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Introduction

(i) Arakelov geometry is a technique for studying diophantine problems from a geometrical point

of view. In short, given a diophantine problem, one considers an arithmetic scheme associated with

that problem, and adds in the complex points of that scheme by way of “compactification”. Next,

one endows all arithmetic bundles on the scheme with an additional structure over the complex

numbers, meaning one endows them with certain hermitian metrics. It is well-known from tra-

ditional topology or geometry that compactifying a space often introduces a convenient structure

to it, which makes a study of it easier generally. The same holds in our case: by introducing an

additional Arakelov structure to a given arithmetic situation one ends up with a convenient set-up

to formulate, study and even prove diophantine properties of the original situation. For instance

one could think of questions dealing with the size of the solutions to a given diophantine problem.

Fermat’s method of descent can perhaps be viewed as a prototype of Arakelov geometry on arith-

metic schemes.

(ii) Probably the best way to start an introduction to Arakelov geometry is to consider the simplest

type of arithmetic scheme possible, namely the spectrum of a ring of integers in a number field,

for instance Spec(Z). In the nineteenth century, some authors, like Kummer, Kronecker, Dedekind

and Weber, drew attention to the remarkable analogy that one has between the properties of rings

of integers in a number field, on the one hand, and the properties of coordinate rings of affine

non-singular curves on the other. In particular, they started the parallel development of a theory

of “places” or “prime divisors” on both sides of the analogy. Most important, morally speaking,

was however that the success of this theory allowed mathematicians to see that number theory on

the one hand, and geometry on the other, are unified by a bigger picture. This way of thinking

continued to be stressed in the twentieth century, most notably by Weil, and it is fair to say that

the later development of the concept of a scheme by Grothendieck is directly related to these early

ideas.

The idea of “compactifying” the spectrum of a ring of integers can be motivated as follows.

We start at the geometric side. Let C be an affine non-singular curve over an algebraically closed

field. The first thing we do is to “compactify” it: by making an appropriate embedding of C into

projective space and taking the Zariski closure, one gets a complete non-singular curve C. This

curve is essentially unique. Now we consider divisors on C: a divisor is a finite formal integral linear

combination D =
∑

P nPP of points on C. The divisors form in a natural way a group Div(C).

We obtain a natural group homomorphism Div(C) → Z by taking the degree degD =
∑

P nP . In

order to obtain an interesting theory from this, one associates to any non-zero rational function f

on C a divisor (f) =
∑

P vP (f)P , where vP (f) denotes the multiplicity of f at P . By factoring

out the divisors of rational functions one obtains the so-called Picard group Pic(C) of C. Now

a fundamental result is that the degree of the divisor of a rational function is 0, and hence the

degree factors through a homomorphism Pic(C) → Z. It turns out that the kernel Pic0(C) of

this homomorphism can be given a natural structure of projective algebraic variety. This variety

is a fundamental invariant attached to C and is studied extensively in algebraic geometry. The
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fundamental property that the degree of a divisor of a rational function is 0 is not true in general

when we consider only affine curves. This makes the step of compactifying C so important.

Turning next to the arithmetic side, given the success of compactifying a curve at the geometric

side, one wants to define analogues of divisor, degree and compactification, in such a way that the

degree of a divisor of a rational function is 0. This leads us to an arithmetic analogue of the degree

0 part of the Picard group. The compactification step is as follows: let B = Spec(OK) be the spec-

trum of the ring of integers OK in a number field K. We formally add to B the set of embeddings

σ : K ↪→ C of K into C. By algebraic number theory this set is finite of cardinality [K : Q]. Now

we consider Arakelov divisors on this enlarged B: an Arakelov divisor on B is a finite formal linear

combination D =
∑

P nPP +
∑

σ ασ · σ, with the first sum running over the non-zero prime ideals

of OK , with nP ∈ Z, and with the second sum running over the complex embeddings of K, with

ασ ∈ R. Note that the non-zero prime ideals of OK correspond to the closed points of B. The set

of Arakelov divisors forms in a natural way a group D̂iv(B). On it we have an Arakelov degree

d̂egD =
∑

P nP log #(OK/P ) +
∑

σ ασ which takes values in R. The Arakelov divisor associated

to a non-zero rational function f ∈ K is given as (f) =
∑

P vP (f) log #(OK/P ) +
∑

σ vσ(f)σ with

vP (f) the multiplicity of f at P , i.e., the multiplicity of P in the prime ideal decomposition of f ,

and with vσ(f) = − log |f |σ . The crucial idea is now that the product formula accounts for the

fact that d̂eg(f) = 0 for any non-zero f ∈ K. So indeed, by factoring out the divisors of rational

functions, we obtain a Picard group P̂ic(B) with a degree P̂ic(B) → R. To illustrate the use of

these constructions, we refer to Tate’s thesis: there Tate showed that the degree 0 part P̂ic
0
(B), the

analogue of the Pic0(C) from geometry, can be seen as a natural starting point to prove finiteness

theorems in algebraic number theory, such as Dirichlet’s unit theorem, or the finiteness of the class

group. In fact, Tate uses a slight variant of our P̂ic
0
(B), but we shall ignore this fact.

(iii) Shafarevich asked for an extension of the above idea to varieties defined over a number field.

In particular he asked for this extension in the context of the Mordell conjecture. Let C be a

curve over a field k. The statement that the set C(k) of rational points of C is finite, is called the

Mordell conjecture for C/k. Now for curves over a function field in characteristic 0, the Mordell

conjecture (under certain trivial conditions on C) was proven to be true in the 1960s by Manin and

Grauert. However, the Mordell conjecture for curves over a number field was by then still unknown,

and the technique of proof could not be straightforwardly generalised. A different approach to the

Mordell conjecture for function fields was given by Parshin and Arakelov. The main feature of their

approach is that it leads to an effective version of the conjecture: they define a function h, called

a height function, on the set of rational points, with the property that for all A, the set of P with

h(P ) ≤ A is finite, and can in principle be explicitly enumerated. Now what they prove is that the

height of a rational point can be bounded a priori. Hence, it is possible in principle to construct

an exhaustive list of the rational points of a given curve.

In order to prove this result, the essential step is to associate to the curve C/k a model p : X → B

with X a complete algebraic surface, and with B a non-singular projective curve with function field

k, such that the generic fiber of X is isomorphic to C. The rational points of C/k correspond then

to the sections P : B → X of p. The essential tool, then, is classical intersection theory on X . It

turns out that certain inequalities between the canonical classes of this surface can be derived, and

these inequalities make it possible to bound the height of a section.

The obvious question, in the light of the Mordell conjecture for number fields, is whether this

set-up can be carried over to the case of curves defined over a number field. As was said before,

Shafarevich asked for such an analogue, but eventually it was Arakelov who, building on ideas of

Shafarevich and Parshin, came up with a promising solution. His results are written down in the

important paper An intersection theory for divisors on an arithmetic surface, published in 1974.

Let us describe the idea of that paper. Let C/K be a curve over a number field K. To it there
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is associated a scheme p : X → B = Spec(OK), called an arithmetic surface, which is a fibration

in curves over B, just as in the classical context of function fields mentioned above. The generic

fiber of p : X → B is isomorphic to C, and for almost all non-zero primes P of OK , the fiber at the

corresponding closed point is equal to the reduction of C modulo P . Again, the set of rational points

of C/K corresponds to the set of sections P : B → X . In order to attack the Mordell conjecture

for C, one wants to have an intersection theory for divisors on X . The first idea, as always, is

to compactify the scheme X . We do this by formally adding in, for each complex embedding σ

of K, the complex points of C, base changed along σ to C. These complex points come with the

natural structure of a Riemann surface, and yield the so-called “fibers at infinity” Fσ of X . Now,

an Arakelov divisor on X is a sum D = Dfin +Dinf with Dfin a traditional Weil divisor on X , and

with Dinf =
∑

σ ασFσ an “infinite” contribution with ασ ∈ R. The set of such divisors forms in

a natural way a group D̂iv(X ). The main result of Arakelov is that one has a natural symmetric

and bilinear intersection pairing on this group, and that this pairing factors through the Arakelov

divisors of rational functions of X . The crucial case to consider is the intersection of two distinct

sections P,Q of p : X → B, viewed as divisors on X . We have a finite contribution (P,Q)fin which

is given using the traditional intersection numbers on X , but we also have an “infinite” contribution

(P,Q)inf , which is defined to be a sum −∑σ logG(Pσ , Qσ) over the complex embeddings σ. Here G

is a kind of “distance” function on Xσ, the Riemann surface corresponding to σ. Arakelov defines

G by writing down the axioms that it is supposed to satisfy, and by observing that these axioms

allow a unique solution. The function G, called the Arakelov-Green function, is a very important

invariant attached to each (compact and connected) Riemann surface. One of the properties of

Arakelov’s intersection theory is that an adjunction formula holds true, as in the classical function

field case.

Given Arakelov’s intersection theory on arithmetic surfaces, the set-up appears to be present

to try to attack the Mordell conjecture. Unfortunately, no proof exists yet which translates the

original ideas of Parshin and Arakelov into the number field setting. The major problem is that

as yet there seem to exist no good arithmetic analogues of the classical canonical class inequalities.

However, we do have an ineffective proof of the Mordell conjecture for number fields, due to Falt-

ings. He was inspired by Szpiro to work on this conjecture using Arakelov theory, but ultimately he

found a proof which runs, strictly speaking, along different lines. Nevertheless, Faltings obtained

many interesting results in Arakelov intersection theory, and he wrote down these results in his 1984

landmark paper Calculus on arithmetic surfaces. Here Faltings shows that, besides the adjunction

formula, also other theorems from classical intersection theory on algebraic surfaces have a true

analogue for arithmetic surfaces, such as the Riemann-Roch theorem, the Hodge index theorem,

and the Noether formula. The formulation of the Noether formula requires the introduction of a

new fundamental invariant δ of Riemann surfaces, and in his paper Faltings asks for a further study

of the properties of this invariant.

(iv) As we said above, the major difficulty in translating the classical techniques for effective Mordell

into the number field setting is the lack of good canonical class inequalities. For example, one

would like to formulate and prove a convenient analogue of the classical Bogomolov-Miyaoka-Yau-

inequality for algebraic surfaces, and attempts to do this have been made by for example Parshin

and Moret-Bailly in the 1980s. It was shown by Bost, Mestre and Moret-Bailly, however, that a

certain naive analogue of the classical inequality is false. But parallel to this it also became clear

that besides effective Mordell, also other major diophantine conjectures, such as Szpiro’s conjecture

and the abc-conjecture, would follow if one had good canonical class inequalities for arithmetic

surfaces. No doubt it is very worthwhile to look further and better for such inequalities.

Unfortunately, during the last decades not much progress seems to have been made on this

problem. The difficulties generally arise because of the difficult complex differential geometry that
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one encounters while dealing with the contributions at infinity. Also, we have no good idea how the

canonical classes of an arithmetic surface can be calculated, and neither do we have any good idea

how to relate them to other, perhaps easier, invariants. Many authors therefore continue to stress

the importance of finding ways to calculate canonical classes of arithmetic surfaces, and of making

up an inventory of the possible values that may occur. It is clear that a better understanding of

the invariants associated to “infinity” is much needed.

Several authors have done Arakelov intersection theory from this point of view. A first important

step was taken by Bost, Mestre and Moret-Bailly, who studied the explicit and calculational aspects

of the first non-trivial case, namely of curves of genus 2 (the Arakelov theory of elliptic curves is

well-understood, see for instance Faltings’ paper). After that, several other isolated examples have

been considered: for example Ullmo et al. studied the Arakelov theory of the modular curves

X0(N), and Guàrdia in his thesis covered a certain class of plane quartic curves admitting many

automorphisms.

In the present thesis we wish to contribute to the problem of doing explicit Arakelov geometry

by trying to find a description of the main numerical invariants of arithmetic surfaces that makes

it possible to calculate them efficiently. We give explicit formulas for the Arakelov-Green function

as well as for the Faltings delta-invariant, where it should be remarked that these invariants are

defined only in a very implicit way. We show how we can make things even more explicit in the case

of elliptic and hyperelliptic curves. Finally, we indicate how efficient calculations are to be done,

and in fact we include some explicit numerical examples.

(v) We now turn to a more specialised description of the main results of this thesis. For an

explanation of the notation we refer to the main text.

Chapter 1 is an introduction to Arakelov theory. We introduce the main characters, such as the

Arakelov-Green function, the delta-invariant, the Faltings height and the relative dualising sheaf,

and we prove some fundamental properties about them. The results described in this chapter are

certainly not new, although our proofs sometimes differ from the standard ones.

In Chapter 2 we state and prove our explicit formulas for the Arakelov-Green function and

Faltings’ delta-invariant. Let X be a compact and connected Riemann surface of genus g > 0, and

let G be the Arakelov-Green function of X . Let µ be the fundamental (1,1)-form of X and let ‖ϑ‖
be the normalised theta function on Picg−1(X). Let S(X) be the invariant defined by

logS(X) := −
∫

X

log ‖ϑ‖(gP −Q) · µ(P ) ,

with Q an arbitrary point on X . It can be checked that the integral is well-defined and does not

depend on the choice of Q. Let W be the classical divisor of Weierstrass points on X . We have

then the following explicit formula for the Arakelov-Green function.

Theorem. For P,Q points on X, with P not a Weierstrass point, we have

G(P,Q)g = S(X)1/g2 · ‖ϑ‖(gP −Q)∏
W∈W ‖ϑ‖(gP −W )1/g3 .

Here the product runs over the Weierstrass points of X, counted with their weights. The formula is

valid also for Weierstrass points P , provided that we take the leading coefficients of a power series

expansion about P in both numerator and denominator.

As to Faltings’ delta-invariant δ(X) of X , we prove the following result. Let Φ : X × X →
Picg−1(X) be the map sending (P,Q) to the class of (gP−Q). For a fixedQ ∈ X , let iQ : X → X×X
be the map sending P to (P,Q), and put φQ = Φ · iQ.

4



Theorem. Define the line bundle LX by

LX :=

( ⊗

W∈W

φ∗W (O(Θ))

)
⊗(g−1)/g3 ⊗OX

(
Φ∗(O(Θ))|∆X ⊗OX Ω⊗g

X

)⊗−(g+1) ⊗OX

⊗
(
Ω

⊗g(g+1)/2
X ⊗OX

(
∧gH0(X,Ω1

X) ⊗C OX)
)∨)⊗2

.

Then the line bundle LX is canonically trivial. If T (X) is the norm of the canonical trivialising

section of LX , the formula

exp(δ(X)/4) = S(X)−(g−1)/g2 · T (X)

holds.

We have the following explicit formula for T (X). For P on X , not a Weierstrass point, and z a

local coordinate about P , we put

‖Fz‖(P ) := lim
Q→P

‖ϑ‖(gP −Q)

|z(P ) − z(Q)|g .

Further we let Wz(ω)(P ) be the Wronskian at P in z of an orthonormal basis {ω1, . . . , ωg} of the

differentials H0(X,Ω1
X) with respect to the hermitian inner product (ω, η) 7→ i

2

∫
X
ω ∧ η.

Theorem. The invariant T (X) satisfies the formula

T (X) = ‖Fz‖(P )−(g+1) ·
∏

W∈W

‖ϑ‖(gP −W )(g−1)/g3 · |Wz(ω)(P )|2 ,

where again the product runs over the Weierstrass points of X, counted with their weights, and

where P can be any point of X that is not a Weierstrass point.

It follows that the invariant T (X) can be given in purely classical terms.

Chapters 3 and 4 are devoted to the proof of the following result, specialising to hyperelliptic

Riemann surfaces.

Theorem. Let X be a hyperelliptic Riemann surface of genus g ≥ 2, and let ‖∆g‖(X) be its

modified modular discriminant. Then for the invariant T (X) of X, the formula

T (X) = (2π)−2g · ‖∆g‖(X)−
3g−1
8ng

holds.

