2

2
· ρ0

}
= 3.4 × 10−5,

the stepsize restriction in (6.4.5) is fulfilled when

h = 3.4 × 10−5.

With this stepsize we thus expect a mild error propagation in accordance with the stability estimate

in (6.4.5). Straightforward numerical experiments show that actually

(6.4.6) ‖ϕ(hA)n‖∞ ≤ 3/2 ( for all n ≥ 1, s = 99, h = 3.4 × 10−5)

which is in agreement with (6.4.5).

The striking difference between (6.4.4) and (6.4.6) is closely related to the fact that the

stability region S corresponding to (6.4.4) does not enclose the set τ∞[hA, 1]. In fact, this S is so

‘small’ that it does not contain any complex number z with Re(z) = −4 and Im(z) 6= 0.
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6.5 Resolvent conditions and the ε-pseudospectra of hA

In the above we have seen that the resolvent condition (6.1.7) is a handy tool for deriving stability

estimates of the general form (6.1.9). Further, we have seen that circle conditions and M -numerical

ranges can provide sufficient conditions in order that (6.1.7) is fulfilled. But up to now an easy

interpretation of (6.1.7) has been missing.

We formulate a theorem which shows that (6.1.7) can nicely be interpreted in terms of the

ε-pseudospectra of the matrix hA.

Theorem 6.5.1 Let V be a closed subset of C. Then the resolvent condition (6.1.7) is equivalent

to the requirement that, for each ε > 0, the set σε[hA] is contained in

{z : z ∈ C with d(z, V ) ≤ K · ε} = {z : z = x+ y with x ∈ V, |y| ≤ Kε}.

This theorem can be proved in a straightforward way by using the fact that, according to

Theorem 3.2.3, the statements (i) and (v) of Section 3.2 (with B = hA) are equivalent.

We note that the concept of ε-pseudospectra can also be used, in principle, to determine

numerically regions V and constants K such that (6.1.7) holds. In order to explain how this may

be done we write B = hA, choose a fixed ε > 0 and denote the boundary of σε[B] by Γε. The set

(6.5.1) V = σε[B]

can be determined numerically, e.g. by checking for a large set of complex numbers λ whether (v)

(Section 3.2) is satisfied. A corresponding constant K can be computed from the formula

(6.5.2) K = |Γε| (2πε)−1,

where |Γε| denotes the length of Γε.

In order to establish (6.5.2) we note that for z 6∈ V we have

(zI −B)−1 =
1

2πi

∫

Γε

(z − λ)−1(λI −B)−1dλ

and therefore
∥∥(zI −B

)−1∥∥ ≤ |Γε|
2π

max
λ∈Γε

|(z − λ)−1|ε−1 = K d (z, V )−1.

It is clear that both V and K depend on ε. Therefore, it may pay to evaluate (6.5.1) and

(6.5.2) for various values of ε > 0.

6.6 Notes and remarks

We note that problems of the form (6.1.1) can originate form partial differential equations in cases

where the process of semi-discretization does not rely on the introduction of finite differences, but

instead on e.g. finite volumes, finite elements or (pseudo) spectral approximations (cf. Section 1.3).

Step-by-step methods for the numerical solution of initial value problems in ordinary dif-

ferential equations are discussed e.g. in Butcher (1987), Hairer & Wanner (1996). Runge-Kutta

methods as well as Rosenbrock methods are discussed extensively in these works.

Condition (6.1.5) was stated earlier in Dorsselaer, Kraaijevanger & Spijker (1993).
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The proof of Theorem 6.2.1 for the special case (6.2.1), as presented in Section 6.2.1, is

essentially due to Reddy & Trefethen (1992). The value for M1, given in Lemma 6.2.2, has been

taken from Spijker (1996).

Lubich & Nevanlinna (1991) were the first to prove a version of Theorem 6.2.1 in which

condition (6.2.1b) is not required; they proved (6.1.9) with Φ(n, s) = γ · min {n, s} for the case

where (6.1.7) holds with V = C− ⊂ S. A proof of Theorem 6.2.1, for the general case, can be

found in Spijker & Straetemans (1996b).

The (numerical) example in Section 6.2.2, with ϕ(z) = (1 + (1 − θ)z) (1 − θz)−1, θ = 1/4,

has been taken from Kraaijevanger, Lenferink & Spijker (1987).

Interesting stability estimates were derived, independently of each other, by Palencia (1993,

1995) and Crouzeix, Larsson, Piskarev & Thomée (1993). These estimates, adapted to fit in

our terminology, yield Theorem 6.3.1. For further variants to Theorem 6.2.1 with Φ(n, s) =

γ · min {nα, s}, 0 ≤ α < 1, we refer to Spijker & Straetemans (1996b).

Part of the material in the Sections 6.4.1, 6.4.2 has been taken from Lenferink & Spijker

(1990), Spijker (1993). The proof of Lemma 6.4.1, as given in the first of these two references,

relies on stability estimates of Thomée (1965). The example in Section 6.4.3 is due to Lenferink &

Spijker (1991b).

Material, closely related to Section 6.5, can be found in Dorsselaer, Kraaijevanger & Spijker

(1993). Theorem 6.5.1 was formulated earlier in Reddy & Trefethen (1990, 1992).
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