Computing Brauer–Manin obstructions on diagonal quartic surfaces

Martin Bright

University of Bristol

Arithmetic of K3 surfaces, Banff, 2008
Outline

1 Introduction
 - The Hasse principle
 - The Brauer group
 - The Brauer–Manin obstruction

2 Computing the Brauer–Manin obstruction
 - Computing the algebraic Brauer group
 - Finding the Azumaya algebras
 - Magma demo

3 Theoretical results on the evaluation map
 - Smooth models
 - Unramified places
 - Tamely ramified places
Outline

1 Introduction
 - The Hasse principle
 - The Brauer group
 - The Brauer–Manin obstruction

2 Computing the Brauer–Manin obstruction
 - Computing the algebraic Brauer group
 - Finding the Azumaya algebras
 - Magma demo

3 Theoretical results on the evaluation map
 - Smooth models
 - Unramified places
 - Tamely ramified places
The Hasse principle

Let X be a variety over a number field k. Write \mathbb{A}_k for the ring of adèles of k. The set of adelic points of X is $X(\mathbb{A}_k)$; the set of rational points $X(k)$ is contained in it, under the diagonal embedding. If X is a complete variety, then

$$X(\mathbb{A}_k) = \prod_v X(k_v)$$

where the product is over all places v of k.

Some classes of varieties satisfy the Hasse principle: that is, $X(\mathbb{A}_k) \neq \emptyset \Rightarrow X(k) \neq \emptyset$. In this case, it is straightforward to decide whether X has rational points, since the condition on the left is a finite computation.
The Hasse principle

Let X be a variety over a number field k. Write \mathbb{A}_k for the ring of adèles of k. The set of adelic points of X is $X(\mathbb{A}_k)$; the set of rational points $X(k)$ is contained in it, under the diagonal embedding. If X is a complete variety, then

$$X(\mathbb{A}_k) = \prod_v X(k_v)$$

where the product is over all places v of k.

Some classes of varieties satisfy the Hasse principle: that is,

$$X(\mathbb{A}_k) \neq \emptyset \Rightarrow X(k) \neq \emptyset.$$

In this case, it is straightforward to decide whether X has rational points, since the condition on the left is a finite computation.
Failure of the Hasse principle

- Unfortunately, many interesting classes of varieties do not satisfy the Hasse principle. In particular, K3 surfaces do not.

For example, the diagonal quartic surface

\[X_4^0 + X_4^1 = 6X_4^2 + 12X_4^3 \]

has points in every completion of \(\mathbb{Q} \), but no rational points.

Manin showed that one can use the Brauer group of \(X \) to define a subset of \(X(\mathbb{A}_k) \) which must contain \(X(k) \). If this set is empty, we say that there is a Brauer–Manin obstruction to the Hasse principle for \(X \). This accounted for all counterexamples to the Hasse principle known then.
Failure of the Hasse principle

- Unfortunately, many interesting classes of varieties do not satisfy the Hasse principle. In particular, K3 surfaces do not.
- For example, the diagonal quartic surface

\[X_0^4 + X_1^4 = 6X_2^4 + 12X_3^4 \]

has points in every completion of \(\mathbb{Q} \), but no rational points.
Failure of the Hasse principle

- Unfortunately, many interesting classes of varieties do not satisfy the Hasse principle. In particular, K3 surfaces do not.
- For example, the diagonal quartic surface

\[X_0^4 + X_1^4 = 6X_2^4 + 12X_3^4 \]

has points in every completion of \(\mathbb{Q} \), but no rational points.
- Manin showed that one can use the Brauer group of \(X \) to define a subset of \(X(\mathbb{A}_k) \) which must contain \(X(k) \). If this set is empty, we say that there is a Brauer–Manin obstruction to the Hasse principle for \(X \). This accounted for all counterexamples to the Hasse principle known then.
Every field K has a Brauer group $\text{Br}(K)$, the group of equivalence classes of central simple algebras over K. In particular, this is true of the function field $k(X)$.
Every field K has a Brauer group $Br(K)$, the group of equivalence classes of central simple algebras over K. In particular, this is true of the function field $k(X)$.

We might hope to be able to evaluate an element of $Br k(X)$ at a point of X, to obtain an element of $Br k$.

\[\text{Martin Bright (University of Bristol)} \] \[\text{Computing Brauer–Manin obstructions} \] \[\text{Banff 2008} \] \[6 / 26 \]
The Brauer group of the function field

- Every field K has a Brauer group $\text{Br}(K)$, the group of equivalence classes of central simple algebras over K. In particular, this is true of the function field $k(X)$.
- We might hope to be able to evaluate an element of $\text{Br} k(X)$ at a point of X, to obtain an element of $\text{Br} k$.
- Just as a rational function cannot be evaluated at every point of a variety, so a typical element of $\text{Br} k(X)$ cannot be evaluated everywhere – it is ramified along some divisor.
The Brauer group of a variety

- Let X be a smooth, geometrically irreducible variety over k. The Brauer group of X, written $\text{Br } X$, can be informally defined as the subgroup of $\text{Br } k(X)$ of those elements which can be evaluated everywhere. These algebras are called Azumaya algebras.
The Brauer group of a variety

- Let X be a smooth, geometrically irreducible variety over k. The Brauer group of X, written $\text{Br } X$, can be informally defined as the subgroup of $\text{Br } k(X)$ of those elements which can be evaluated everywhere. These algebras are called Azumaya algebras.