The proof of this theorem follows by combining two results relating the Arakelov-Green function

to the invariants T (X) and ‖∆g‖(X). Although these results look quite similar, the proofs that we

give of these results use very different techniques. For the first result, which we prove in Chapter

3, we only use function theory on hyperelliptic Riemann surfaces. For the second result, which we

prove in Chapter 4, we broaden our perspective and consider hyperelliptic curves over an arbitrary

base scheme. The result follows then from a consideration of a certain isomorphism of line bundles

over the moduli stack of hyperelliptic curves. Special care is needed to deal with its specialisation

to characteristic 2, where the locus of Weierstrass points behaves in an atypical way.

In Chapter 5 we focus on the Arakelov theory of elliptic curves. Mainly because the fundamental

(1,1)-form µ behaves well under isogenies, a fruitful theory emerges in this case. We give a reasonably

self-contained and fairly elementary exposition of this theory. We recover some well-known results,

due to Faltings, Szpiro and Autissier, but with alternative proofs. In particular, we base our

discussion on a complex projection formula for isogenies, which seems new. The main new results

that we derive from this formula are as follows.

Theorem. Let X and X ′ be Riemann surfaces of genus 1. Let ‖η‖(X) and ‖η‖(X ′) be the values

5



of the normalised eta-function associated to X and X ′, respectively. Suppose we have an isogeny

f : X → X ′. Then we have

∏

P∈Kerf,P 6=0

GX (0, P ) =

√
N · ‖η‖(X ′)2

‖η‖(X)2
,

where N is the degree of f .

The above theorem answers a question posed by Szpiro.

Theorem. Let E and E ′ be elliptic curves over a number field K, related by an isogeny f : E → E ′.

Let p : E → B and p′ : E ′ → B be arithmetic surfaces over the ring of integers of K with generic

fibers isomorphic to E and E ′, respectively. Suppose that the isogeny f extends to a B-morphism

f : E → E ′; for example, this is guaranteed if E ′ is a minimal arithmetic surface. Let D be an

Arakelov divisor on E and let D′ be an Arakelov divisor on E ′. Then the equality of intersection

products (f∗D′, D) = (D′, f∗D) holds.

In the final Chapter 6 we explain how our explicit formulas can be used to effectively calculate

examples of canonical classes. It turns out that the major difficulty is always the calculation of the

invariant S(X).

Theorem. Consider the hyperelliptic curve X of genus 3 and defined over Q, with hyperelliptic

equation

y2 = x(x− 1)(4x5 + 24x4 + 16x3 − 23x2 − 21x− 4) .

Then X has semi-stable reduction over Q with bad reduction only at the primes p = 37, p = 701

and p = 14717. For the corresponding Riemann surface (also denoted by X) we have

log T (X) = −4.44361200473681284...

logS(X) = 17.57...

δ(X) = −33.40...

and for the curve X/Q we have

hF (X) = −1.280295247656532068...

e(X) = 20.32...

for the Faltings height and the self-intersection of the relative dualising sheaf, respectively.

The main results of this thesis are also described in the following papers.

R. de Jong, Arakelov invariants of Riemann surfaces. Submitted to Documenta Mathematica.

R. de Jong, On the Arakelov theory of elliptic curves. Submitted to l’Enseignement Mathématique.

R. de Jong, Faltings’ delta-invariant of a hyperelliptic Riemann surface. Submitted to the

Proceedings of the Texel Conference “The analogy between number fields and function fields”.

R. de Jong, Jacobian Nullwerte associated to hyperelliptic Riemann surfaces. In preparation.
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Chapter 1

Review of Arakelov geometry

In this chapter we review the fundamental notions of Arakelov geometry, as developed in Arakelov’s

paper [Ar2] and Faltings’ paper [Fa2]. These papers will serve as the basic references throughout

the whole chapter.

In Section 1.1 we discuss the complex differential geometric notions that are needed to provide

the “contributions at infinity” in Arakelov intersection theory. In Section 1.2 we turn then to this

intersection theory itself, and discuss its formal properties. In Section 1.3 we recall the defining

properties of the determinant of cohomology and the Deligne bracket, and show how they are

metrised over the complex numbers. These metrisations allow us to give an arithmetic version of

the Riemann-Roch theorem. In Section 1.4 we introduce Faltings’ delta-invariant, and give two

fundamental formulas in which this invariant occurs. In Section 1.5 we recall the definition and

basic properties of semi-stable curves and show how they are used to define Arakelov invariants

for curves over number fields. Finally in Section 1.6 we discuss the arithmetic significance of the

delta-invariant by stating and sketching a proof of the arithmetic Noether formula, due to Faltings

and Moret-Bailly.

1.1 Analytic part

Let X be a compact and connected Riemann surface of genus g > 0, and let Ω1
X be its holomorphic

cotangent bundle. On the space of holomorphic differential forms H0(X,Ω1
X) we have a natural

hermitian inner product given by

(ω, η) =
i

2

∫

X

ω ∧ η .

Here we use the notation i =
√
−1. We use this inner product1 to form an orthonormal basis

{ω1, . . . , ωg} of H0(X,Ω1
X). Then we define a canonical (1,1)-form µ on X by setting

µ :=
i

2g

g∑

k=1

ωk ∧ ωk .

Clearly the form µ does not depend on the choice of orthonormal basis, and we have
∫

X
µ = 1.

Definition 1.1.1. The canonical Arakelov-Green function G is the unique function X ×X → R≥0

such that the following properties hold:

(i) G(P,Q)2 is C∞ on X×X and G(P,Q) vanishes only at the diagonal ∆X . For a fixed P ∈ X ,

an open neighbourhood U of P and a local coordinate z on U we can write logG(P,Q) =

1We warn the reader that some authors use the normalisation
i

2π
instead of

i

2
.
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log |z(Q)| + f(Q) for P 6= Q ∈ U , with f a C∞-function;

(ii) for all P ∈ X we have ∂Q∂Q logG(P,Q)2 = 2πiµ(Q) for Q 6= P ;

(iii) for all P ∈ X we have
∫

X logG(P,Q)µ(Q) = 0.

Of course, the existence and uniqueness of such a function require proof. Such a proof is given

in [Ar2]. However, that proof relies on methods from the theory of partial differential equations,

and is ineffective in the sense that it does not give a way to construct G. One of the results in this

thesis is an explicit formula for G which is well-suited for concrete calculations (see Theorem 2.1.2).

The defining properties of G imply the symmetry relation G(P,Q) = G(Q,P ) for all P,Q ∈ X .

This follows by an easy application of Green’s formula, which we state at the end of this section.

The symmetry of G will be crucial for obtaining the symmetry of the Arakelov intersection product

that we shall define in Section 1.2.

We now describe how the Arakelov-Green function gives rise to certain canonical metrics on the

line bundles OX(D), where D is a divisor on X . It suffices to consider the case of a point P ∈ X ,

for the general case follows from this by taking tensor products. Let s be the canonical generating

section of the line bundle OX (P ). We then define a smooth hermitian metric ‖ · ‖OX (P ) on OX(P )

by putting ‖s‖OX(P )(Q) = G(P,Q) for any Q ∈ X . By property (ii) of the Arakelov-Green function,

the curvature form (cf. [GH], p. 148) of OX (P ) is equal to µ, and in general, the curvature form of

OX(D) is deg(D) · µ, with deg(D) the degree of D.

Definition 1.1.2. A line bundle L with a smooth hermitian metric ‖ · ‖ is called admissible if its

curvature form is a multiple of µ. We also call the metric ‖ · ‖ itself admissible in this case.

We will frequently make use of the following observation.

Proposition 1.1.3. Let ‖ · ‖ and ‖ · ‖′ be admissible metrics on a line bundle L. Then the quotient

‖ · ‖/‖ · ‖′ is a constant function on X.

Proof. The logarithm of the quotient is a smooth harmonic function on X , hence it is constant.

It follows that any admissible line bundle L is, up to a constant scaling factor, isomorphic to the

admissible line bundle OX(D) for a certain divisor D. In Section 1.2 we will generalise the notion

of admissible line bundle to arithmetic surfaces, and define an intersection product for admissible

line bundles.

An important example of an admissible line bundle is the holomorphic cotangent bundle Ω1
X .

We define a metric on it as follows. Consider the line bundle OX×X(∆X ) on X × X . By the

adjunction formula, we have a canonical residue isomorphism OX ×X(−∆X)|∆X

∼−→Ω1
X . We obtain

a smooth hermitian metric ‖ · ‖ on OX×X(∆X) by putting ‖s‖(P,Q) = G(P,Q), where s is the

canonical generating section.

Definition 1.1.4. We define the metric ‖ · ‖Ar on Ω1
X by requiring that the residue isomorphism

be an isometry.

Theorem 1.1.5. (Arakelov [Ar2]) The metric ‖ · ‖Ar is admissible.

It remains to state Green’s formula. We will use this formula once more in Section 3.8. It can

be proved in a straightforward way using Stokes’ formula.

Lemma 1.1.6. (Green’s formula) Let φ, ψ be functions on X such that for any P ∈ X, any

small enough open neighbourhood U of P and any local coordinate z on U we can write logφ(Q) =

vP (φ) log |z(Q)|+f(Q) and logψ(Q) = vP (ψ) log |z(Q)|+g(Q) for all P 6= Q ∈ U with vP (φ), vP (ψ)

integers and f, g two C∞-functions on U . Then the formula

i

π

∫

X

(
log φ · ∂∂ logψ − logψ · ∂∂ logφ

)
=
∑

P∈X

(vP (φ) logψ(P ) − vP (ψ) logφ(P ))
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holds.

1.2 Intersection theory

In this section we describe the intersection theory on an arithmetic surface in the original style of

Arakelov [Ar2]. For the general facts that we use on arithmetic surfaces we refer to [Li].

Definition 1.2.1. An arithmetic surface is a proper flat morphism p : X → B of schemes with X
regular and with B the spectrum of the ring of integers in a number field K, such that the generic

fiber XK is a geometrically connected curve. If XK has genus g, we also say that X is of genus g.

The arithmetic genus is constant in the fibers of an arithmetic surface, and all geometric fibers

except finitely many are non-singular. Further we have p∗OX = OB for an arithmetic surface

p : X → B, and hence, by the Zariski connectedness theorem, all fibers of p are connected.

Definition 1.2.2. An arithmetic surface p : X → B of positive genus is called minimal if every

proper birational B-morphism X → X ′ with p′ : X ′ → B an arithmetic surface, is an isomorphism.

For any geometrically connected, non-singular proper curve C of positive genus defined over a

number field K there exists a minimal arithmetic surface p : X → B together with an isomorphism

Xη
∼−→C. This minimal arithmetic surface is unique up to isomorphism.

We now proceed to discuss the Arakelov divisors on an arithmetic surface p : X → B.

Definition 1.2.3. (Cf. [Ar2]) An Arakelov divisor on X is a finite formal integral linear combination

of irreducible closed subschemes on X (i.e., a Weil divisor), plus a contribution
∑

σ ασ ·Fσ running

over the embeddings σ : K ↪→ C of K into the complex numbers. Here the ασ ∈ R, and the Fσ

are formal symbols, called the “fibers at infinity”, corresponding to the Riemann surfaces Xσ =

(X ⊗σ,B C)(C). We have a natural group structure on the set of such divisors, denoted by D̂iv(X ).

Given an Arakelov divisor D, we write D = Dfin + Dinf with Dfin its finite part, i.e., the

underlying Weil divisor, and with Dinf =
∑

σ ασ · Fσ its infinite part. To a non-zero rational

function f on X we associate an Arakelov divisor (f) = (f)fin + (f)inf with (f)fin the usual divisor

of f on X , and (f)inf =
∑

σ vσ(f) ·Fσ with vσ(f) = −
∫

Xσ
log |f |σ ·µσ . Here µσ is the fundamental

(1,1)-form on Xσ given in Section 1.1. The infinite contribution vσ(f) · Fσ is supposed to be an

analogue of the contribution to (f) in the fiber above a closed point b ∈ B, which is given by∑
C vC(f) · C where C runs through the irreducible components of the fiber above b, and where

vC denotes the normalised discrete valuation on the function field of X defined by C. The “fiber

at infinity” Fσ should be seen as “infinitely degenerate”, with each point P of Xσ corresponding

to an irreducible component, such that the valuation vP of f along this component is given by

vP (f) = − log |f |σ(P ).

Definition 1.2.4. We say that two Arakelov divisorsD1,D2 are linearly equivalent if their difference

is of the form (f) for some non-zero rational function f . We denote by Ĉl(X ) the group of Arakelov

divisors on X modulo linear equivalence.

Next we discuss the intersection theory of Arakelov divisors, and show that this intersection

theory respects linear equivalence. A vertical divisor on X is a divisor which consists only of

irreducible components of the fibers of p. A horizontal divisor on X is a divisor which is flat over

B. For typical cases D1, D2 of Arakelov divisors, the intersection product (D1, D2) is then defined

as follows: (i) if D1 is a vertical divisor, and D2 is a Weil divisor, without any components in

common with D1, then the intersection (D1, D2) is defined as (D1, D2) =
∑

b(D1, D2)b log #k(b)

where b runs through the closed points of B and where (D1, D2)b denotes the usual intersection

multiplicity (cf. [Li], Section 9.1) of D1, D2 above b. (ii) if D1 is a horizontal divisor, and D2 is a
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“fiber at infinity” Fσ , then (D1, D2) = deg(D1) with deg(D1) the generic degree of D1. (iii) if D1

and D2 are distinct sections of p, then (D1, D2) is defined as (D1, D2) = (D1, D2)fin + (D1, D2)inf

with (D1, D2)fin =
∑

b(D1, D2)b log #k(b) as in (i) and with (D1, D2)inf = −∑σ logGσ(Dσ
1 , D

σ
2 )

with Gσ the Arakelov-Green function (cf. Section 1.1) on Xσ. Note that − logG(P,Q) becomes a

kind of intersection multiplicity “at infinity”. The intersection numbers defined in this way extend

by linearity to a pairing on D̂iv(X ).

Theorem 1.2.5. (Arakelov [Ar2]) There exists a natural bilinear symmetric intersection pairing

D̂iv(X ) × D̂iv(X ) → R. This pairing factors through linear equivalence, giving an intersection

pairing Ĉl(X ) × Ĉl(X ) → R.

Morally speaking, by “compactifiying” the arithmetic surface by adding in the “fibers at infin-

ity”, and by “compactifiying” the horizontal divisors on the arithmetic surface by allowing also for

their complex points, we have created a framework that allows us to define a natural intersection

theory respecting linear equivalence. This makes for a formal analogy with the classical intersection

theory that we have on smooth proper surfaces defined over an algebraically closed field.

Let us sketch a proof of the second statement of Theorem 1.2.5 by showing that for a sectionD of

p, and a non-zero rational function f on X , we have (D, (f)) = 0. First let us determine, in general,

the Arakelov-Green function G(div(f), P ) for a non-zero meromorphic function f on a compact and

connected Riemann surface X of positive genus. We note that ∂P∂P logG(div(f), P )2 = 0 outside

div(f), since the degree of div(f) is 0. But we also have ∂∂ log |f |2 = 0 outside div(f), since f is

holomorphic outside div(f). This implies that G(div(f), P ) = eα · |f |(P ) for some constant α, and

after taking logarithms and integrating against µ we find, by property (iii) of Definition 1.1.1, that

α = −
∫

X
log |f | · µ = v(f). We compute then

(D, (f)) = (D, (f)fin +
∑

σ

vσ(f) · Fσ)

= (D, (f)fin)fin + (D, (f)fin)inf +
∑

σ

vσ(f)

=
∑

b

vb(f |D) log #k(b) −
∑

σ

log
(
evσ(f) · |f |σ(Dσ)

)
+
∑

σ

vσ(f)

=
∑

b

vb(f |D) log #k(b) −
∑

σ

log |f |σ(Dσ) ,

which is zero by the product formula for K.

Finally, we connect the notion of Arakelov divisor with the notion of admissible line bundle.

Definition 1.2.6. An admissible line bundle L on X is the datum of a line bundle L on X , together

with smooth hermitian metrics on the restrictions of L to the Xσ, such that these restrictions are all

admissible in the sense of Section 1.1. The group of isomorphism classes of admissible line bundles

on X is denoted by P̂ic(X ).