- We will be interested only in algebraic elements of $\text{Br } X$, that is, those which are split by an extension of k. These can be described in Galois cohomology as

$$\text{Br}_1 X = \ker (H^2(k, k(\bar{X})^\times) \to H^2(k, \text{Div } \bar{X})).$$
The Brauer group of a variety

- Let X be a smooth, geometrically irreducible variety over k. The Brauer group of X, written Br_X, can be informally defined as the subgroup of $\text{Br}_k(X)$ of those elements which can be evaluated everywhere. These algebras are called Azumaya algebras.

- We will be interested only in algebraic elements of Br_X, that is, those which are split by an extension of k. These can be described in Galois cohomology as

$$\text{Br}_1 X = \ker \left(H^2(k, k(\overline{X})^\times) \to H^2(k, \text{Div} \overline{X}) \right).$$

- Equivalently, a class α in $H^2(k, k(\overline{X})^\times)$ lies in $\text{Br}_1 X$ if and only if, for all points $P \in X$, we can represent α by a cocycle taking values in \mathcal{O}_X^\times, P.

Martin Bright (University of Bristol)
Computing Brauer–Manin obstructions
Banff 2008 7 / 26
Example

Let l/k be a quadratic extension, and suppose that f is a rational function on X whose divisor is a norm from l, say $(f) = N_{l/k}D$. Then the quaternion algebra $A = (l/k, f)$ is an Azumaya algebra on X.
The Brauer group of a variety

Example

Let l/k be a quadratic extension, and suppose that f is a rational function on X whose divisor is a norm from l, say $(f) = N_{l/k}D$. Then the quaternion algebra $A = (l/k, f)$ is an Azumaya algebra on X.

- To see this, let P be any point of X. If f is invertible at P, then A can be evaluated at P to get $A(P) = (l/k, f(P))$.
Example

Let l/k be a quadratic extension, and suppose that f is a rational function on X whose divisor is a norm from l, say $(f) = N_{l/k}D$. Then the quaternion algebra $A = (l/k, f)$ is an Azumaya algebra on X.

- To see this, let P be any point of X. If f is invertible at P, then A can be evaluated at P to get $A(P) = (l/k, f(P))$.
- Otherwise, there is some divisor $D' \sim D$ which avoids P; let $(g) = D' - D$. Then the algebra $(l/k, fN_{l/k}g)$ is isomorphic to A and can be evaluated at P.
Let v be a place of k. Recall from class field theory that there is a canonical injection $\text{inv}_v : \text{Br} \ k_v \to \mathbb{Q}/\mathbb{Z}$, such that the sequence

$$0 \to \text{Br} \ k \to \bigoplus_v \text{Br} \ k_v \xrightarrow{\sum_v \text{inv}_v} \mathbb{Q}/\mathbb{Z}$$

is exact.
The Brauer–Manin obstruction

- Let \(v \) be a place of \(k \). Recall from class field theory that there is a canonical injection \(\text{inv}_v : \text{Br } k_v \to \mathbb{Q}/\mathbb{Z} \), such that the sequence

\[
0 \to \text{Br } k \to \bigoplus_v \text{Br } k_v \xrightarrow{\sum_v \text{inv}_v} \mathbb{Q}/\mathbb{Z}
\]

is exact.

- If \(A \) is an Azumaya algebra on \(X \) and \(P_v \in X(k_v) \), then \(A \) can be evaluated at \(P_v \) to get an element of \(\text{Br } k_v \). So \(A \) gives maps

\[
X(k_v) \to \mathbb{Q}/\mathbb{Z}, \quad P_v \mapsto \text{inv}_v A(P_v)
\]

for each \(v \).
Let v be a place of k. Recall from class field theory that there is a canonical injection $\text{inv}_v : \text{Br } k_v \rightarrow \mathbb{Q}/\mathbb{Z}$, such that the sequence

$$0 \rightarrow \text{Br } k \rightarrow \bigoplus_v \text{Br } k_v \overset{\sum_v \text{inv}_v}{\longrightarrow} \mathbb{Q}/\mathbb{Z}$$

is exact.

If \mathcal{A} is an Azumaya algebra on X and $P_v \in X(k_v)$, then \mathcal{A} can be evaluated at P_v to get an element of $\text{Br } k_v$. So \mathcal{A} gives maps

$$X(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}, \quad P_v \mapsto \text{inv}_v \mathcal{A}(P_v)$$

for each v.

Combining these two facts, we get...
We deduce that, if \((P_v) \in X(\mathbb{A}_k)\) is the diagonal image of a rational point, then

\[
\sum_v \text{inv}_v A(P_v) = 0.
\]

Given a subset \(B\) of \(\text{Br} X\), define

\[
X_A(k) := \{ (P_v) \in X(\mathbb{A}_k) | \sum_v \text{inv}_v A(P_v) = 0 \text{ for all } A \in B \}.
\]

We have shown that \(X(k) \subset X(\mathbb{A}_k)\).

The Brauer–Manin obstruction

\[
\begin{array}{c}
X(k) \longrightarrow X(\mathbb{A}_k) \\
\downarrow \quad \downarrow \quad A \\
\text{Br } k \quad \bigoplus_v \text{Br } k_v
\end{array}
\]
The Brauer–Manin obstruction

\[X(k) \overset{A}{\rightarrow} X(\mathbb{A}_k) \]

\[\mathcal{A} \downarrow \quad \mathcal{A} \downarrow \]

\[\text{Br } k \overset{A}{\rightarrow} \bigoplus_v \text{Br } k_v \overset{A}{\rightarrow} \mathbb{Q}/\mathbb{Z} \]

We deduce that, if \((P_v) \in X(\mathbb{A}_k)\) is the diagonal image of a rational point, then

\[\sum_v \text{inv}_v A(P_v) = 0. \]