To each Arakelov divisor D = Dfin+Dinf with Dinf =
∑

σ ασ ·Fσ we can associate an admissible

line bundle OX (D), as follows. For the underlying line bundle, we take OX (Dfin). For the metric

on OX (Dfin)|Xσ we take the canonical metric on OX (Dfin)|Xσ as in Section 1.1, multiplied by e−ασ .

Clearly, for two Arakelov divisors D1 and D2 which are linearly equivalent, the corresponding

admissible line bundles OX (D1) and OX (D2) are isomorphic. The proof of the following theorem

is then a rather formal exercise.

Theorem 1.2.7. (Arakelov [Ar2]) There exists a canonical isomorphism of groups Ĉl(X )
∼−→P̂ic(X ).

Theorem 1.2.7, together with Theorem 1.2.5, allows us to speak of the intersection product of

two admissible line bundles, and we will often do this.
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1.3 Determinant of cohomology

The determinant of cohomology for an arithmetic surface p : X → B is a gadget on the base B

which allows us to formulate an arithmetic Riemann-Roch theorem for p (Theorem 1.3.8). In the

present section we will describe the determinant of cohomology in full generality. Our Riemann-

Roch theorem will be a formal analogue of the Riemann-Roch that one obtains by taking the

determinant of cohomology on a proper morphism p : X → B with X a smooth proper surface

and B a smooth proper curve, both defined over an algebraically closed field. With the help of

arithmetic Riemann-Roch, we will be able to formulate and prove an arithmetic analogue of the

Noether formula (see Section 1.6). References for this section are [De2] and [Mo1].

The determinant of cohomology is determined by a set of uniquely defining properties.

Definition 1.3.1. (Cf. [Mo1], §1) Let p : X → B be a proper morphism of Noetherian schemes.

To each coherent OX -module F on X , flat over OB , we associate a line bundle detRp∗F on B,

called the determinant of cohomology of F , satisfying the following properties:

(i) The association F 7→ detRp∗F is functorial for isomorphisms F
∼−→F ′ of coherent OX -

modules.

(ii) The construction of detRp∗F commutes with base change, i.e., each cartesian diagram

X ′

p′

��

u′
// X

p

��

B′ u
// B

gives rise to a canonical isomorphism u∗(detRp∗F )
∼−→ detRp′∗(u

′∗F ).

(iii) Each exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0

of flat coherent OX -modules gives rise to an isomorphism

detRp∗F
∼−→detRp∗F

′ ⊗ detRp∗F
′′

compatible with base change and with isomorphisms of exact sequences.

(iv) Let E· = (0 → E0 → E1 → · · · → En → 0) be a finite complex of OB-modules which are

locally free of finite rank, and suppose there is given a quasi-isomorphism E · → Rp∗F . Then

one has a canonical isomorphism

detRp∗F
∼−→

n⊗

k=0

(
detEk

)⊗(−1)k

,

compatible with base change. Here detE denotes the maximal exterior power of a locally free

OB-module E of finite rank.

(v) In particular, when the OB-modules Rkp∗F are locally free, one has a canonical isomorphism

detRp∗F
∼−→

n⊗

k=0

(
detRkp∗F

)⊗(−1)k

,

compatible with base change.
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(vi) Let χX/B(F ) be the locally constant function x 7→ χ(Fx) on B. Let u ∈ Γ(B,O∗
B) be

multiplication by u in F . By (i), this gives an automorphism of detRp∗F ; this automorphism

is multiplication by uχX/B(F ).

(vii) If M is a line bundle on B then one has a canonical isomorphism

detRp∗(F ⊗ p∗M)
∼−→(detRp∗F ) ⊗M⊗χX/B(F )

of line bundles on B.

In the case B = Spec(C), we will often use the shorthand notation λ(F ) for the determinant of

cohomology of F . Explicitly, we have λ(F ) = ⊗n
k=0(detHk(X , F ))⊗(−1)k

, where n is the dimension

of X .

An important canonical coherent sheaf in the situation where p : X → B is proper, flat and

locally a complete intersection, is the relative dualising sheaf ωX/B, cf. [Li], Section 6.4. In fact,

the sheaf ωX/B is invertible, and satisfies the following important duality relation (Serre duality):

let F be any coherent sheaf on X , flat over OB . Then we have a canonical isomorphism

detRp∗F
∼−→ detRp∗(Ω

1
X/B ⊗ F∨)

of line bundles on B. The relative dualising sheaf behaves well with respect to base change: let

u : B′ → B be a morphism, let X ′ = X ×B B′ and let u′ : X ′ → X be the projection onto the first

factor. Then we have a canonical isomorphism u′∗ωX/B
∼−→ωX ′/B′ . As a consequence, by property

(ii) in Definition 1.3.1 we have a canonical isomorphism u∗(det p∗ωX/B)
∼−→det p′∗(ωX ′/B′) on B′.

Here p′ : X ′ → B′ is the projection on the second factor. If p : X → B is a smooth curve, the

relative dualising sheaf ωX/B can be identified with the sheaf Ω1
X/B of relative differentials. A

convenient description is also possible if the fibers of p are nodal curves, see [DM], §1.

For our Riemann-Roch theorem we need a metric on the determinant of cohomology detRp∗L,

where L is an admissible line bundle on an arithmetic surface p : X → B. So, let us restrict for the

moment to the case that B = Spec(C), and consider the determinant of cohomology λ(L), where L

is an admissible line bundle on a compact and connected Riemann surface X of positive genus g.

The following theorem gives a satisfactory answer to our question.

Theorem 1.3.2. (Faltings [Fa2]) For every admissible line bundle L there exists a unique metric

on λ(L) such that the following axioms hold:

(i) any isomorphism L1
∼−→L2 of admissible line bundles induces an isometry λ(L1)

∼−→λ(L2);

(ii) if we scale the metric on L by a factor α, the metric on λ(L) is scaled by a factor αχ(L), where

χ(L) = degL− g + 1;

(iii) for any admissible line bundle L and any point P , the exact sequence

0 → L→ L(P ) → P∗P
∗L(P ) → 0

induces an isometry

λ(L(P ))
∼−→λ(L) ⊗ P ∗L(P ) ;

here L(P ) carries the metric coming from the canonical isomorphism L(P )
∼−→L⊗OX OX (P );

(iv) for L = Ω1
X , the metric on λ(L) = ∧gH0(X,Ω1

X) is defined by the hermitian inner product

(ω, η) 7→ i
2

∫
X ω ∧ η on H0(X,Ω1

X).
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We will refer to the metric in the theorem as the Faltings metric on the determinant of coho-

mology. For the proof of Theorem 1.3.2 we shall use the so-called Deligne bracket. Since we will

make essential use of this tool later on, we define it here in detail.

Definition 1.3.3. (Cf. [De2]) Let p : X → B be a proper, flat curve which is locally a complete

intersection. Let L,M be two line bundles on X . Then 〈L,M〉 is to be the OB-module which is

generated, locally for the étale topology on B, by the symbols 〈l,m〉 for local sections l,m of L,M ,

with relations

〈l, fm〉 = f(div(l)) · 〈l,m〉 , 〈fl,m〉 = f(div(m)) · 〈l,m〉 .

Here f(div(l)) should be interpreted as a norm: for an effective relative Cartier divisor D on X
we set f(D) = ND/B(f), and then for div(l) = D1 −D2 with D1, D2 effective we set f(div(l)) =

f(D1) · f(D2)
−1. One checks that this is independent of the choices of D1, D2. Furthermore, it can

be shown that the OB-module 〈L,M〉 is actually a line bundle on B.

We have the following properties for the Deligne bracket.

(i) For given line bundles L1, L2,M1,M2, L,M on X we have canonical isomorphisms

〈L1 ⊗ L2,M〉 ∼−→〈L1,M〉 ⊗ 〈L2,M〉, 〈L,M1 ⊗M2〉 ∼−→〈L,M1〉 ⊗ 〈L,M2〉,
and 〈L,M〉 ∼−→〈M,L〉;

(ii) The formation of the Deligne bracket commutes with base change, i.e., each cartesian diagram

X ′

p′

��

u′
// X

p

��

B′ u
// B

gives rise to a canonical isomorphism u∗〈L,M〉 ∼−→〈u′∗L, u′∗M〉;

(iii) For P : B → X a section of p we have a canonical isomorphism P ∗L
∼−→〈OX (P ), L〉;

(iv) If the B-morphism q : X ′ → X is the blowing-up of a singular point on X , then we have a

canonical isomorphism 〈q∗L, q∗M〉 ∼−→〈L,M〉;

(v) For the relative dualising sheaf ωX/B of p and any section P : B → X of p we have a canonical

adjunction isomorphism 〈P, P 〉⊗−1 ∼−→〈P, ωX/B〉.

The relation with the determinant of cohomology is given by the following formula: let L,M be

line bundles on X , then we have a canonical isomorphism

〈L,M〉 ∼−→ detRp∗(L⊗M) ⊗ (detRp∗L)⊗−1 ⊗ (detRp∗M)⊗−1 ⊗ det p∗ωX/B .

This formula gives us new information on the determinant of cohomology, namely, it follows from

the formula that we have a canonical isomorphism

(∗) (detRp∗L)
⊗2 ∼−→〈L,L⊗ ω−1

X/B〉 ⊗ (det p∗ωX/B)⊗2

of line bundles on B. This isomorphism can be interpreted as Riemann-Roch for the morphism

p : X → B. We will use Riemann-Roch to put metrics on the λ(L). First of all we show how the

Deligne bracket can be metrised in a natural way.

Definition 1.3.4. (Cf. [De2]) Let L,M be admissible line bundles on a Riemann surface X . Then

for local sections l,m of L and M we put

log ‖〈l,m〉‖ = (log ‖m‖) [div(l)] .
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It can be checked that this gives a well-defined metric on 〈L,M〉, and in fact the isomorphisms from

(i), (iii) and (v) above are isometries for this metric.

Proof of Theorem 1.3.2. We will construct a metric on λ(L) such that axioms (i)–(iv) are satisfied.

First of all we use property (iv) from Theorem 1.3.2 to put a metric on λ(ω). Next we use Definition

1.3.4 above to put a metric on the brackets 〈L,L ⊗ ω−1〉. Then by Riemann-Roch (*) we obtain

a metric on λ(L). From this construction, the axioms (i) and (ii) are clear; it only remains to see

that property (iii) is satisfied. But this we can see by the following argument due to Mazur: we

have isometries

λ(L)⊗2 ∼−→〈L,L⊗ ω−1〉 ⊗ λ(ω)⊗2 and λ(L(P )))⊗2 ∼−→〈L(P ), L(P ) ⊗ ω−1〉 ⊗ λ(ω)⊗2 .

Combining, we obtain an isometry

λ(L(P ))⊗2 ⊗ λ(L)⊗−2 ∼−→〈L(P ), L(P ) ⊗ ω−1〉 ⊗ 〈L,L⊗ ω−1〉⊗−1 .

By expanding the brackets, we see that the latter is isometric to P ∗L(P ) ⊗ P ∗(L ⊗ ω−1). By

the adjunction formula, this is isometric with (P ∗L(P ))⊗2. Hence property (iii) also holds, and

Theorem 1.3.2 is proven.

Note that the Riemann-Roch isomorphism (*), which is by now an isometry given the various

metrisations, gives us that the canonical Serre duality isomorphism λ(L)
∼−→λ(Ω1

X ⊗ L−1) is an

isometry.

To conclude this section, we explain what all this means for admissible line bundles on arith-

metic surfaces. Using the metrisation of the determinant of cohomology, one obtains, for any

arithmetic surface p : X → B = Spec(R) and any admissible line bundle L on X , the determinant

of cohomology detRp∗L as a metrised line bundle (or metrised projective R-module) on B.

Definition 1.3.5. For a metrised projective R-module M we define a degree as follows: choose a

non-zero element s of M , then

d̂egM = log #(M/R · s) −
∑

σ

log ‖s‖σ .

One can check using the product formula that this definition is independent of the choice of s.

It follows directly from Definitions 1.3.4 and 1.3.5 that for two admissible line bundles L,M on

X we have d̂eg 〈L,M〉 = (L,M), the intersection product from Section 1.2.

We are now ready to reap the fruits of our work. Let ωX/B be the admissible line bundle on X
whose underlying line bundle is the relative dualising sheaf of p, and where the metrics at infinity

are the canonical ones as in Section 1.1.

Proposition 1.3.6. (Adjunction formula, Arakelov [Ar2]) For any section P : B → X we have an

equality −(P, P ) = (P, ωX/B).

Proof. This follows immediately from property (iii) of the Deligne bracket and the definition of the

admissible metric on Ω1
X for a compact and connected Riemann surface X , given in Section 1.1.

Proposition 1.3.7. Let q : B′ → B be a finite morphism with B′ the spectrum of the ring of

integers in a finite extension F of the quotient field K of R. Let X ′ → X ×B B′ be the minimal

desingularisation of X ×B B
′, and let r : X ′ → X be the induced morphism. Then we have, for any

two admissible line bundles L,M on X , an equality (r∗L, r∗M) = [F : K](L,M).

Proof. This follows from properties (ii) and (iv) of the Deligne bracket.
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Proposition 1.3.8. (Riemann-Roch theorem, Faltings [Fa2]) Let L be an admissible line bundle

on X . Then the formula

d̂eg detRp∗L =
1

2
(L,L⊗ ω−1

X/B) + d̂eg det p∗ωX/B

holds.

Proof. This follows directly from the fact that Riemann-Roch (*) is an isometry.

1.4 Faltings’ delta-invariant

The definition of the Faltings metric on the determinant of cohomology (see Theorem 1.3.2) is

rather implicit, since it is given as the unique metric satisfying a certain set of axioms. In this

section we want to make the Faltings metric more explicit. It turns out that there is a close

relationship with theta functions, which we briefly review first. The connection is provided by

Faltings’ delta-invariant, which is defined in Theorem 1.4.6. We end this section by giving two

fundamental formulas in which the delta-invariant occurs.

Let again X be a compact and connected Riemann surface of genus g > 0. Let Picg−1(X) be

the degree g − 1 part in the Picard variety of isomorphism classes of line bundles on X . Choose a

symplectic basis for the homologyH1(X,Z) of X and choose a basis {ω1, . . . , ωg} of the holomorphic

differentials H0(X,Ω1
X). Let Ω = (Ω1|Ω2) be the period matrix given by these data. By Riemann’s

first bilinear relations, the matrix Ω1 is invertible and the matrix τ = Ω−1
1 Ω2 lies in Hg , the Siegel

upper half-space of complex symmetric g × g-matrices with positive definite imaginary part.

Lemma 1.4.1. (Riemann’s second bilinear relations) The matrix identity

(
i

2

∫

X

ωk ∧ ωl

)

1≤k,l≤g

=
i

2
(Ω2

tΩ1 − Ω1
tΩ2) = Ω1(Imτ)

tΩ1

holds.

Proof. For the first equality, see for instance [GH], pp. 231–232. The second follows from the first

by the fact that τ is symmetric.

Choose a point P0 ∈ X , and let {η1, . . . , ηg} = {ω1, . . . , ωg} · tΩ−1
1 . Then by a classical theorem

of Abel and Jacobi, the map

Divg−1(X) −→ Cg/Zg + τZg ,
∑

nkPk 7→
∑

nk

∫ Pk

P0

(η1, . . . , ηg)

descends to well-defined bijective map

u : Picg−1(X)
∼−→Cg/Zg + τZg .

Let ϑ(z; τ) be Riemann’s theta function given by

ϑ(z; τ) :=
∑

n∈Zg

exp(πitnτn+ 2πitnz) .

Due to its transformation properties under translation of z by an element of the lattice Zg + τZg ,

the function ϑ can be viewed as a global section of a line bundle on Cg/Zg + τZg . We denote by Θ0

the divisor of this section. Let Θ ⊂ Picg−1(X) be the divisor given by the classes of line bundles

admitting a global section. Riemann has shown that there is a close relationship between these two

“theta-divisors”.
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Theorem 1.4.2. (Riemann) There is an element κ = κ(P0) in Cg/Zg +τZg such that the following

holds. Let tκ denote translation by κ in Cg/Zg + τZg . Then the equality of divisors (tκ ·u)∗Θ0 = Θ

holds. In particular we have a canonical isomorphism of line bundles (tκ · u)∗O(Θ0)
∼−→O(Θ) on

Picg−1(X). Furthermore, for a divisor D of degree g−1 on X we have (tκ ·u)(K−D) = −(tκ ·u)(D),

where K is a canonical divisor on X. In particular, the map tκ · u identifies the set of classes of

semi-canonical divisors (i.e., divisors D with 2D linearly equivalent to K) with the set of 2-division

points on Cg/Zg + τZg .

We want to put a metric on the line bundle O(Θ). By Riemann’s theorem, it suffices to put a

metric on the line bundle O(Θ0) on Cg/Zg + τZg . Let s be the canonical section of O(Θ0), and let

ν be the canonical translation-invariant (1,1)-form on Cg/Zg + τZg given by

ν :=
i

2

∑

1≤k,l≤g

(Imτ)−1
k,l dzk ∧ dzl .

The 2g-form 1
g!ν

g gives the Haar measure on Cg/Zg + τZg . We let ‖ · ‖Θ0 be the metric on O(Θ0)

uniquely defined by the following properties:

(i) the curvature form of ‖ · ‖Θ0 is equal to ν;

(ii) 1
g!

∫
Cg/Zg+τZg ‖s‖2

Θ0
νg = 2−g/2.

Definition 1.4.3. We denote by ‖ · ‖Θ the metric on O(Θ) induced by ‖ · ‖Θ0 via Riemann’s

theorem, and we write ‖ϑ‖ as a shorthand for ‖(tκ · u)∗s‖Θ, or, by abuse of notation, for ‖s‖Θ0 .

Note that ‖ϑ‖(K − D) = ‖ϑ‖(D) for any divisor D of degree g − 1, and that ‖ϑ‖(D) vanishes if

and only if D is linearly equivalent to an effective divisor.

By checking the properties (i) and (ii) one finds the following explicit formula for ‖ϑ‖.

Proposition 1.4.4. Let z ∈ Cg and τ ∈ Hg, the Siegel upper half-space of degree g. Then the

formula

‖ϑ‖(z; τ) = (det Imτ)1/4 exp(−πty · (Imτ)−1 · y) · |ϑ(z; τ)|

holds. Here y = Im z.

It is not difficult to check using Lemma 1.4.1 that if we embed X into Cg/Zg +τZg by integration

j : P 7→
∫ P

P0
(η1, . . . , ηg), we have j∗ν = g · µ. One can view this as an alternative definition of the

form µ.

Proposition 1.4.5. Let D be a divisor on X, and consider the map φD : X → Picg−1(X) given

by P 7→ [D − χ(D) · P ], where χ(D) = degD − g + 1. Then the line bundle φ∗
D(O(Θ)) on X is

admissible and has degree g · χ(D)2.

Proof. A computation using the formula in Proposition 1.4.4 shows that outside φ∗
D(Θ) we have

∂P∂P log ‖ϑ‖(D − χ(D) · P )2 = 2πiχ(D)2 · j∗ν = 2πigχ(D)2 · µ. Thus, the curvature form of

φ∗D(O(Θ)) is a multiple of µ, and the degree of φ∗
D(O(Θ)) is g · χ(D)2.

The following theorem introduces Faltings’ delta-invariant, connecting Faltings’ metric on the

determinant of cohomology with the metric on O(Θ) defined in Definition 1.4.3. It follows from

axiom (ii) in Theorem 1.3.2 that for an admissible line bundle L of degree g−1, the metric on λ(L)

is in fact independent of the metric on L.

Theorem 1.4.6. (Faltings [Fa2]) There is a constant δ = δ(X) such that the following holds.

Let L be an admissible line bundle of degree g − 1. Then there is a canonical isomorphism

λ(L)
∼−→O(−Θ)[L], and the norm of this isomorphism is equal to exp(δ/8).
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For the proof we need the following lemma. For the general definition of the scheme Picg−1(X/B),

its theta divisor Θ, and for the existence of the universal bundle, we refer the reader to [Mo1], Sec-

tion 2.

Lemma 1.4.7. Let B be a noetherian scheme and let p : X → B be a smooth proper curve admitting

a section. There is, up to a unique isomorphism, a unique universal line bundle U on the product

X × Picg−1(X/B). Let q : X × Picg−1(X/B) → Picg−1(X/B) be the projection onto the second

factor. Then there is a canonical isomorphism detRq∗U ∼−→O(−Θ) of line bundles on Picg−1(X/B),

compatible with base change.

Proof. This is in [Mo1], Section 2.4.

Sketch of the proof of Theorem 1.4.6. Let r be a non-negative integer, let E be a divisor of de-

gree r + g − 1 on X , and consider the map ϕE : Xr → Picg−1(X) given by (P1, . . . , Pr) 7→
OX (E − (P1 + · · · + Pr)). Let U be the universal line bundle on X × Picg−1(X), and consider the

pullback diagram

Xr ×X

p

��

ϕ̃E
// Picg−1(X) ×X

q

��

Xr
ϕE

// Picg−1(X)

with p, q the projections on the first factor and with ϕ̃E = (ϕE , idX). By Lemma 1.4.7 and Definition

1.3.1 we have a canonical isomorphism detRp∗ (ϕ̃∗
EU)

∼−→ϕ∗
E (O(−Θ)) of line bundles on Xr. It

clearly suffices for our purposes to prove that the norm of this isomorphism is constant. But this

follows from a calculation as performed in [Fa2], p. 397, showing that the curvature forms of the

line bundles at both sides of the isomorphism are equal.

In order to perform the calculation referred to at the end of the above proof, Faltings makes

use of the following lemma. We, in turn, will use this lemma to derive an explicit formula from

Theorem 1.4.6.

Lemma 1.4.8. Let L be an admissible line bundle on X and let P1, . . . , Pr be r points on X. Then

we have a canonical isomorphism

λ(L⊗OX (P1 + . . .+ Pr)
∨)

∼−→λ(L) ⊗
r⊗

k=1

P ∗
kL

∨ ⊗
⊗

k<l

P ∗
l OX(Pk) ,

and this isomorphism is an isometry.

Proof. This follows just by iteration of axiom (iii) from Theorem 1.3.2.

A fundamental theorem of Riemann states that if D = P1 + · · · + Pg is an effective divisor of

degree g such that φD(X) is not contained in Θ, we have an equality of divisors φ∗
D(Θ) = D on

X . By Propositions 1.1.3 and 1.4.5, the canonical isomorphism φ∗
D(O(Θ))

∼−→OX(P1 + · · · + Pg)

has constant norm on X . In other words, there is a constant c = c(P1, . . . , Pg) depending only on

P1, . . . , Pg such that ‖ϑ‖(P1+ · · ·+Pg−Q) = c ·∏g
k=1 G(Pk , Q) for all Q ∈ X . We will now compute

this constant. Let {ω1, . . . , ωg} be a basis of the differentials H0(X,Ω1
X) and let P1, . . . , Pg be g

points on X . Let z1, . . . , zg be local coordinates about P1, . . . , Pg and write ωk = fkl · dzl locally

at Pl. Then we write ‖ detωk(Pl)‖Ar = | det(fkl(0))| ·
∏g

k=1 ‖dzk‖Ar(Pk). This definition does not

depend on the choices of the local coordinates z1, . . . , zg.

Theorem 1.4.9. (Faltings [Fa2]) Let {ω1, . . . , ωg} be an orthonormal basis of H0(X,Ω1
X) provided

with the hermitian inner product (ω, η) 7→ i
2

∫
X ω ∧ η. Let P1, . . . , Pg , Q be generic points on X.
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Then the formula

‖ϑ‖(P1 + · · · + Pg −Q) = exp(−δ(X)/8) · ‖ detωk(Pl)‖Ar∏
k<l G(Pk , Pl)

·
g∏

k=1

G(Pk , Q)

holds.

Proof. We apply Lemma 1.4.8 to the admissible line bundle L = Ω1
X (Q) = Ω1

X ⊗OX OX(Q) and the

points P1, . . . , Pg . We obtain the required formula by computing the norm of a canonical section

on the left and the right hand side of the isomorphism in Lemma 1.4.8. By Serre duality we have

λ(Ω1
X (Q) ⊗ OX(P1 + · · · + Pg)

∨) ∼= λ(OX (P1 + · · · + Pg − Q)). For generic points P1, . . . , Pg , Q,

the line bundle OX (P1 + · · · + Pg − Q) has no global sections. In this case, the determinant

λ(OX (P1 + · · · + Pg −Q)) is canonically isomorphic to C and hence has a canonical section 1. By

Theorem 1.4.6, it has norm exp(−δ(X)/8) · ‖ϑ‖(P1 + · · · + Pg −Q)−1. Now let’s look at the right

hand side of the isomorphism in Lemma 1.4.8. We have a canonical isomorphism

λ(Ω1
X(Q))

∼−→
g⊗

k=1

P ∗
k Ω1

X(Q)

given by taking the determinant of the evaluation map

H0(X,Ω1
X(Q)) = H0(X,Ω1

X)
∼−→

g⊕

k=1

P ∗
k Ω1

X(Q) .

The norm of this isomorphism is ‖ detωk(Pl)‖Ar ·
∏g

k=1 G(Pk, Q), and hence we have a canonical

element in λ(Ω1
X (Q))∨ ⊗⊗g

k=1 P
∗
k Ω1

X(Q) of that same norm. We end up with a canonical element

in

λ(Ω1
X (Q)) ⊗

(
g⊗

k=1

P ∗
k Ω1

X(Q)

)∨

⊗
⊗

k<l

P ∗
l OX (Pk)

of norm

‖ detωk(Pl)‖−1
Ar ·

g∏

k=1

G(Pk , Q)−1 ·
∏

k<l

G(Pk , Pl) .

The theorem follows by equating the two norms.

An important counterpart to Faltings’ formula has been proved by Guàrdia [Gu1]. We will

make essential use of this formula in Section 4.5 where, as an appendix to our work involved in

determining a certain auxiliary Arakelov invariant for hyperelliptic Riemann surfaces, we prove a

relation between products of certain Jacobian Nullwerte and products of certain Thetanullwerte.

The new ingredient in Guàrdia’s formula is a function ‖J‖ on SymgX , which we shall introduce

first.

Recall that we have fixed for our Riemann surface X a symplectic basis of its homology and

a basis {ω1, . . . , ωg} of H0(X,Ω1
X), giving rise to a period matrix Ω = (Ω1|Ω2). We have put

τ = Ω−1
1 Ω2 and {η1, . . . , ηg} = {ω1, . . . , ωg} · tΩ−1

1 .

Lemma 1.4.10. Consider ∧gH0(X,Ω1
X) with its metric derived from the hermitian inner product

(ω, η) 7→ i
2

∫
X ω∧η on H0(X,Ω1

X). Then the formula ‖ω1 ∧ . . .∧ωg‖2 = (det Imτ) · | det Ω1|2 holds.

Proof. Note that ‖ω1∧. . .∧ωg‖2 = det ((ωk, ωl))k,l. The formula follows then from Lemma 1.4.1.
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Definition 1.4.11. For w1, . . . , wg ∈ Cg we put

J(w1, . . . , wg) := det
(

∂ϑ
∂zk

(wl)
)
,

‖J‖(w1, . . . , wg) := (det Imτ)
g+2
4 · exp(−π∑g

k=1
tyk · (Imτ)−1 · yk) · |J(w1, . . . , wg)| ,

where yk = Imwk for k = 1, . . . , g. The latter definition depends only on the classes of the vectors

wk in Cg/Zg + τZg . Next, fix g points P1, . . . , Pg on X and choose g vectors w1, . . . , wg in Cg by

requiring that for each k = 1, . . . , g, the divisor
∑g

l=1
l6=k

Pl corresponds by Riemann’s theorem 1.4.2

to the class [wk ] ∈ Cg/Zg + τZg . We then define ‖J‖(P1, . . . , Pg) := ‖J‖(w1, . . . , wg). One may

check that this definition does not depend on the choice of the matrix τ .

We have ‖J‖(P1, . . . , Pg) = 0 if and only if the points P1, . . . , Pg are linearly dependent on the

image of X under the canonical map X → P(H0(X,Ω1
X)∨).

The following theorem is Corollary 2.6 in [Gu1].

Theorem 1.4.12. (Guàrdia [Gu1]) Let P1, . . . , Pg , Q be generic points on X. Then the formula

‖ϑ‖(P1 + · · · + Pg −Q)g−1 = exp(δ(X)/8) · ‖J‖(P1, . . . , Pg) ·
∏g

k=1G(Pk , Q)g−1

∏
k<l G(Pk , Pl)

holds.

Proof. If P is a point on X and t is a local coordinate about P , then by definition of the Arakelov

metric on Ω1
X we have limQ→P |t(P ) − t(Q)|/G(P,Q) = ‖dt‖Ar. By a slight abuse of notation we

write ηk = ηk(P )dt and ωk = ωk(P )dt for k = 1, . . . , g. In this notation we have, for any divisor D

of degree g − 1,

lim
Q→P

‖ϑ‖(D+ P −Q)/|t(P ) − t(Q)| = (det Imτ)1/4 · exp(−πty · (Imτ)−1 · y) · |
g∑

k=1

∂ϑ

∂zk
(w) · ηk(P )| ,

by the formula in Proposition 1.4.4. Here y = Imw and w ∈ Cg lifts a class that corresponds to D

in Picg−1(X). Let us assume that {ω1, . . . , ωg} was an orthonormal basis of H0(X,Ω1
X). We are

going to apply the above to the equation

‖ϑ‖(P1 + · · · + Pg −Q) = exp(−δ(X)/8) · ‖ detωk(Pl)‖Ar∏
k<l G(Pk , Pl)

·
g∏

k=1

G(Pk , Q)

which is Faltings’ fundamental formula from Theorem 1.4.9. Let t1, . . . , tg be local coordinates

about the points P1, . . . , Pg , and let wk for each k = 1, . . . , g correspond to the divisor
∑g

l=1
l6=k

Pl.

Dividing through |tk(Pk) − tk(Q)| and taking the limit Q→ Pk we obtain

(det Imτ)1/4 · exp(−πtyk · (Imτ)−1 · yk) · |
g∑

l=1

∂ϑ

∂zl
(wk) · ηl(Pk)|

= exp(−δ(X)/8) · ‖ detωk(Pl)‖Ar∏
k<l G(Pk, Pl)

·
∏

l6=k

G(Pk , Pl) ·
1

‖dtk‖Ar(Pk)
.
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Multiplying over k = 1, . . . , g we obtain

(det Imτ)g/4 · exp(−π
g∑

k=1

tyk · (Imτ)−1 · yk) · |
g∏

k=1

g∑

l=1

∂ϑ

∂zl
(wk) · ηl(Pk)|

= exp(−gδ(X)/8) ·
(‖ detωk(Pl)‖Ar∏

k<l G(Pk , Pl)

)g

·
∏

k<l

G(Pk , Pl)
2 ·

g∏

k=1

1

‖dtk‖Ar(Pk)
.

Riemann’s singularity theorem (see [GH], pp. 341–342) says that for any effective divisor D on X ,

the projectivised tangent space PTΘ,D at the class of D in Θ ⊂ Picg−1(X) contains the image of

the divisor D on X under the canonical map X → PTPicg−1(X),D
∼= P(H0(X,Ω1

X)∨). For us this

means that
∑g

m=1
∂ϑ

∂zm
(wk) · ηm(Pl) = 0 whenever k 6= l. As a consequence, we can write

g∏

k=1

g∑

l=1

∂ϑ

∂zl
(wk) · ηl(Pk) = J(w1, . . . , wg) · det ηk(Pl) .

Plugging this in we obtain

(det Imτ)−1/2 · ‖J‖(P1, . . . , Pg) · | det ηk(Pl)|

= exp(−gδ(X)/8) ·
( ‖ detωk(Pl)‖Ar∏

k<lG(Pk , Pl)

)g

·
∏

k<l

G(Pk, Pl)
2 · | detωk(Pl)|

‖ detωk(Pl)‖Ar
.