Given a subset \(B\) of \(\text{Br } X\), define \(X(\mathbb{A}_k)^B\) as

\[\{ (P_v) \in X(\mathbb{A}_k) | \sum_v \text{inv}_v A(P_v) = 0 \text{ for all } A \in B \}. \]

We have shown that \(X(k) \subset X(\mathbb{A}_k)^{\text{Br } X}\).
The Brauer–Manin obstruction

\[X(k) \rightarrow X(\mathbb{A}_k) \]

\[\downarrow \quad \downarrow \]

\[\mathcal{A} \quad \mathcal{A} \]

\[\operatorname{Br} k \rightarrow \bigoplus_v \operatorname{Br} k_v \rightarrow \mathbb{Q}/\mathbb{Z} \]

- We deduce that, if \((P_v) \in X(\mathbb{A}_k)\) is the diagonal image of a rational point, then \(\sum_v \operatorname{inv}_v \mathcal{A}(P_v) = 0\).
We deduce that, if \((P_v) \in X(\mathbb{A}_k)\) is the diagonal image of a rational point, then \(\sum_v \text{inv}_v \mathcal{A}(P_v) = 0\).

Given a subset \(B\) of \(\text{Br } X\), define

\[
X(\mathbb{A}_k)^B := \left\{ (P_v) \in X(\mathbb{A}_k) \mid \sum_v \text{inv}_v \mathcal{A}(P_v) = 0 \text{ for all } \mathcal{A} \in B \right\}.
\]

We have shown that \(X(k) \subset X(\mathbb{A}_k)^{\text{Br } X}\).
If $X(\mathbb{A}_k)^B$ is empty, we say there is a Brauer–Manin obstruction to the Hasse principle coming from B. If $X(\mathbb{A}_k)^B$ is not the whole of $X(\mathbb{A}_k)$, we say there is a Brauer–Manin obstruction to weak approximation.
Comments

- If $X(\mathbb{A}_k)^B$ is empty, we say there is a Brauer–Manin obstruction to the Hasse principle coming from B. If $X(\mathbb{A}_k)^B$ is not the whole of $X(\mathbb{A}_k)$, we say there is a Brauer–Manin obstruction to weak approximation.
- Given $A \in \text{Br } X$, it is often possible to compute $X(\mathbb{A}_k)^A$ effectively.
If $X(\mathbb{A}_k)^B$ is empty, we say there is a Brauer–Manin obstruction to the Hasse principle coming from B. If $X(\mathbb{A}_k)^B$ is not the whole of $X(\mathbb{A}_k)$, we say there is a Brauer–Manin obstruction to weak approximation.

Given $\mathcal{A} \in \text{Br } X$, it is often possible to compute $X(\mathbb{A}_k)^\mathcal{A}$ effectively.

We have constant Azumaya algebras $\text{Br } k \subset \text{Br } X$, but the condition they impose is vacuous. So the Brauer–Manin obstruction is determined by $\text{Br } X / \text{Br } k$.
If $X(\mathbb{A}^1_k)^B$ is empty, we say there is a Brauer–Manin obstruction to the Hasse principle coming from B. If $X(\mathbb{A}^1_k)^B$ is not the whole of $X(\mathbb{A}^1_k)$, we say there is a Brauer–Manin obstruction to weak approximation.

Given $A \in \text{Br } X$, it is often possible to compute $X(\mathbb{A}^1_k)^A$ effectively.

We have constant Azumaya algebras $\text{Br } k \subset \text{Br } X$, but the condition they impose is vacuous. So the Brauer–Manin obstruction is determined by $\text{Br } X / \text{Br } k$.

We will show how to compute generators for the algebraic part, $\text{Br}_1 X / \text{Br } k$, and the associated obstruction.
Outline

1 Introduction
 - The Hasse principle
 - The Brauer group
 - The Brauer–Manin obstruction

2 Computing the Brauer–Manin obstruction
 - Computing the algebraic Brauer group
 - Finding the Azumaya algebras
 - Magma demo

3 Theoretical results on the evaluation map
 - Smooth models
 - Unramified places
 - Tamely ramified places
Computing the algebraic Brauer group

Recall that the algebraic part of the Brauer group, $\text{Br}_1 X$, can be described as a Galois cohomology group

$$\text{Br}_1 X = \ker \left(H^2(k, k(\bar{X})^\times) \to H^2(k, \text{Div}\bar{X}) \right).$$

On the face of it this is not very useful, as $H^2(k, k(\bar{X})^\times)$ is not something we want to be computing with.
Computing the algebraic Brauer group

- Recall that the algebraic part of the Brauer group, $\text{Br}_1 X$, can be described as a Galois cohomology group

$$\text{Br}_1 X = \ker \left(H^2(k, k(\bar{X})^\times) \to H^2(k, \text{Div} \bar{X}) \right).$$

On the face of it this is not very useful, as $H^2(k, k(\bar{X})^\times)$ is not something we want to be computing with.

- However, we only need to know generators for $\text{Br}_1 X / \text{Br} k$. Write the homomorphism above as a composition

$$H^2(k, k(\bar{X})^\times) \xrightarrow{f} H^2(k, \text{Princ} \bar{X}) \xrightarrow{g} H^2(k, \text{Div} \bar{X}).$$
Computing the algebraic Brauer group

- Recall that the algebraic part of the Brauer group, $\text{Br}_1 X$, can be described as a Galois cohomology group

$$\text{Br}_1 X = \ker \left(H^2(k, k(\bar{X})^\times) \to H^2(k, \text{Div } \bar{X}) \right).$$

On the face of it this is not very useful, as $H^2(k, k(\bar{X})^\times)$ is not something we want to be computing with.