It follows from Lemma 1.4.10 that | det ηk(Pl)| = (det Imτ)1/2| detωk(Pl)|. Hence we arrive at

‖J‖(P1, . . . , Pg) = exp(−gδ(X)/8) ·
( ‖ detωk(Pl)‖Ar∏

k<l G(Pk, Pl)

)g−1

.

The required formula is obtained by eliminating the factor ‖ detωk(Pl)‖Ar using Faltings’ funda-

mental formula again.

It is not so clear either from Theorem 1.4.6 or from the formulas of Faltings and Guàrdia derived

above, how one can compute the delta-invariant for a given Riemann surface X . In fact, in the

introduction to his paper [Fa2], Faltings says that he cannot give an explicit formula for it, except

in the case of elliptic curves. However, as will become apparent in Section 1.6, the delta-invariant

plays a very fundamental role in the function theory of the moduli space of curves, and therefore it

deserves to be studied further. In Chapter 2 we will answer Faltings’ question by giving a simple

closed formula for the delta-invariant which holds in arbitrary genus.

1.5 Semi-stability

In this section and the next we formulate results that hold only in general for semi-stable arithmetic

surfaces. We start by recalling the definition of a semi-stable curve.

Definition 1.5.1. Let B be a locally Noetherian scheme. A proper flat curve p : X → B is

called semi-stable if all geometric fibers of p are reduced, connected and have only ordinary double

points as singularities, the arithmetic genus of the fibers is positive, and each non-singular rational

component of a geometric fiber meets the other components in at least 2 points. For a semi-stable

curve p : X → B and a closed point b ∈ B we denote by δb the number of singular points in the

fiber at b. If p : X → B is a semi-stable arithmetic surface, we denote by ∆X/B the divisor
∑

b δb · b
on B, where b runs through the closed points of B.

21



We will need the following result in Section 2.5. The proof uses the celebrated Hodge index

theorem for arithmetic surfaces (cf. [Fa2], §5). This is well-documented and we will not discuss

this further.

Proposition 1.5.2. (Faltings [Fa2]) Let p : X → B be a semi-stable arithmetic surface of genus

g > 0, and let D be an effective Arakelov divisor on X . Then

(i) (ωX/B , ωX/B) ≥ 0,

(ii) 4g(g − 1) · (ωX/B , D) ≥ (ωX/B, ωX/B) · degD.

Proof. This is Theorem 5 in [Fa2].

We next consider the properties of semi-stable arithmetic surfaces with respect to base change.

Proposition 1.5.3. Let q : B′ → B be a finite morphism with B′ the spectrum of the ring of

integers in a finite extension L of the quotient field K of R. Let X ′ → X ×B B′ be the minimal

desingularisation of X ×B B′, and let r : X ′ → X be the induced morphism.

(i) The arithmetic surface X ′ → B′ is again semi-stable.

(ii) We have an equality of divisors ∆X ′/B′ = q∗∆X/B on B′.

(iii) There exists a canonical isomorphism r∗ωX/B
∼−→ωX ′/B′ on X ′.

(iv) There exists a canonical isomorphism det p′∗ωX ′/B′
∼−→q∗ det p∗ωX/B on B′.

Proof. As to (i) and (ii), these follow from the fact (cf. [La], Theorem V.5.1) that a double point

in the fiber of X ×B B′ at a closed point b′ is resolved by a chain of e− 1 irreducible components

isomorphic to P1 and having geometric self-intersection -2. Here e is the ramification index of

q : B′ → B at b′. Statement (iii) is in [La], Proposition V.5.5. Finally (iv) follows from (iii) and

the defining properties of the determinant of cohomology.

Proposition 1.5.3 makes it possible to define invariants of curves defined over a number field.

Theorem 1.5.4. (Stable reduction theorem, Grothendieck, Deligne-Mumford et al. [DM]) For any

geometrically connected, non-singular proper curve C of positive genus over a number field K there

exists a finite extension L of K and a semi-stable arithmetic surface p : X → B over the ring of

integers of L such that the generic fiber of p is isomorphic to X ⊗K L.

We note that a semi-stable arithmetic surface is a minimal model of its generic fiber.

Proposition 1.5.5. Let C/K be a curve of positive genus, and let L be a finite extension of K over

which C acquires semi-stable reduction. Let p : X → B be a semi-stable arithmetic surface over the

ring of integers of L. Then the quantities d̂eg det p∗ωX/B/[L : Q] and (ωX/B, ωX/B)/[L : Q] do not

depend on the choice of L, hence they define invariants of C.

Proof. This follows from Propositions 1.5.3, 1.3.7 and 1.3.8.

Definition 1.5.6. We denote by hF (C) the quantity d̂eg det p∗ωX/B/[L : Q] from the above

proposition. It is often referred to as the Faltings height of C. We denote by e(C) the quan-

tity (ωX/B, ωX/B)/[L : Q] from the above proposition.

In [Fa1] it is proved that for a fixed number field K, the set of isomorphism classes of C/K of

fixed positive genus and of bounded Faltings height, is finite.
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1.6 Noether’s formula

In this section we demonstrate the importance of the delta-invariant by showing that it can be seen

as the norm of the so-called Mumford-isomorphism on the moduli space of curves (Theorem 1.6.1).

This fundamental isomorphism was first obtained in [Mu1] by an application of the Grothendieck-

Riemann-Roch theorem. In [Fa2] and [Mo2] we find an explicit construction of this isomorphism.

We briefly discuss this construction in the proof of Theorem 1.6.1, leaving it to the reader to check

the details in the aforementioned papers. As a consequence of the calculation of the norm of the

Mumford-isomorphism we obtain the celebrated Noether formula in Arakelov theory (Corollary

1.6.3). Throughout this section we will freely use the language of stacks as in [Fa2] and [Mo2].

Let g > 0 be an integer. Let Mg be the moduli stack of smooth curves of genus g, and let

p : Ug → Mg be the universal curve. For line bundles on Ug we have as in Section 1.3 the notion of

Deligne bracket and determinant of cohomology on Mg . In particular, if ω is the relative dualising

sheaf of p : Ug → Mg , then we have the line bundles det p∗ω and 〈ω, ω〉 on Mg .

Theorem 1.6.1. (Mumford [Mu1], Faltings [Fa2], Moret-Bailly [Mo2]) There exists an isomor-

phism

µ : (det p∗ω)⊗12 ∼−→〈ω, ω〉

of line bundles on Mg. This isomorphism is unique up to a sign. Its norm on Mg(C) is equal to

(2π)−4g exp(δ).

Sketch of the proof. In order to prove existence it suffices, roughly speaking, to construct for each

smooth proper curve p : X → B of genus g an isomorphism (det p∗ωX/B)⊗12 ∼−→〈ωX/B , ωX/B〉
which is compatible with base change. We will sketch such a construction only for p : X → B which

come equipped with a theta-characteristic L, i.e. a line bundle with an isomorphism L⊗2 ∼−→ωX/B.

The general case requires a more subtle argument. Using L, we make J := Picg−1(X/B) into an

abelian scheme over B. For this we refer to [Mo1], Section 2. Let e : B → J be its zero-section, and

let Ω1
J/B be the sheaf of relative 1-forms. In the case B = Spec(C), the global sections H0(J,Ωg

J)

come equipped with a hermitian inner product (α, β) 7→ (i/2)g(−1)g(g−1)/2
∫

J(C) α ∧ β. The next

four steps give then the required isomorphism. (i) Let Θ be the theta divisor of Picg−1(X/B),

see once more [Mo1], Section 2. Then there is a canonical isomorphism e∗(Ωg
J/B)

∼−→e∗(O(Θ))⊗2,

compatible with base change. This is Moret-Bailly’s formule clé, see [Mo2] and [Mo3]. (ii) Let

j : X → J be the usual embedding, unique up to translation, which exists locally for the étale

topology on B. Then there is a canonical isomorphism e∗(Ωg
J/B)

∼−→det p∗ωX/B, compatible with

base change. (iii) There is a canonical isomorphism detRp∗L
∼−→e∗(O(−Θ)), compatible with base

change. This follows directly from Lemma 1.4.7. (iv) There are canonical isomorphisms

detRp∗(ω
⊗2)

∼−→〈ω, ω〉 ⊗ det p∗ω and (detRp∗L)⊗8 ∼−→〈ω, ω〉⊗−1 ⊗ (det p∗ω)⊗8 ,

compatible with base change. These isomorphisms follow from the Riemann-Roch theorem for

p : X → B, discussed in Section 1.3. The uniqueness up to sign of the isomorphism µ follows from

the fact (see [Mo2], Lemme 2.2.3) that H0(Mg,Gm) = {+1,−1}. The statement on the norm of

µ follows from the fact that the isomorphism in (i) has norm (2π)−4g (this is the main result of

[Mo3]), the isomorphism in (iii) has norm exp(δ/8) by definition of the delta-invariant, and the

other isomorphisms are isometries.

As was shown in [DM], for any g ≥ 1 we have a moduli stack Mg classifying stable curves of

genus g. It contains the moduli stack Mg of smooth proper curves of genus g as an open substack.

It is customary to denote by ∆ the closed subset Mg−Mg, provided with its reduced structure; this
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is a normal crossings divisor in Mg (see [DM]). The divisor ∆ is the union of different components

∆ = ∆0 ∪ ∆1 ∪ . . . ∪ ∆r , r = bg/2c ,

where ∆0 denotes the closure of the locus corresponding to irreducible curves with a single node,

and where ∆k for k > 0 denotes the closure of the locus corresponding to reducible curves with

components of genus k and genus g−k. Mumford [Mu1] has shown that the isomorphism µ extends

over Mg .

Theorem 1.6.2. (Mumford [Mu1]) There exists an isomorphism

µ : (det p∗ω)⊗12 ∼−→〈ω, ω〉 ⊗OMg
(∆)

of line bundles on Mg. This isomorphism is unique up to sign.

By considering the Mumford-isomorphism on the base of a semi-stable arithmetic surface p :

X → B and taking degrees on left and right we obtain the arithmetic Noether formula.

Corollary 1.6.3. (Noether’s formula, Faltings [Fa2], Moret-Bailly [Mo2]) Let p : X → B be a

semi-stable arithmetic surface of genus g > 0, with B the spectrum of the ring of integers in a

number field K. Then the formula

12 d̂eg det p∗ωX/B = (ωX/B, ωX/B) +
∑

b

δb log #k(b) +
∑

σ:K↪→C

δ(Xσ) − 4g[K : Q] log(2π)

holds. Here b runs through the closed points in B, and σ runs through the complex embeddings of

K.

A detailed investigation as in [Jo] and [We] shows that when viewed as a function on the moduli

space Mg(C), the delta-invariant acquires logarithmic singularities along the components of the

boundary divisor ∆. We will come back to this in Section 2.4. As was remarked by Faltings in his

introduction to [Fa2], the delta-invariant can be viewed as the minus logarithm of a “distance” to

∆. This interpretation is supported by the Noether formula.
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Chapter 2

Analytic invariants

The purpose of this chapter is to give explicit formulas for the Arakelov-Green function and the

delta-invariant, introduced in Chapter 1. In order to do this, we introduce two new invariants S and

T of Riemann surfaces. These invariants are reasonably explicit and can be efficiently calculated.

In Section 2.1 we state our results. After giving the proofs in Section 2.2, we specialise to the case

of elliptic curves in Section 2.3. In particular we obtain Faltings’ formula for the delta-invariant

for elliptic curves, given in [Fa2]. The asymptotic behavior of the invariants S and T is considered

in Section 2.4. In Section 2.5 we give some applications of our formulas in intersection theory.

Among other things we prove a lower bound for the self-intersection of the relative dualising sheaf.

Finally we comment upon the use of Arakelov geometry in a recent bound for the complexity of an

algorithm, due to Edixhoven, for computing certain Galois representations.

2.1 Results

Let X be a compact and connected Riemann surface of genus g > 0. Our first result deals with

the Arakelov-Green function G of X . Let P be a generic point on X . By the remarks after the

proof of Lemma 1.4.8, there is a constant c = c(P ) depending only on P such that for all Q ∈ X

we have G(P,Q)g = c(P ) · ‖ϑ‖(gP − Q). This has been observed by some authors before, see for

instance the remarks in [Jo], p. 229. Our contribution is that we make the dependence on P of the

constant c(P ) clear. Our result involves the divisor W of Weierstrass points on X . This is a divisor

of degree g3 − g on X , given as the divisor of a Wronskian differential formed out of a basis of the

holomorphic differentials H0(X,Ω1
X). For each point P ∈ X , the multiplicity of P in W is given

by a weight w(P ), which can also be calculated by means of the classical gap sequence at P (see

Remark 2.2.9).

Definition 2.1.1. We define the invariant S(X) of X by means of the formula

logS(X) := −
∫

X

log ‖ϑ‖(gP −Q) · µ(P ) ,

where Q can be any point in X .

We will see later (Proposition 2.2.3) that the integrand has logarithmic singularities only at

the Weierstrass points of X , which are integrable. Hence the integral is well-defined. That the

definition does not depend on the choice of Q follows from the translation-invariance of the form ν

on Picg−1(X).

The invariant S(X) appears as a normalisation constant in the formula that we propose for the

Arakelov-Green function.
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Theorem 2.1.2. Let P,Q ∈ X with P not a Weierstrass point. Then the formula

G(P,Q)g = S(X)1/g2 · ‖ϑ‖(gP −Q)∏
W∈W ‖ϑ‖(gP −W )1/g3

holds. Here the Weierstrass points are counted with their weights.

For P a Weierstrass point, and Q 6= P , both numerator and denominator in the formula of

Theorem 2.1.2 vanish with order w(P ), the weight of P . The formula remains true also in this case,

provided that we take the leading coefficients of the appropriate power series expansions about

P in both numerator and denominator. Note that apart from the normalisation term involving

S(X), the Arakelov-Green function can be expressed in terms of certain values of the ‖ϑ‖-function.

These values are very easy to calculate numerically. The (real) 2-dimensional integral involved in

computing S(X) is harder to carry out in general, but it is still not difficult.

Other ways of expressing the Arakelov-Green function in terms of quantities associated to X and

µ have been given, for instance one might use the eigenvalues and eigenfunctions of the Laplacian

(see [Fa2], Section 3), or one might use abelian differentials of the second and third kind (see [La],

Chapter II). There is also a closed formula due to Bost [Bo]

logG(P,Q) =
1

g!

∫

Θ+P−Q

log ‖ϑ‖ · νg−1 +A(X) ,

expressing the Arakelov-Green function in terms of an integral over the translated theta divisor.

Here ν is the canonical translation-invariant (1,1)-form on Picg−1(X), and the quantity A(X) is a

certain normalisation constant, perhaps comparable to our S(X).

One of our motives for finding a new explicit formula was the need to have a formula that

makes the efficient calculation of the Arakelov-Green function possible. The other approaches that

we mentioned are perhaps less suitable for this objective. For instance, the formula given by Bost

involves a (real) 2g − 2-dimensional integral over a region which seems not easy to parametrise.

Also, for each new pair of points (P,Q) one has to calculate such an integral again, whereas in our

approach one only has to calculate a certain integral once.

Our second result deals with Faltings’ delta-invariant δ(X). Let Φ : X×X → Picg−1(X) be the

map sending (P,Q) to the class of (gP −Q). For a fixed Q ∈ X , let iQ : X → X ×X be the map

sending P to (P,Q), and put φ−Q = Φ · iQ. This coincides with the definition of φD in Proposition

1.4.5 for divisors D, where we take D = −Q. Define the line bundle LX by

LX :=

( ⊗

W∈W

φ∗−W (O(Θ))

)
⊗(g−1)/g3 ⊗OX

(
Φ∗(O(Θ))|∆X ⊗OX Ω⊗g

X

)⊗−(g+1) ⊗OX

⊗
(
Ω

⊗g(g+1)/2
X ⊗OX

(
∧gH0(X,Ω1

X) ⊗C OX)
)∨)⊗2

.

We have then the following theorem.

Theorem 2.1.3. The line bundle LX is canonically trivial. Let T (X) be the norm of the canonical

trivialising section of LX . Then the formula

exp(δ(X)/4) = S(X)−(g−1)/g2 · T (X)

holds.

Despite appearances to the contrary, the invariant T (X) admits a very concrete description, see

Propositions 2.2.7 and 2.2.8. In fact, the computation of T (X) involves only elementary operations

on special values of the functions ‖ϑ‖ and Guàrdia’s ‖J‖. Thus, we have now a very simple closed
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formula for the delta-invariant, reducing its calculation to the calculation of the invariants S(X)

and T (X), the former involving a (real) 2-dimensional integral, and the latter being elementary to

calculate. We shall demonstrate the practical significance of our formulas for calculating Arakelov

invariants in Chapter 6.

It seems an important problem to relate the invariants S(X) and T (X) to more classical in-

variants. In Chapters 3 and 4 we prove a result that does this for T (X) with X a hyperelliptic

Riemann surface. This is already quite involved.

Next, it seems worthwhile to study whether our invariants S(X) and T (X) give rise to proper,

strongly (g − 2)-pseudoconvex functions on Mg(C). This notion arises in the context of Morse

theory on manifolds. The importance of finding such functions is stressed by Hain and Looijenga

(private communication); indeed, if such functions would be seen to exist, numerous interesting

results (both known and still conjectural) on the geometry of Mg(C) would be implied. Perhaps

the explicit nature of our invariants opens a way to constructing such functions.

Our inspiration to study Weierstrass points in order to obtain results in Arakelov theory stems

from the papers [Ar1], [Bu] and [Jo]. Especially the latter paper has been useful. For example, our

formula for the delta-invariant in Theorem 2.1.3 is closely related to the formula from Theorem 2.6

of that paper. Our improvement on that formula is perhaps that we give an explicit splitting of the

delta-invariant in a new invariant S(X) involving an integral, and a new invariant T (X) which is

purely “classical”. These invariants seem to be of interest in their own right.

2.2 Proofs

In this section we prove Theorems 2.1.2 and 2.1.3. The major idea will be to give Arakelov-theoretic

versions of classical results on Weierstrass points.

First we recall the Wronskian differential that defines the divisor of Weierstrass points on X . An

alternative approach is sketched in Remark 2.2.9 below. Let {ψ1, . . . , ψg} be a basis of H0(X,Ω1
X).

Let P be a point on X and let z be a local coordinate about P . Write ψk = fk · dz for k = 1, . . . , g.

The Wronskian determinant about P is then the holomorphic function

Wz(ψ) := det

(
1

(l − 1)!

dl−1fk

dzl−1

)

1≤k,l≤g

.

Let ψ̃ be the g(g + 1)/2-fold holomorphic differential

ψ̃ := Wz(ψ) · (dz)⊗g(g+1)/2 .

Then ψ̃ is independent of the choice of the local coordinate z, and extends to a non-zero global

section of Ω
g(g+1)/2
X . A change of basis changes the Wronskian differential by a non-zero scalar

factor, so that the divisor of a Wronskian differential ψ̃ on X is unique: we denote this divisor by

W , the divisor of Weierstrass points.

The Wronskian differential leads to a canonical sheaf morphism

(
∧gH0(X,Ω1

X) ⊗C OX

)
−→ Ω

g(g+1)/2
X

given by

ξ1 ∧ . . . ∧ ξg 7→ ξ1 ∧ . . . ∧ ξg
ψ1 ∧ . . . ∧ ψg

· ψ̃ .

This gives a canonical section in Ω
⊗g(g+1)/2
X ⊗OX

(
∧gH0(X,Ω1

X) ⊗C OX)
)∨

whose divisor is W .
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Proposition 2.2.1. The canonical isomorphism

Ω
⊗g(g+1)/2
X ⊗OX

(
∧gH0(X,Ω1

X) ⊗C OX )
)∨ ∼−→OX(W)

has a constant norm on X.

Proof. This follows since both sides have the same curvature form, and the divisors of the canonical

sections are equal.

Definition 2.2.2. We shall denote by R(X) the norm of the isomorphism from Proposition 2.2.1. In

more concrete terms we have
∏

W∈W G(P,W ) = R(X)·‖ω̃‖Ar(P ) for any P ∈ X , where {ω1, . . . , ωg}
is an orthonormal basis of H0(X,Ω1

X), and where the norm of the Wronskian differential ω̃ is taken

in the line bundle Ω
⊗g(g+1)/2
X with its canonical metric induced from the canonical metric on Ω1

X .

Taking logarithms and integrating against µ(P ) gives, by property (iii) of the Arakelov-Green

function, the formula logR(X) = −
∫

X log ‖ω̃‖Ar(P ) · µ(P ).

Recall from Section 2.1 the map Φ : X×X → Picg−1(X) sending (P,Q) to the class of (gP −Q).

A classical result on the divisor of Weierstrass points is that the equality of divisors

Φ∗(Θ) = W ×X + g · ∆X

holds on X ×X , see for example [Fay], p. 31. Denote by p1 : X ×X → X the projection on the

first factor. Using Proposition 2.2.1, the above equality of divisors yields a canonical isomorphism

of line bundles

Φ∗(O(Θ))
∼−→p∗1

(
Ω

⊗g(g+1)/2
X ⊗

(
∧gH0(X,Ω1

X) ⊗C OX)
)∨)⊗OX×X (∆X)⊗g

on X × X . We will reprove this isomorphism in the next proposition, and show that its norm is

constant on X × X . After Corollary 2.2.5 to this proposition, the proofs of Theorems 2.1.2 and

2.1.3 are just a few lines.

Proposition 2.2.3. On X ×X, there exists a canonical isomorphism of line bundles

Φ∗(O(Θ))
∼−→p∗1

(
Ω

⊗g(g+1)/2
X ⊗

(
∧gH0(X,Ω1

X) ⊗C OX )
)∨)⊗OX×X(∆X )⊗g .

The norm of this isomorphism is everywhere equal to exp(δ(X)/8).

Proof. We are done if we can prove that

exp(δ(X)/8) · ‖ϑ‖(gP −Q) = ‖ω̃‖Ar(P ) ·G(P,Q)g

for all P,Q ∈ X , where {ω1, . . . , ωg} is an orthonormal basis of H0(X,Ω1
X). But this follows from

the formula in Theorem 1.4.9, by a computation which is performed in [Jo], p. 233. Let P be a

point on X , and choose a local coordinate z about P . By definition of the canonical metric on Ω1
X

we have then that limQ→P |z(P ) − z(Q)|/G(P,Q) = ‖dz‖Ar(P ). Letting P1, . . . , Pg approach P in

Theorem 1.4.9 we get

lim
Pl→P

‖ detωk(Pl)‖Ar∏
k<lG(Pk , Pl)

= lim
Pl→P

{ ‖ detωk(Pl)‖Ar∏
k<l |z(Pk) − z(Pl)|

·
∏

k<l |z(Pk) − z(Pl)|∏
k<l G(Pk, Pl)

}

=

{
lim

Pl→P

| detωk(Pl)|∏
k<l |z(Pk) − z(Pl)|

}
· ‖dz‖g+g(g−1)/2

Ar (P )

= |Wz(ω)(P )| · ‖dz‖g(g+1)/2
Ar (P )

= ‖ω̃‖Ar(P ) .
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The required formula is therefore just a limiting case of Theorem 1.4.9 where all Pk approach P .

Corollary 2.2.4. The formula S(X) = R(X) · exp(δ(X)/8) holds.

Proof. This follows easily by taking logarithms in the formula

exp(δ(X)/8) · ‖ϑ‖(gP −Q) = ‖ω̃‖Ar(P ) ·G(P,Q)g

and integrating against µ(P ). Here we use again property (iii) of the Arakelov-Green function and

the formula logR(X) = −
∫
X

log ‖ω̃‖Ar(P ) · µ(P ), which was noted above.

Corollary 2.2.5. (i) Let Q ∈ X. Then we have a canonical isomorphism

φ∗−Q(O(Θ))
∼−→OX(W + g ·Q)

of constant norm S(X) on X.

(ii) We have a canonical isomorphism

(Φ∗(O(Θ))|∆X ) ⊗OX Ω⊗g
X

∼−→OX(W)

of constant norm S(X) on X.

Proof. We obtain the isomorphism in (i) by restricting the isomorphism from Proposition 2.2.3 to a

slice X ×{Q}, and using Proposition 2.2.1. Its norm is then equal to R(X) · exp(δ(X)/8), which is

S(X) by Corollary 2.2.4. For the isomorphism in (ii) we restrict the isomorphism from Proposition

2.2.3 to the diagonal, and apply the canonical adjunction isomorphism OX×X(−∆X)|∆X

∼−→Ω1
X .

Again we get norm R(X) · exp(δ(X)/8), since the adjunction isomorphism is an isometry.

Note that Corollary 2.2.5 gives an alternative interpretation to the invariant S(X).

Proof of Theorem 2.1.2. By taking norms of canonical sections on left and right in the isomorphism

from Corollary 2.2.5 (i) we obtain

G(P,Q)g ·
∏

W∈W

G(P,W ) = S(X) · ‖ϑ‖(gP −Q)

for any P,Q ∈ X . Now take the (weighted) product over Q ∈ W . This gives

∏

W∈W

G(P,W )g3

= S(X)g3−g ·
∏

W∈W

‖ϑ‖(gP −W ) .

Plugging this in in the first formula gives

G(P,Q)g · S(X)
g3−g

g3 ·
∏

W∈W

‖ϑ‖(gP −W )1/g3

= S(X) · ‖ϑ‖(gP −Q) ,

from which the theorem follows.

Proof of Theorem 2.1.3. From Corollary 2.2.5 (i) we obtain, again by taking the (weighted) product

over Q ∈ W , a canonical isomorphism

( ⊗

W∈W

φ∗−WO(Θ)

)
∼−→OX (g3 · W)
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of norm S(X)g3−g. It follows that we have a canonical isomorphism

( ⊗

W∈W

φ∗−WO(Θ)

)⊗(g−1)/g3

∼−→OX ((g − 1) · W)

of norm S(X)(g−1)(g3−g)/g3

. From Corollary 2.2.5 (ii) we obtain a canonical isomorphism

(
(Φ∗(O(Θ))|∆X ) ⊗OX Ω⊗g

X

)⊗−(g+1) ∼−→OX(−(g + 1)W)

of norm S(X)−(g+1). Finally from Proposition 2.2.1 and Corollary 2.2.4 we have a canonical iso-

morphism (
Ω

⊗g(g+1)/2
X ⊗OX

(
∧gH0(X,Ω1

X) ⊗C OX )
)∨)⊗2 ∼−→OX (2W)

of norm S(X)2 exp(−δ(X)/4). It follows that indeed the line bundle LX is canonically trivial, and

that its canonical trivialising section has norm

S(X)−(g−1)(g3−g)/g3 · S(X)g+1 · S(X)−2 · exp(δ(X)/4) = S(X)(g−1)/g2 · exp(δ(X)/4) .

By definition this is T (X), so the theorem follows.

Theorem 2.1.2 leads to an alternative formula for S(X).

Proposition 2.2.6. Let P be a point on X, not a Weierstrass point. Then the formula

logS(X) = −g2 ·
∫

X

log ‖ϑ‖(gP −Q) · µ(Q) +
1

g
·
∑

W∈W

log ‖ϑ‖(gP −W )

holds. Here the sum is over the Weierstrass points of X, counted with their weights.

Proof. Take logarithms in Theorem 2.1.2 and integrate against µ(Q).

It remains for us to give an explicit formula for the invariant T (X). Let P ∈ X not a Weierstrass

point and let z be a local coordinate about P . Define ‖Fz‖(P ) as

‖Fz‖(P ) := lim
Q→P

‖ϑ‖(gP −Q)

|z(P ) − z(Q)|g .

Let {ω1, . . . , ωg} be an orthonormal basis of H0(X,Ω1
X).

Proposition 2.2.7. The formula

T (X) = ‖Fz‖(P )−(g+1) ·
∏

W∈W

‖ϑ‖(gP −W )(g−1)/g3 · |Wz(ω)(P )|2

holds.

Proof. Let F be the canonical section of (Φ∗(O(Θ))|∆X )⊗Ω⊗g
X given by the canonical isomorphism

in Corollary 2.2.5 (ii). For its norm we have ‖F‖ = ‖Fz‖ · ‖dz‖g
Ar in the local coordinate z. The

canonical section of
⊗

W∈W φ∗−WO(Θ) has norm
∏

W∈W ‖ϑ‖(gP −W ) at P . Finally, the canonical

section of Ω
⊗g(g+1)/2
X ⊗OX

(
∧gH0(X,Ω1

X) ⊗C OX )
)∨

has norm ‖ω̃‖Ar = |Wz(ω)| · ‖dz‖g(g+1)/2
Ar . The

proposition follows then from the definition of T (X).

We next give a formula for T (X) in which only first order partial derivatives of the theta function

occur.

30



Proposition 2.2.8. Let P1, . . . , Pg , Q be generic points on X. Then the formula

T (X) =

(‖ϑ‖(P1 + · · · + Pg −Q)∏g
k=1 ‖ϑ‖(gPk −Q)1/g

)2g−2

·

·
(∏

k 6=l ‖ϑ‖(gPk − Pl)
1/g

‖J‖(P1, . . . , Pg)2

)
·
∏

W∈W

g∏

k=1

‖ϑ‖(gPk −W )(g−1)/g4

holds.

Proof. The formula follows from Theorem 1.4.12, using Theorem 2.1.2 to eliminate the occur-

ring values of the Arakelov-Green function G, and using Theorem 2.1.3 to eliminate the factor

exp(δ(X)/8). The factors involving S(X) that are introduced in this way cancel out.

Remark 2.2.9. An alternative way to obtain the divisor of Weierstrass points W on X is to use

gap-sequences. Let P ∈ X be a point.

Definition 2.2.10. The gap-sequence Γ(P ) at P is the set

Γ(P ) = {a ≥ 1 | there is no meromorphic function f with (f)∞ = a · P}
= {a ≥ 1 | there exists a holomorphic 1-formωwith a zero of exact order a− 1 at P} .

Here (f)∞ denotes the polar part of a meromorphic function f . The equality implied by the

definition follows from the Riemann-Roch theorem.

The following facts are then not difficult to see:

(i) N \ Γ(P ) is a semi-group;

(ii) 1 ∈ Γ(P );

(iii) For a ∈ Γ(P ) we have a ≤ 2g − 1;

(iv) The set Γ(P ) has cardinality g.

Let Γ(P ) = {a1, . . . , ag} with a1 < . . . < ag. We then define the weight of P to be the deviation of

the gap-sequence from the sequence {1, . . . , g}:

Definition 2.2.11. The weight w(P ) of P is the number w(P ) =
∑g

k=1(ak − k).

It follows that always w(P ) ≤ g(g − 1)/2.

Definition 2.2.12. We call P a Weierstrass point if Γ(P ) differs from {1, . . . , g}. Equivalently, we

call P a Weierstrass point if w(P ) > 0 or if h0(gP ) > 1.

In [Gun], pp. 123–125 we find a proof of the following proposition.

Proposition 2.2.13. Let ψ̃ = Wz(ψ) · (dz)⊗g(g+1)/2 be a Wronskian differential in H0(X,Ω
g(g+1)/2
X ).

Then we have an equality of divisors divψ =
∑

P∈X w(P ) · P .

As an example, consider a hyperelliptic Riemann surface X of genus g ≥ 2. A hyperelliptic map

X → P1 has 2g + 2 ramification points, and for each ramification point P , the gap-sequence Γ(P )

at P equals Γ(P ) = {1, 3, . . . , 2g − 1}. Hence, each P has weight g(g − 1)/2, and the ramification

points are exactly the Weierstrass points of X .
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2.3 Elliptic curves

In this section we make the invariants S(X) and T (X) explicit for a Riemann surface X of genus 1.

We can write X = C/Z+τZ where τ is an element in the complex upper half plane. It is determined

up to a transformation with an element of SL(2,Z). Since

i

2

∫

X

dz ∧ dz = Imτ ,

the holomorphic differential dz/
√

Imτ is an orthonormal basis of H0(X,Ω1
X).