- However, we only need to know generators for $\text{Br}_1 X / \text{Br } k$. Write the homomorphism above as a composition

$$H^2(k, k(\bar{X})^\times) \xrightarrow{f} H^2(k, \text{Princ } \bar{X}) \xrightarrow{g} H^2(k, \text{Div } \bar{X}).$$

- The kernel-cokernel exact sequence for this composition of maps is

$$0 \to \ker f \to \text{Br}_1 X \to \ker g \to \text{coker } f$$

and we can identify these groups.
Computing the algebraic Brauer group

\[0 \rightarrow \ker f \rightarrow \text{Br}_1 X \rightarrow \ker g \rightarrow \text{coker } f \]
Computing the algebraic Brauer group

\[0 \to \ker f \to \Br_1 X \to \ker g \to \coker f \]

Using the exact sequence

\[0 \to \bar{k}^\times \to k(\bar{X})^\times \to \Princ \bar{X} \to 0 \]

shows that \(\ker f = \text{im} (\Br k) \), and that \(\coker f = H^3(k, \bar{k}^\times) = 0 \).
Computing the algebraic Brauer group

\[\text{Br } k \rightarrow \text{Br}_1 X \rightarrow \ker g \rightarrow 0 \]

- Using the exact sequence

\[0 \rightarrow \bar{k}^\times \rightarrow k(\bar{X})^\times \rightarrow \text{Princ } \bar{X} \rightarrow 0 \]

shows that \(\ker f = \text{im} (\text{Br } k) \), and that \(\text{coker } f = H^3(k, \bar{k}^\times) = 0 \).
Computing the algebraic Brauer group

\[
\text{Br} \, k \rightarrow \text{Br}_1 X \rightarrow \ker g \rightarrow 0
\]

- Using the exact sequence

\[
0 \rightarrow \bar{k}^\times \rightarrow k(\bar{X})^\times \rightarrow \text{Princ} \, \bar{X} \rightarrow 0
\]

shows that \(\ker f = \text{im} \, (\text{Br} \, k) \), and that \(\text{coker} \, f = H^3(k, \bar{k}^\times) = 0 \).

- The exact sequence

\[
0 \rightarrow \text{Princ} \, \bar{X} \rightarrow \text{Div} \, \bar{X} \rightarrow \text{Pic} \, \bar{X} \rightarrow 0
\]

shows that \(\ker g \) is the image of the boundary map \(\partial : H^1(k, \text{Pic} \, \bar{X}) \rightarrow H^2(k, \text{Princ} \, \bar{X}) \). Since \(\text{Div} \, \bar{X} \) is an induced module, this map is injective.
Computing the algebraic Brauer group

\[\text{Br } k \rightarrow \text{Br}_1 X \rightarrow H^1(k, \text{Pic } \bar{X}) \rightarrow 0 \]

- Using the exact sequence

\[0 \rightarrow \bar{k}^\times \rightarrow k(\bar{X})^\times \rightarrow \text{Princ } \bar{X} \rightarrow 0 \]

shows that \(\text{ker } f = \text{im}(\text{Br } k) \), and that \(\text{coker } f = H^3(k, \bar{k}^\times) = 0 \).

- The exact sequence

\[0 \rightarrow \text{Princ } \bar{X} \rightarrow \text{Div } \bar{X} \rightarrow \text{Pic } \bar{X} \rightarrow 0 \]

shows that \(\text{ker } g \) is the image of the boundary map \(\partial : H^1(k, \text{Pic } \bar{X}) \rightarrow H^2(k, \text{Princ } \bar{X}) \). Since \(\text{Div } \bar{X} \) is an induced module, this map is injective.
Computing the algebraic Brauer group

\[\text{Br } k \to \text{Br}_1 X \to H^1(k, \text{Pic } \bar{X}) \to 0 \]

- Using the exact sequence

\[0 \to \bar{k}^\times \to k(\bar{X})^\times \to \text{Princ } \bar{X} \to 0 \]

shows that \(\ker f = \text{im}(\text{Br } k) \), and that \(\text{coker } f = H^3(k, \bar{k}^\times) = 0 \).

- The exact sequence

\[0 \to \text{Princ } \bar{X} \to \text{Div } \bar{X} \to \text{Pic } \bar{X} \to 0 \]

shows that \(\ker g \) is the image of the boundary map
\(\partial : H^1(k, \text{Pic } \bar{X}) \to H^2(k, \text{Princ } \bar{X}) \). Since \(\text{Div } \bar{X} \) is an induced module, this map is injective.

- So there is an isomorphism \(\text{Br}_1 X / \text{Br } k \cong H^1(k, \text{Pic } \bar{X}) \).
Computing the algebraic Brauer group

- We have an isomorphism $\text{Br}_1 X / \text{Br} k \cong H^1(k, \text{Pic } \bar{X})$. If $\text{Pic } \bar{X}$ is finitely generated, then we can hope to understand this group. If $\text{Pic } \bar{X}$ is also free, then $\text{Br}_1 X / \text{Br} k$ is finite.

On a diagonal quartic surface, there are 48 straight lines. We can write down their equations, and they generate $\text{Pic } \bar{X}$. The Galois group of the field of definition of the 48 lines is always a subgroup of the "generic" Galois group, which is an extension of C_2 by $C_2 \times C_4 \times C_4$. Going through all the possible Galois actions finds all possibilities for $\text{Br}_1 X / \text{Br} k$. It is always killed by 8, and has 2-rank at most 7.
Computing the algebraic Brauer group

- We have an isomorphism $\text{Br}_1 X / \text{Br} k \cong H^1(k, \text{Pic} \bar{X})$. If $\text{Pic} \bar{X}$ is finitely generated, then we can hope to understand this group. If $\text{Pic} \bar{X}$ is also free, then $\text{Br}_1 X / \text{Br} k$ is finite.