As usual we write q = exp(2πiτ) and then we have the eta-function η(τ) = q1/24
∏∞

k=1(1 − qk)

and the modular discriminant ∆(τ) = η(τ)24 = q
∏∞

k=1(1− qk)24. The latter is a modular form on

SL(2,Z) of weight 12. We put ‖η‖(X) = (Imτ)1/4 ·|η(τ)| and ‖∆‖(X) = ‖η‖(X)24 = (Imτ)6 ·|∆(τ)|.
These definitions do not depend on the choice of τ .

Theorem 2.3.1. The formula

S(X) =
1

‖η‖(X)

holds.

As an immediate consequence we find a formula for the Arakelov-Green function, given already

in [Fa2], Section 7.

Corollary 2.3.2. The formula

G(P,Q) =
‖ϑ‖(P −Q)

‖η‖(X)

holds.

Proof. Apply the previous result to the formula in Theorem 2.1.2.

Proof of Theorem 2.3.1. We follow an analogous computation in [La], Chapter II, §5. The fun-

damental (1,1)-form µ is given by µ = i
2 (dz ∧ dz)/Imτ . We will perform our integrals over the

fundamental domain A for X given by z = ατ + β with α ∈ [− 1
2 ,

1
2 ] and β ∈ [0, 1]. Write y = Imz.

We find ∫

A

−πy2 · (Imτ)−1 · µ =

∫ 1
2

α=− 1
2

∫ 1

β=0

−πα2 · Imτ · dαdβ = − π

12
· Imτ

and we shall prove ∫

A

log |ϑ(z; τ)| · µ(z) = log |
∞∏

k=1

(1 − exp(2πikτ))| .

Together this gives

logS(X) = −
∫

X

log ‖ϑ‖ · µ = − log ‖η‖(X)

as required. Let us prove the integral formula. We will make use of the product expansion (cf.

[Mu2], p. 68)

ϑ(z; τ) =

∞∏

k=1

(1 − exp(2πikτ))·
∞∏

k=0

{(1 + exp(πi(2k + 1)τ − 2πiz)) (1 + exp(πi(2k + 1)τ + 2πiz))} .
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Fix an index k ≥ 0. In order to compute

∫

A

log |(1 + exp(πi(2k + 1)τ − 2πiz))| · µ(z)

=

∫ 1/2

α=−1/2

∫ 1

β=0

log |(1 + exp(πi(2k + 1)τ − 2πi(ατ + β)))|dαdβ

we observe the following: for α < 1/2 we have

| exp(πi(2k + 1)τ − 2πi(ατ + β))| < 1 ,

and next for w ∈ C with |w| < 1 we have

− log(1 − w) =

∞∑

m=1

wm

m
,

where the convergence is uniform on compact subsets. This gives

∫ 1/2

α=−1/2

∫ 1

β=0

log |(1 + exp(πi(2k + 1)τ − 2πi(ατ + β)))|dαdβ

=

∫ 1/2

α=−1/2

∫ 1

β=0

Re

{
∞∑

m=1

(−1)m+1

m
· exp(πi(2k + 1)mτ − 2mπi(ατ + β))

}
dαdβ

= Re
∞∑

m=1

∫ 1/2

α=−1/2

∫ 1

β=0

(−1)m+1

m
· exp(πi(2k + 1)mτ − 2mπi(ατ + β))dαdβ = 0 ,

where the latter equality holds since for any m,

∫ 1

β=0

exp(πi(2k + 1)mτ − 2mπi(ατ + β))dβ = 0

as one sees directly. In a similar vein one proves that

∫

A

log |(1 + exp(πi(2k + 1)τ + 2πiz))| · µ(z) = 0

for any fixed k ≥ 0. Together this gives the required integral formula.

In Chapter 5, where we study the Arakelov theory of elliptic curves more closely, we give an

alternative proof of Corollary 2.3.2. This proof relies on special properties of the Arakelov-Green

function of X , which we discover later on.

Next we turn to the invariant T (X).

Theorem 2.3.3. The formula

T (X) = (2π)−2 · ‖∆‖(X)−1/4

holds.

Using Theorem 2.1.3 we find the following corollary, which is also in Section 7 of [Fa2].

Corollary 2.3.4. (Faltings [Fa2]) For Faltings’ delta-invariant δ(X) of X, the formula

δ(X) = − log ‖∆‖(X) − 8 log(2π)
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holds.

Proof of Theorem 2.3.3. We make use of the explicit formula for T (X) in Proposition 2.2.7. Take

the euclidean coordinate z as a local coordinate on X = C/Z+ τZ, and choose ω = dz/
√

Imτ as an

orthonormal basis of H0(X,Ω1
X). Choose an arbitrary point P ∈ X . The Riemann vector is given

by κ = 1+τ
2 . An explicit computation yields

T (X) = ‖Fz‖(P )−2 · |Wz(ω)|(P )2 = (Imτ)−3/2 · exp(π · Imτ/2) · |∂ϑ
∂z

(
1 + τ

2
; τ)|−2 .

The proposition follows by the formula

(
exp(πiτ/4) · ∂ϑ

∂z

(
1 + τ

2
; τ

))8

= (2π)8 · ∆(τ)

which is a consequence of Jacobi’s derivative formula (cf. [Mu2], Chapter I, §13).

We could circumvent the computation in the above proof and apply Proposition 2.2.8 directly.

However, the idea of using the explicit formula from Proposition 2.2.7 will be applied again in

the next chapter, where we compute T (X) for hyperelliptic Riemann surfaces (see especially the

proof of Theorem 3.1.2 in Section 3.7). In fact the above proof is a special case of the arguments

developed in Chapter 3.

We will give a proof of Jacobi’s derivative formula in Section 4.6, using Arakelov theory.

2.4 Asymptotics

In [Fa2], Faltings asked for the behavior of the delta-invariant in a family of Riemann surfaces

degenerating to a surface with a single node. An answer to this problem has been formulated by,

among others, Jorgenson [Jo] and Wentworth [We]. Given our splitting of the delta-invariant in the

invariants S(X) and T (X) (Theorem 2.1.3), it seems natural to ask for the asymptotic behavior of

these new invariants. One expects that the question is more subtle than for the delta-invariant as a

whole, and indeed this turns out to be the case. In fact, the asymptotic behavior of these invariants

depends on the structure of the limit divisor of Weierstrass points. In the present section we give

an asymptotic formula only in a generic case (Theorem 2.4.2). We start however by recalling the

result of Jorgenson and Wentworth.

Theorem 2.4.1. (Jorgenson [Jo], Wentworth [We]) Let Xt be a holomorphic family of compact

and connected Riemann surfaces of genus g > 0 over the punctured disc as in [Fay], Chapter 3,

degenerating as t → 0 to a surface with a single node. If the degenerate surface is the union of

two compact and connected Riemann surfaces of positive genera g1, g2 meeting at a single point, the

formula

δ(Xt) = −4g1g2
g

log |t| +O(1)

holds. If the degenerate surface remains connected upon removing the node, the formula

δ(Xt) = −4g − 1

3g
log |t| − 6 log(− log |t|) +O(1)

holds.

In particular, the asymptotic behavior of the delta-invariant is the same no matter what specific

degenerate surface we choose (of the type mentioned in the theorem). This also accounts for the

fact (cf. [Jo], Theorem 6.2) that the delta-invariant is, up to a log log-term associated to the locus
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of degenerate surfaces with a non-separating node, a Weil function on Mg(C). As we will see in a

minute, this is not true for the invariants logS(X) and logT (X). However, we have the following

result for a “generic” degenerate surface of separate type.

Theorem 2.4.2. Suppose that the degenerate surface is the union of two Riemann surfaces of

positive genera g1, g2 with two points identified, and suppose furthermore that neither of these two

points was a Weierstrass point on each of the two separate Riemann surfaces. Then the formulas

logS(Xt) = −g1g2
g

log |t| +O(1)

and

logT (Xt) = −g1g2(g
2 + g − 1)

g3
log |t| +O(1)

hold.

Proof. We review from [Fay], Chapter 3 the description of the holomorphic family Xt in the sep-

arating case. We fix two compact and connected Riemann surfaces X1 and X2 of positive genera

g1, g2, respectively. Further we fix coordinate neighbourhoods Uk about Pk and local coordinates

zk : Uk → D, where D is the unit disk. We let W t
k = {xk ∈ Xk |xk ∈ Xk \ Uk or |zk(xk)| > |t|}

for t ∈ D and Ct = {(X,Y ) ∈ D ×D |XY = t}. The family Xt of genus g = g1 + g2 is then built

from these data by putting Xt = W t
1 ∪ Ct ∪W t

2 with the following identifications: x1 ∈ W t
1 ∩ U1 is

identified with (z1(x1), t/z1(x1)) ∈ Ct and x2 ∈ W t
2 ∩ U2 is identified with (z2(x2), t/z2(x2)) ∈ Ct.

For t = 0, we obtain a singular surface X0 which is just X1 ∪X2 with the points P1, P2 identified.

From Section 3 of [Jo] we deduce the formulas

log ‖ϑ‖(gP −Q) =





g2 log |t| , P,Q ∈ X1 \ {P1}
g1 log |t| , P,Q ∈ X2 \ {P2}

0 , otherwise



+O(1) ,

log ‖Fz‖(P ) =

{
g2 log |t| , P ∈ X1 \ {P1}
g1 log |t| , P ∈ X2 \ {P2}

}
+O(1) ,

log |Wz(ω)(P )| =

{
1
2g2(g2 + 1) log |t| , P ∈ X1 \ {P1}
1
2g1(g1 + 1) log |t| , P ∈ X2 \ {P2}

}
+O(1) ,

g
∫

X
log ‖ϑ‖(gP −Q) · µ(Q) = g1g2 log |t| +O(1) .

By Theorem 3.1 in [EH], under the condition stated in the theorem the limit Weierstrass divisor

W0 on X0, i.e., the intersection of the closure of the Weierstrass divisor on the generic fiber with

X0, is equal to the union of a part W1 consisting of the ramification points outside P1 of the linear

system |KX1((g2 + 1)P1)| on X1, and a part W2 consisting of the ramification points outside P2 of

the linear system |KX2((g1 + 1)P2)| on X2. Here KX1 and KX2 denote canonical divisors on X1

and X2, respectively. In particular, by the Plücker formulas we have deg(W1) = g1(g
2 − 1) and

deg(W2) = g2(g
2 − 1). Using the first formula above we obtain from this that

∑

W∈W

log ‖ϑ‖(gP −W ) = (g2 − 1)g1g2 log |t| +O(1) .

We obtain the limit formula for logS(Xt) by applying Corollary 2.2.6, and the limit formula for

logT (Xt) by applying Proposition 2.2.7.

If, contrary to the conditions in the theorem, one of the identified points is a Weierstrass point,

the limit Weierstrass divisor is in general different from the divisor described in the above proof.

It seems interesting to investigate the asymptotic behavior of the invariants T (X) and S(X) in

various cases that can occur. For example, using Theorem 3.1.4 below and a result of Cornalba
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and Harris [CH] it is easy to compute the asymptotic behavior of T (X) in a holomorphic family

of hyperelliptic Riemann surfaces degenerating to the union of two hyperelliptic Riemann surfaces

meeting in a single point. In this case, the two identified points must be Weierstrass points since

they are fixed by the hyperelliptic involution. We are outside the scope of Theorem 2.4.2, and

indeed we find a different asymptotic behavior.

It also seems interesting to study the degeneration of the Weierstrass points further in the case

that the degenerate surface has a non-separating node. This problem was posed already by Eisenbud

and Harris in [EH].

2.5 Applications

In this section we use Proposition 2.2.1 to give a formula for the relative dualising sheaf on a semi-

stable arithmetic surface (Proposition 2.5.2). As consequences we derive, among other things, a

lower bound for the self-intersection of the relative dualising sheaf (Proposition 2.5.4) and a formula

for the self-intersection of a point (Proposition 2.5.8).

Let p : X → B be a semi-stable arithmetic surface over the spectrum B of the ring of integers

in a number field K. We assume that the generic fiber XK is a geometrically connected, smooth

proper curve of genus g > 0. Denote by W the Zariski closure in X of the divisor of Weierstrass

points on XK , and denote by ωX/B the relative dualising sheaf of p. We will first deduce some

properties of W on X .

Lemma 2.5.1. There exists an effective vertical divisor V on X such that we have a canonical

isomorphism

ω
⊗g(g+1)/2
X/B ⊗OX

(
p∗(det p∗ωX/B)

)∨ ∼−→OX (V + W)

of line bundles on X .

Proof. We have on X a canonical sheaf morphism p∗(det p∗ωX/B) −→ ω
⊗g(g+1)/2
X/B given locally by

ξ1 ∧ . . . ∧ ξg 7→ ξ1 ∧ . . . ∧ ξg
ψ1 ∧ . . . ∧ ψg

· ψ̃

for a basis {ψ1, . . . , ψg} of differentials on the generic fiber of X . Multiplying by (p∗(det p∗ωX/B))∨

we obtain a morphism

OX −→ ω
⊗g(g+1)/2
X/B ⊗OX

(
p∗(det p∗ωX/B)

)∨
.

The image of 1 is a section whose divisor is an effective divisor V + W where V is vertical. This

gives the required isomorphism.

We will now turn to the Arakelov intersection theory on X . For a complex embedding σ : K ↪→ C

we denote by Fσ the “fiber at infinity” associated to σ. The corresponding compact and connected

Riemann surface is denoted by Xσ. The next proposition is an analogue of Lemma 3.3 in [Ar1].

Proposition 2.5.2. Let V be the effective vertical divisor from Lemma 2.5.1. Then we have

1

2
g(g + 1)ωX/B = V + W +

∑

σ:K↪→C

logR(Xσ) · Fσ + p∗(det p∗ωX/B)

as Arakelov divisors on X . Here the sum runs over the embeddings of K in C.

Proof. Consider the canonical isomorphism from Lemma 2.5.1. The restriction of this isomorphism

to Xσ is the isomorphism of Proposition 2.2.1. In particular it has norm R(Xσ). The proposition

follows.
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Remark 2.5.3. Lemma 2.5.1 shows how the canonical isomorphism from Proposition 2.2.1 over the

“fibers at infinity” of X extends over X itself. The “difference” between the left and right hand

side is measured by the divisor V , which can therefore be seen as a finite analogue of the numbers

logR(Xσ) associated with infinity.

We shall deduce three consequences from Proposition 2.5.2. We assume for the moment that

g ≥ 2. We define Rb for a closed point b ∈ B by the equation (2g − 2) · logRb = (Vb, ωX/B), where

the intersection is taken in the sense of Arakelov. The assumption that p : X → B is semi-stable

implies that the quantity logRb is always non-negative.

Proposition 2.5.4. Assume that g ≥ 2. Then the lower bound

(ωX/B, ωX/B) ≥ 8(g − 1)

(2g − 1)(g + 1)

(∑

b

logRb +
∑

σ:K↪→C

logR(Xσ) + d̂eg det p∗ωX/B

)

holds. Here the first sum runs over the closed points b ∈ B, and the second sum runs over the

embeddings of K in C.

Proof. Intersecting the equality from Proposition 2.5.2 with ωX/B we obtain

1

2
g(g + 1)(ωX/B, ωX/B) =

= (W , ωX/B) + (2g − 2)

(∑

b

logRb +
∑

σ:K↪→C

logR(Xσ) + d̂eg det p∗ωX/B

)
.

Now since the generic degree of W is g3 − g we obtain by Proposition 1.5.2 the lower bound

(W , ωX/B) ≥ g3 − g

2g(2g − 2)
(ωX/B, ωX/B) .

Using this in the first equality gives the result.

We remark that lower bounds of a similar type have been given by Burnol, cf. [Bu], Section 3.3.