- If we know explicitly a finite, Galois-stable set of generators for $\text{Pic} \bar{X}$, and the Galois action on them, then computing $H^1(k, \text{Pic} \bar{X})$ is straightforward.
Computing the algebraic Brauer group

- We have an isomorphism $\text{Br}_1 X / \text{Br} k \cong H^1(k, \text{Pic} \tilde{X})$. If $\text{Pic} \tilde{X}$ is finitely generated, then we can hope to understand this group. If $\text{Pic} \tilde{X}$ is also free, then $\text{Br}_1 X / \text{Br} k$ is finite.

- If we know explicitly a finite, Galois-stable set of generators for $\text{Pic} \tilde{X}$, and the Galois action on them, then computing $H^1(k, \text{Pic} \tilde{X})$ is straightforward.

- On a diagonal quartic surface, there are 48 straight lines. We can write down their equations, and they generate $\text{Pic} \tilde{X}$. The Galois group of the field of definition of the 48 lines is always a subgroup of the “generic” Galois group, which is an extension of C_2 by $C_2 \times C_4 \times C_4$. Going through all the possible Galois actions finds all possibilities for $\text{Br}_1 X / \text{Br} k$. It is always killed by 8, and has 2-rank at most 7.
Computing the algebraic Brauer group

- We have an isomorphism $\text{Br}_1 X / \text{Br} k \cong H^1(k, \text{Pic} \bar{X})$. If $\text{Pic} \bar{X}$ is finitely generated, then we can hope to understand this group. If $\text{Pic} \bar{X}$ is also free, then $\text{Br}_1 X / \text{Br} k$ is finite.

- If we know explicitly a finite, Galois-stable set of generators for $\text{Pic} \bar{X}$, and the Galois action on them, then computing $H^1(k, \text{Pic} \bar{X})$ is straightforward.

- On a diagonal quartic surface, there are 48 straight lines. We can write down their equations, and they generate $\text{Pic} \bar{X}$.

- The Galois group of the field of definition of the 48 lines is always a subgroup of the “generic” Galois group, which is an extension of C_2 by $C_2 \times C_4 \times C_4$. Going through all the possible Galois actions finds all possibilities for $\text{Br}_1 X / \text{Br} k$. It is always killed by 8, and has 2-rank at most 7.

Martin Bright (University of Bristol)
Finding the Azumaya algebras

- Getting our hands on explicit generators for $H^1(k, \text{Pic} \, \bar{X})$ is only the first step to computing the algebraic Brauer–Manin obstruction. We now need to turn them into explicit generators for $\text{Br}_1 X / \text{Br} \, k$.
Finding the Azumaya algebras

- Getting our hands on explicit generators for $H^1(k, \text{Pic } \bar{X})$ is only the first step to computing the algebraic Brauer–Manin obstruction. We now need to turn them into explicit generators for $\text{Br}_1 X / \text{Br } k$.

- The isomorphism $H^1(k, \text{Pic } \bar{X}) \cong \text{Br}_1 X / \text{Br } k$ arose as a composition of various maps:

$$H^1(k, \text{Pic } \bar{X}) \xrightarrow{\partial} H^2(k, \text{Princ } \bar{X}) \xrightarrow{\bar{g}} H^2(k, k(\bar{X})^\times).$$
Finding the Azumaya algebras

- Getting our hands on explicit generators for $H^1(k, \text{Pic} \bar{X})$ is only the first step to computing the algebraic Brauer–Manin obstruction. We now need to turn them into explicit generators for $\text{Br}_1 X / \text{Br}_k$.
- The isomorphism $H^1(k, \text{Pic} \bar{X}) \cong \text{Br}_1 X / \text{Br}_k$ arose as a composition of various maps:

$$H^1(k, \text{Pic} \bar{X}) \xrightarrow{\partial} H^2(k, \text{Princ} \bar{X}) \leftrightarrow H^2(k, k(\bar{X})^\times).$$

- The first of these, ∂, is a boundary map in cohomology and is straightforward to compute: lift from $\text{Pic} \bar{X}$ to $\text{Div} \bar{X}$ and take the coboundary. Note that there is a choice of lifts here, giving different but cohomologous images.
Finding the Azumaya algebras

- Getting our hands on explicit generators for $H^1(k, \text{Pic } \tilde{X})$ is only the first step to computing the algebraic Brauer–Manin obstruction. We now need to turn them into explicit generators for $\text{Br}_1 X / \text{Br}_k$.

- The isomorphism $H^1(k, \text{Pic } \tilde{X}) \cong \text{Br}_1 X / \text{Br}_k$ arose as a composition of various maps:

 $H^1(k, \text{Pic } \tilde{X}) \xrightarrow{\partial} H^2(k, \text{Princ } \tilde{X}) \xleftarrow{g} H^2(k, k(\tilde{X})^\times)$.

- The first of these, ∂, is a boundary map in cohomology and is straightforward to compute: lift from $\text{Pic } \tilde{X}$ to $\text{Div } \tilde{X}$ and take the coboundary. Note that there is a choice of lifts here, giving different but cohomologous images.

- Computing g^{-1} involves lifting from $\text{Princ } \tilde{X}$ to $k(\tilde{X})^\times$, a potentially slow operation. Moreover, lifting just anyhow will not give us a cocycle – to do that, we need to make effective the fact that $H^3(k, \bar{k}^\times) = 0$.
Using a small splitting field

- Some of these problems become easier if the elements of $H^1(k, \text{Pic } \bar{X})$ we're looking at are split by a small extension l/k.

\[
H^1(k, \text{Pic } \bar{X}) \xrightarrow{\partial} H^2(k, \text{Princ } \bar{X}) \xleftarrow{g} H^2(k, k(\bar{X})^\times)
\]
Using a small splitting field

- Some of these problems become easier if the elements of $H^1(k, \text{Pic} \bar{X})$ we're looking at are split by a small extension l/k.

\[\begin{array}{cccc}
H^1(k, \text{Pic} \bar{X}) & \xrightarrow{\partial} & H^2(k, \text{Princ} \bar{X}) & \xleftarrow{g} & H^2(k, k(\bar{X})^\times) \\
\uparrow \text{inf} & & \uparrow \text{inf} & & \uparrow \text{inf} \\
H^1(l/k, \text{Pic} X_l) & \rightarrow & H^2(l/k, \text{Princ} X_l) & \leftarrow & H^2(l/k, k(X_l)^\times)
\end{array} \]

If l/k is cyclic, things get even more straightforward. But we have introduced a new problem: we probably don't know a set of divisors defined over l which generate Pic X_l.
Using a small splitting field

- Some of these problems become easier if the elements of $H^1(k, \text{Pic } \bar{X})$ we’re looking at are split by a small extension l/k.

\[
\begin{array}{ccc}
H^1(k, \text{Pic } \bar{X}) & \overset{\partial}{\longrightarrow} & H^2(k, \text{Princ } \bar{X})
\end{array}
\]

\[
\begin{array}{ccc}
\text{inf} & \|
\end{array}
\]

\[
\begin{array}{ccc}
H^1(l/k, \text{Pic } X_l) & \longrightarrow & H^2(l/k, \text{Princ } X_l)
\end{array}
\]

\[
\begin{array}{ccc}
\sim & \|
\end{array}
\]

\[
\begin{array}{ccc}
N \text{Pic } X_l & \overset{N}{\longrightarrow} & \frac{\text{Princ } X}{N \text{Princ } X_l}
\end{array}
\]

\[
\begin{array}{ccc}
\sim & \|
\end{array}
\]

\[
\begin{array}{ccc}
\frac{N \text{Pic } X_l}{\langle \sigma - 1 \rangle} & \overset{N}{\longrightarrow} & \frac{\text{Princ } X}{N \text{Princ } X_l}
\end{array}
\]

\[
\begin{array}{ccc}
\sim & \|
\end{array}
\]

\[
\begin{array}{ccc}
\frac{N \text{Pic } X_l}{\langle \sigma - 1 \rangle} & \overset{N}{\longrightarrow} & \frac{\text{Princ } X}{N \text{Princ } X_l}
\end{array}
\]

- If l/k is cyclic, things get even more straightforward.
Using a small splitting field

- Some of these problems become easier if the elements of $H^1(k, \text{Pic} \, \bar{X})$ we're looking at are split by a small extension l/k.

\[
\begin{align*}
H^1(k, \text{Pic} \, \bar{X}) & \xrightarrow{\partial} H^2(k, \text{Princ} \, \bar{X}) & \xrightarrow{g} & H^2(k, k(\bar{X})^\times) \\
\inf & \uparrow & \inf & \uparrow & \inf & \uparrow \\
H^1(l/k, \text{Pic} \, X_l) & \longrightarrow H^2(l/k, \text{Princ} \, X_l) & \longrightarrow & H^2(l/k, k(X_l)^\times) \\
\sim & \uparrow & \sim & \uparrow & \sim & \uparrow \\
\frac{N \text{Pic} \, X_l}{\langle \sigma - 1 \rangle} & \xrightarrow{N} \frac{\text{Princ} \, X}{N \text{Princ} \, X_l} & \longleftarrow & \frac{k(X)^\times}{Nk(X_l)^\times}
\end{align*}
\]

- If l/k is cyclic, things get even more straightforward.
- But we have introduced a new problem: we probably don’t know a set of divisors defined over l which generate $\text{Pic} \, X_l$.

Magma demo
Outline

1. Introduction
 - The Hasse principle
 - The Brauer group
 - The Brauer–Manin obstruction

2. Computing the Brauer–Manin obstruction
 - Computing the algebraic Brauer group
 - Finding the Azumaya algebras
 - Magma demo

3. Theoretical results on the evaluation map
 - Smooth models
 - Unramified places
 - Tamely ramified places
Theoretical results on the evaluation map

Let \(\mathcal{A} \) be an Azumaya algebra on \(X \), and fix a finite place \(\nu \). We will apply some geometry to understand the evaluation map

\[
X(k_\nu) \rightarrow \mathbb{Q}/\mathbb{Z} \quad P \mapsto \text{inv}_\nu \mathcal{A}(P).
\]

- We saw in the demonstration that, at primes of good reduction, the invariant was everywhere zero. For each \(P \in X(k_\nu) \), we could always find one of our representative algebras \((-1, f)\) such that \(f(P) \) was a unit in \(k_\nu \).
Theoretical results on the evaluation map

Let \mathcal{A} be an Azumaya algebra on X, and fix a finite place ν. We will apply some geometry to understand the evaluation map

$$X(k_\nu) \to \mathbb{Q}/\mathbb{Z}, \quad P \mapsto \text{inv}_\nu \mathcal{A}(P).$$

- We saw in the demonstration that, at primes of good reduction, the invariant was everywhere zero. For each $P \in X(k_\nu)$, we could always find one of our representative algebras $(-1, f)$ such that $f(P)$ was a unit in k_ν.
- Of course, we could spoil this: we could change our algebra by a constant algebra ramified at ν. The invariant would still be constant, but not necessarily zero.
Smooth models

It is much easier to investigate the behaviour of $\mathcal{A}(P)$ when P reduces to a smooth point. What does this mean for diagonal quartic surfaces?

- Consider the diagonal quartic surface

 $$X : a_0X_0^4 + a_1X_1^4 + a_2X_2^4 + a_3X_3^4 = 0$$

where $a_i \in \mathbb{Q}$. We may clearly assume that the a_i are coprime integers, and that none of them is divisible by a fourth power. Reducing the equation modulo p gives a surface over \mathbb{F}_p which may be singular.
Smooth models

It is much easier to investigate the behaviour of $A(P)$ when P reduces to a smooth point. What does this mean for diagonal quartic surfaces?

- Consider the diagonal quartic surface

\[X : a_0X_0^4 + a_1X_1^4 + a_2X_2^4 + a_3X_3^4 = 0 \]

where $a_i \in \mathbb{Q}$. We may clearly assume that the a_i are coprime integers, and that none of them is divisible by a fourth power.

Reducing the equation modulo p gives a surface over \mathbb{F}_p which may be singular.

- But this is only one model of X; we can easily produce others.
Smooth models

It is much easier to investigate the behaviour of \(A(P) \) when \(P \) reduces to a smooth point. What does this mean for diagonal quartic surfaces?

- Consider the diagonal quartic surface

\[
X : \quad a_0 X_0^4 + a_1 X_1^4 + a_2 X_2^4 + a_3 X_3^4 = 0
\]

where \(a_i \in \mathbb{Q} \). We may clearly assume that the \(a_i \) are coprime integers, and that none of them is divisible by a fourth power.

Reducing the equation modulo \(p \) gives a surface over \(\mathbb{F}_p \) which may be singular.

- But this is only one model of \(X \); we can easily produce others.

- Suppose, say, that \(p \) divides \(a_0 \) but none of the other \(a_i \). We can replace \(X_i \) by \(pX_i \) for \(i = 1, 2, 3 \) and then remove the resulting power of \(p \), giving a new surface isomorphic (over \(\mathbb{Q} \)) to \(X \).
In this way we obtain up to four different models. It is not difficult to show that any point in $X(\mathbb{Q}_p)$ reduces to a smooth point modulo p in at least one of these models.
Smooth models

- In this way we obtain up to four different models. It is not difficult to show that any point in $X(\mathbb{Q}_p)$ reduces to a smooth point modulo p in at least one of these models.

- Geometrically, we have shown that there exists a model \mathcal{X}/\mathbb{Z}_p for X, obtained by blowing up our original one, such that any point of $X(\mathbb{Q}_p)$ extends to a smooth point of $\mathcal{X}(\mathbb{Z}_p)$. The different equations describe the components of this model.
Smooth models

- In this way we obtain up to four different models. It is not difficult to show that any point in $X(\mathbb{Q}_p)$ reduces to a smooth point modulo p in at least one of these models.

- Geometrically, we have shown that there exists a model \mathcal{X}/\mathbb{Z}_p for X, obtained by blowing up our original one, such that any point of $X(\mathbb{Q}_p)$ extends to a smooth point of $\mathcal{X}(\mathbb{Z}_p)$. The different equations describe the components of this model.

- In fact, this can be accomplished for any smooth variety over \mathbb{Q}_p; such a model is called a weak Néron model.
Theorem

Let X be a smooth, geometrically irreducible variety over k_v. Let $A \in \text{Br}_1 X$ be an Azumaya algebra split by an unramified extension of k_v. Let $\mathcal{X}/\mathcal{O}_v$ be a smooth model of X, with Z an irreducible component of the special fibre. Then $\text{inv}_v A(P)$ is constant on the set of points P reducing to Z.

In particular, this is true at primes where X has good reduction. At a prime of good reduction, the Galois module $\text{Pic} \bar{X}$ is unramified. This is because the inertia group, by definition, acts trivially on the reduction of X modulo p. So each of the 48 lines on X must be taken to a line with the same reduction modulo p. But the 48 lines all have distinct reductions – after all, the reduction of X is a smooth diagonal quartic surface, so contains 48 straight lines.
Unramified places

Theorem

Let X be a smooth, geometrically irreducible variety over k_v. Let $A \in \text{Br}_1X$ be an Azumaya algebra split by an unramified extension of k_v. Let $\mathcal{X}/\mathcal{O}_v$ be a smooth model of X, with Z an irreducible component of the special fibre. Then $\text{inv}_v A(P)$ is constant on the set of points P reducing to Z.

- In particular, this is true at primes where X has good reduction. At a prime of good reduction, the Galois module $\text{Pic} \bar{X}$ is unramified.
Unramified places

Theorem

Let X be a smooth, geometrically irreducible variety over k_v. Let $\mathcal{A} \in \text{Br}_1 X$ be an Azumaya algebra split by an unramified extension of k_v. Let $\mathcal{X}/\mathcal{O}_v$ be a smooth model of X, with Z an irreducible component of the special fibre. Then $\text{inv}_v \mathcal{A}(P)$ is constant on the set of points P reducing to Z.

- In particular, this is true at primes where X has good reduction. At a prime of good reduction, the Galois module $\text{Pic} \, \mathcal{X}$ is unramified.
- This is because the inertia group, by definition, acts trivially on the reduction of X modulo p. So each of the 48 lines on X must be taken to a line with the same reduction modulo p.

Martin Bright (University of Bristol)
Theorem

Let X be a smooth, geometrically irreducible variety over k_v. Let $A \in \text{Br}_1 X$ be an Azumaya algebra split by an unramified extension of k_v. Let $\mathcal{X}/\mathcal{O}_v$ be a smooth model of X, with Z an irreducible component of the special fibre. Then $\text{inv}_v A(P)$ is constant on the set of points P reducing to Z.

- In particular, this is true at primes where X has good reduction. At a prime of good reduction, the Galois module $\text{Pic} \bar{X}$ is unramified.
- This is because the inertia group, by definition, acts trivially on the reduction of X modulo p. So each of the 48 lines on X must be taken to a line with the same reduction modulo p.
- But the 48 lines all have distinct reductions – after all, the reduction of X is a smooth diagonal quartic surface, so contains 48 straight lines.
Tamely ramified places

- Now suppose that \mathcal{A} is split by a totally, tamely ramified Galois extension L/k_v of degree n. There are isomorphisms

$$\text{Br}(L/k_v) \cong k_v^\times / NI^\times \cong \mathcal{O}_v / N\mathcal{O}_I^\times \cong F^\times / (F^\times)^n$$

where F is the residue field of k_v.
Tamely ramified places

- Now suppose that \(A \) is split by a totally, tamely ramified Galois extension \(l/k_v \) of degree \(n \). There are isomorphisms

\[
\text{Br}(l/k_v) \cong k_v^\times / Nl^\times \cong \mathcal{O}_v / N\mathcal{O}_l^\times \cong \mathbb{F}^\times / (\mathbb{F}^\times)^n
\]

where \(\mathbb{F} \) is the residue field of \(k_v \).

- This tells us that, if we have a 2-cocycle describing an element of \(\text{Br}(l/k_v) \), and if it takes unit values, then its class is determined by its reduction modulo \(v \).
Now suppose that \mathcal{A} is split by a totally, tamely ramified Galois extension I/k_v of degree n. There are isomorphisms

$$\text{Br}(I/k_v) \cong k_v^\times / NI^\times \cong O_v / N\mathcal{O}_I^\times \cong \mathbb{F}^\times / (\mathbb{F}^\times)^n$$

where \mathbb{F} is the residue field of k_v.

This tells us that, if we have a 2-cocycle describing an element of $\text{Br}(I/k_v)$, and if it takes unit values, then its class is determined by its reduction modulo v.

With a little work, we can deduce that $\text{inv}_v \mathcal{A}(P)$ only depends on the residue class of P. In fact, we can say more...
Theorem

Let X be a smooth, geometrically irreducible variety over k_v, and let $A \in \text{Br}_1 X$ be an Azumaya algebra split by a tamely ramified Galois extension l/k_v of degree n. Let X/O_v be a smooth model of X, with Z a geometrically irreducible component of the special fibre. Then, after possibly modifying A by a constant algebra, there is a Z-torsor T under μ_n such that the following diagram commutes.

$$
\begin{array}{ccc}
X(k_v)_Z & \xrightarrow{A} & \text{Br } l/k_v \\
\downarrow & & \downarrow \rho \\
Z(F) & \xrightarrow{T} & F^\times/(F^\times)^n
\end{array}
$$
Consequences for diagonal quartics

- On a diagonal quartic surface X, the 48 lines are all defined over some 2-power degree extension of the base field; so this extension is either unramified or tamely ramified except at 2.
Consequences for diagonal quartics

- On a diagonal quartic surface X, the 48 lines are all defined over some 2-power degree extension of the base field; so this extension is either unramified or tamely ramified except at 2.
- So, if $p \neq 2$, evaluating the Brauer–Manin obstruction at p comes down to studying some torsors under μ_n on the reduction of X at p.

If X has good reduction, then the reduction is again a smooth quartic surface, so the only torsors under μ_n are constant; we see again that the Brauer–Manin obstruction there is constant.

If the reduction of X is a cone, then consider a straight line L in that cone. There are no non-constant torsors under μ_n on L, even after removing the vertex; so we deduce that the Brauer–Manin evaluation map is constant on the set of points of $X(\mathbb{Q}_p)$ reducing to points on L.

Martin Bright (University of Bristol)
Computing Brauer–Manin obstructions
Banff 2008 26 / 26
Consequences for diagonal quartics

- On a diagonal quartic surface X, the 48 lines are all defined over some 2-power degree extension of the base field; so this extension is either unramified or tamely ramified except at 2.
- So, if $p \neq 2$, evaluating the Brauer–Manin obstruction at p comes down to studying some torsors under μ_n on the reduction of X at p.
- If X has good reduction, then the reduction is again a smooth quartic surface, so the only torsors under μ_n are constant; we see again that the Brauer–Manin obstruction there is constant.
Consequences for diagonal quartics

- On a diagonal quartic surface \(X \), the 48 lines are all defined over some 2-power degree extension of the base field; so this extension is either unramified or tamely ramified except at 2.

- So, if \(p \neq 2 \), evaluating the Brauer–Manin obstruction at \(p \) comes down to studying some torsors under \(\mu_n \) on the reduction of \(X \) at \(p \).

- If \(X \) has good reduction, then the reduction is again a smooth quartic surface, so the only torsors under \(\mu_n \) are constant; we see again that the Brauer–Manin obstruction there is constant.

- If the reduction of \(X \) is a cone, then consider a straight line \(L \) in that cone. There are no non-constant torsors under \(\mu_n \) on \(L \), even after removing the vertex; so we deduce that the Brauer–Manin evaluation map is constant on the set of points of \(X(\mathbb{Q}_p) \) reducing to points on \(L \).