He defines, for a compact and connected Riemann surface X of genus g ≥ 2, the constants

Ak(X) := −
∫

X

log ‖ϑ‖(kΩ1
X − (2k − 1)(g − 1)P ) · µ(P )

for k ≥ 2. The integrands have only a finite number of logarithmic singularities, and hence the

integrals are well-defined. Burnol arrives then, for a semi-stable arithmetic surface p : X → B of

genus g ≥ 2, at the lower bound

(
k2 − k

2
+

6g − 5

48(g − 1)

)
(ωX/B, ωX/B) ≥ 1

2g − 2

∑

σ

(
Ak(Xσ) − 1

24
δ(Xσ) − g log(2π)

3

)

+
1

12(2g− 2)

∑

b

δb log #k(b)

for any k ≥ 2. He remarks with respect to this lower bound that it only becomes non-trivial (i.e.

better than the classical lower bound from Proposition 1.5.2) if for all complex embeddings σ we

would have Ak(Xσ) ≥ 1
24δ(Xσ) + g log(2π)/3. In order to get an idea of how often this may occur,

one might start by making a study of the asymptotic behavior of the analytic invariants Ak. This

was not carried out in [Bu]. However, with respect to the analytic terms in our lower bound for

(ωX/B, ωX/B) we have by Theorem 2.4.2 and Corollary 2.2.4 the following result.
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Proposition 2.5.5. Let Xt be a holomorphic family of compact and connected Riemann surfaces of

genus g ≥ 2 over the punctured disk, degenerating to the union of two Riemann surfaces of positive

genera g1, g2 with two points identified. Suppose that neither of these two points was a Weierstrass

point on each of the two separate Riemann surfaces. Then the formula

logR(Xt) = −g1g2
2g

log |t| +O(1)

holds.

In particular, the value logR(Xt) goes to plus infinity under the conditions described in the

theorem. It would be interesting to have a more precise, quantitative version of Proposition 2.5.5.

Our second result deals with an upper bound for
∑

σ logS(Xσ) for a semi-stable arithmetic

surface p : X → B of genus g ≥ 2. Edixhoven has recently found an application of Arakelov

theory in a study of the complexity of a certain algorithm that computes Galois representations

associated to modular forms. In order to obtain a bound for this complexity, it turned out to be

necessary to know how to bound the Arakelov-Green function
∑

σ logG(Pσ , Qσ) from above for a

semi-stable arithmetic surface p : X → B. This bound should depend on as few parameters as

possible, and should be polynomial in the parameters that measure the length of the input of the

algorithm. The present author has tried to attack this problem by looking at the explicit formula

in Theorem 2.1.2. He expected that the classical part involving the values of the theta function

would not be too difficult to bound from above, and that instead the normalisation constant S(X)

could be difficult. Indeed, Edixhoven informed him that Zagier had had these experiences on a

similar problem. Things turned out to be otherwise: we can prove a bound for
∑

σ logS(Xσ) that

meets Edixhoven’s demands, but as yet we cannot deal with the classical term. Fortunately, at

Edixhoven’s request, other authors have searched for bounds on the Arakelov-Green function; we

now have satisfactory answers due to Merkl (private communication) and Jorgenson-Kramer [JK2],

[JK3], [JK4].

Proposition 2.5.6. Let p : X → B be a semi-stable arithmetic surface of genus g ≥ 2. Then the

upper bound

∑

σ

logS(Xσ) ≤ 1

2
d̂eg det p∗ωX/B +

g2

4(g − 1)
(ωX/B , ωX/B) +

g

2
[K : Q] log(2π)

holds.

Proof. In the Noether formula Corollary 1.6.3 we eliminate the terms involving δ by using the

formula δ(X)/8 = logS(X) − logR(X), which is Corollary 2.2.4. We eliminate then the term

involving logR by using the formula from Proposition 2.5.4.

In Section 2.6 we describe, by way of appendix, Edixhoven’s algorithm.

The final result of this section deals with the self-intersection of a point P . This self-intersection

gives, upon dividing by the degree of the field of definiton of P , the height of P with respect to

the relative dualising sheaf. A major problem in diophantine geometry is to obtain certain bounds

for this height. We want to contribute to this problem by giving an explicit expression for the

self-intersection of a point. Perhaps it turns out to be possible to give bounds of the required shape

for each of the summands in the expression.

We can assume that g ≥ 1 again. We first state a lemma.

Lemma 2.5.7. Let P be a section of p, not a Weierstrass point on the generic fiber. Then we have

a canonical isomorphism

P ∗(OX (V + W))⊗2 ∼−→ (detRp∗OX (gP ))
⊗2
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of line bundles on B.

Proof. Applying Riemann-Roch to the line bundle OX (gP ) we obtain a canonical isomorphism

(detRp∗OX (gP ))
⊗2 ∼−→〈OX (gP ), OX (gP ) ⊗ ω−1

X/B〉 ⊗ (det p∗ωX/B)⊗2

of line bundles onB. The line bundle at the right hand side is, by the adjunction formula, canonically

isomorphic to the line bundle 〈P, P 〉⊗g(g+1) ⊗ (det p∗ωX/B)⊗2. On the other hand, pulling back

the isomorphism from Lemma 2.5.1 along P and using once more the adjunction formula gives a

canonical isomorphism

〈P, P 〉⊗−g(g+1)/2 ∼−→〈V + W , P 〉 ⊗ det p∗ωX/B .

The lemma follows by a combination of these observations.

Proposition 2.5.8. Let P be a section of p, not a Weierstrass point on the generic fiber. Then

− 1
2g(g + 1)(P, P ) is given by the expression

−
∑

σ:K↪→C

logG(Pσ ,Wσ) + log #R1p∗OX (gP ) +
∑

σ:K↪→C

logR(Xσ) + d̂eg det p∗ωX/B ,

where σ runs through the complex embeddings of K.

Proof. Intersecting the equality from Proposition 2.5.2 with P , and using the adjunction formula

(ω, P ) = −(P, P ), we obtain the equality

−1

2
g(g + 1)(P, P ) = (V + W , P ) +

∑

σ:K↪→C

logR(Xσ) + d̂eg det p∗ωX/B .

It remains therefore to see that (V + W , P )fin = log #R1p∗OX (gP ). For this we consider the

isomorphism in Lemma 2.5.7. Note that p∗OX (gP ) is canonically trivialised by the function 1.

This gives a canonical section at the right hand side with norm the square of #R1p∗OX (gP ).

Under the isomorphism, it is identified with the canonical section on the left-hand side, which has

norm the square of exp((V + W , P )fin). The required equality follows.

We see that minus the self-intersection of a point P is large if P is close to a Weierstrass point,

either in the p-adic or in the complex topology.

2.6 Edixhoven’s algorithm

To conclude this chapter we describe, in a few words, the essentials of Edixhoven’s algorithm to

compute Galois representations efficiently. We thank Edixhoven for explaining to us these ideas.

Consider for example the Gal(Q/Q)-representation on the motive M∆ associated to the discrim-

inant modular form ∆(q) = q
∏∞

n=1(1 − qk)24 =
∑∞

n=1 τ(n)qn. For a prime number p, the integer

τ(p) is the trace of the Frobenius at p acting on M∆. Our goal is an algorithm that, given a prime

number p, computes the integer τ(p), and we want that algorithm to run in time polynomial in

log p. Earlier algorithms to compute τ(p) are exponential in log p.

By a famous argument due to Schoof, since the integers τ(p) can be bounded as |τ(p)| ≤ 2p11/2,

it suffices to give an algorithm that, given a prime number p and a prime number `, computes the

trace of Frobenius at p modulo ` in time polynomial in `. Now it can be shown that the mod ` étale

realisation of M∆ is the dual of a certain 2-dimensional F`-vector space V` contained in the `-torsion

J1(`)(Q)[`] of the jacobian J1(`) of the modular curve X1(`). In fact, this V` is the intersection of
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the kernels of the endomorphisms Tq − τ(q), with q running over the primes up to about `2/24,

acting on J1(`)(Q)[`]. Here Tq is the q-th Hecke operator. We are basically through if, given a

prime `, we can compute, in a time polynomial in `, the minimum polynomial of a generator of the

field of definition of a non-zero point in V`.

Using explicit estimates in Arakelov intersection theory it can be shown that such an algorithm

exists. In fact, the actual algorithm is probabilistic with an expected running time polynomial

in `, but we shall ignore this aspect here. Let us describe the main idea, which is surprisingly

simple. Consider a prime ` and let x be a non-zero point in V`. We want to compute the minimum

polynomial of a generator of the field of definition of x. First of all, it can be shown that we can

explicitly construct an effective divisor D of degree g on X1(`), supported on the cusps, such that

x is equal to the class of D′ −D for a unique effective divisor D′ = P1 + · · · + Pg on X1(`). Here

g is the genus of X1(`), which is a polynomial function of `. Since the field of definition of D is

small, we are reduced to finding the minimum polynomial of a generator of the field of definition K

of D′. The essential idea is to do this by numerical methods. Using p-adic methods in the sense of

Couveignes, or using numerical integration over the complex numbers, it is possible to write down

an approximation D̃′ of D′. Having found this approximation, one obtains also an approximation

of a generator α of the field of definition of D′. This is seen by the following lemma: there is an

explicit finite sequence of morphisms j1, . . . , jN : X1(`) → P1, defined over Q, such that at least

one j has the property that j(P1) + · · · + j(Pg) generates K (in fact, for this we need to work on

X1(5`), but we shall ignore this fact). It is virtually no extra effort to compute approximations to

all Galois conjugates of α, and hence we find approximations of the rational numbers that form the

coefficients of the minimum polynomial of α. If we could prove that the height of these coefficients

is bounded by a polynomial in `, we would have the required algorithm: indeed, the polynomial

bound on the height implies that it is sufficient to carry out all the approximations in our earlier

steps with an accuracy that is polynomial in `, and hence they can be made to require a running

time that is polynomial in `. Now a bound on the height of the coefficients of the required shape

follows from the following general proposition. The proof uses only arithmetic intersection theory

as explained in Chapter 1.

Proposition 2.6.1. Let X be a proper connected non-singular curve of genus g ≥ 1 over Q, and

let D be an effective divisor of degree g on X. For any torsion line bundle L on X that satisfies

h0(L(D)) = 1 we have then the following. Let K be a number field such that both L and D are

defined over K, such that X has semi-stable reduction over K, and such that X has a rational point

P over K. Let D′ be the unique effective divisor on X such that L is isomorphic to OX(D′ −D).

Extend D, D′ and P to horizontal divisors on the semi-stable model p : X → B of X over K. Then

for the Arakelov intersection (D′ −D,P ) the upper bound

(D′ −D,P ) ≤− 1

2
(D,D − ωX/B) + 2g2

∑

b

νb log #k(b) +
1

2
d̂eg det p∗ωX/B

+
∑

σ

log ‖ϑ‖σ,sup +
g

2
[K : Q] log(2π)

holds. Here νb is the number of irreducible components in the fiber at b if the fiber is reducible, and

νb = 0 otherwise.

It is not difficult to show that a polynomial bound for (D′ − D,P ) in our set-up implies a

polynomial bound for the height of the coefficients of the minimum polynomial of α. Hence we are

done if we could see that the terms on the right hand side in the above lemma are bounded by

a polynomial in `. This is again not difficult, except for the first term − 1
2 (D,D − ωX/B), which

requires that we bound the Arakelov-Green function by a polynomial in `. We have commented

upon this particular problem in the previous section.
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Chapter 3

Hyperelliptic Riemann surfaces I

The purpose of this and the next chapter is to make the analytic theory from Chapter 2 explicit

in the case of a hyperelliptic Riemann surface X . We will prove two theorems (Theorem 3.1.2 and

Theorem 3.1.3) expressing the Arakelov-Green function G of X , evaluated at pairs of Weierstrass

points, in terms of the invariant T (X) and a second natural invariant of X , which is introduced

in Section 3.2 below. As corollaries, we find simple closed formulas for the invariant T (X) and

Faltings’ delta-invariant δ(X) of X . The main part of the present chapter is devoted to a proof of

Theorem 3.1.2. We finish with a section dealing with some more special results in the case g = 2.

The proof of Theorem 3.1.3 will be given in the next chapter. Although our two theorems look very

similar, the techniques used in the proofs are very different. The proof of Theorem 3.1.2 uses only

complex function theory, but for the proof of Theorem 3.1.3 we need to take a broader perspective

and consider hyperelliptic curves over arbitrary base schemes. A special role is then played by

hyperelliptic curves which are defined over a discrete valuation ring with residue characteristic

equal to 2.

3.1 Results

Let X be a hyperelliptic Riemann surface of genus g ≥ 2. In Section 3.2 we introduce a non-zero

invariant ‖ϕg‖(X), the Petersson norm of the modular discriminant associated to X . As we will

see, this is a very natural invariant to consider for hyperelliptic Riemann surfaces. Unfortunately,

it is not so clear how to extend its definition to the general Riemann surface of genus g.

Definition 3.1.1. We denote by G′ the modified Arakelov-Green function

G′(P,Q) := S(X)−1/g3 ·G(P,Q)

on X ×X .

In the present chapter we prove the following theorem dealing with G′ and T (X). Recall that

the Weierstrass points of X are just the branch points of a hyperelliptic map X → P1.

Theorem 3.1.2. Let W be a Weierstrass point of X. Let n =
(

2g
g+1

)
. Consider the product∏

W ′ 6=W G′(W,W ′) running over all Weierstrass points W ′ different from W , ignoring their weights.

Then
∏

W ′ 6=W G′(W,W ′) is independent of the choice of W and the formula

∏

W ′ 6=W

G′(W,W ′)(g−1)2 = 2(g−1)2π2g+2 · T (X)
g+1

g · ‖ϕg‖(X)
1
2n

holds.

41



The following theorem will be derived in the next chapter.

Theorem 3.1.3. Let m =
(
2g+2

g

)
. Then we have

∏

(W,W ′)

G′(W,W ′)n(g−1) = π−2g(g+2)m · T (X)−(g+2)m · ‖ϕg‖(X)−
3
2 (g+1) ,

the product running over all ordered pairs of distinct Weierstrass points of X.

Combining the above two theorems yields a simple closed formula for the invariant T (X) in

terms of ‖ϕg‖(X). This formula should be compared with the formula in Theorem 2.3.3 above.

Theorem 3.1.4. Let ‖∆g‖(X) be the modified discriminant ‖∆g‖(X) = 2−(4g+4)n ·‖ϕg‖(X). Then

the formula

T (X) = (2π)−2g · ‖∆g‖(X)−
3g−1
8ng

holds.

From the viewpoint of arithmetic geometry, the modified invariant ‖∆g‖ is definitely the right

one to consider. As we will see below, it has an integral structure which causes it to behave well

in all characteristics. In this sense it is the right generalisation of the discriminant ∆ for elliptic

curves. The visual presence of the factors 2π and ‖∆g‖ in the above formula suggests the existence

of a certain “motivic” interpretation of the invariant T . However, at present we do not know such

an interpretation.

With Theorem 2.1.3 we obtain the following corollary.

Corollary 3.1.5. For Faltings’ delta-invariant δ(X) of X, the formula

exp(δ(X)/4) = (2π)−2g · S(X)−(g−1)/g2 · ‖∆g‖(X)−
3g−1
8ng

holds.

We remark that in the case g = 2, an explicit formula for the delta-invariant has been given

already by Bost [Bo]. We will turn to the relation between his and our formula in Section 3.8.

The idea of the proof of Theorem 3.1.2 is quite straightforward: we start with the formula for

T (X) in Proposition 2.2.7 and the formula for G in Theorem 2.1.2 and observe what happens if

we let P approach the Weierstrass point W on X . Thus, we have to perform a local study around

W of the function
∏

W ′ ‖ϑ‖(gP −W ′) and of the functions ‖Fz‖(P ) and Wz(ω)(P ) for a suitable

local coordinate z. In Section 3.3 we find a suitable local coordinate on an embedding of X into

its jacobian. In Section 3.6 we collect the local information that we need in order to complete the

proof in Section 3.7. Some preliminary work on this local information is carried out in the Sections

3.4 and 3.5. These two sections form the technical heart of the present chapter.

3.2 Modular discriminant

In this section we introduce the modular discriminant ϕg and its Petersson norm ‖ϕg‖. The modular

discriminant generalises the usual discriminant function ∆ for elliptic curves.

Let g ≥ 2 be an integer and let Hg be the Siegel upper half-space of symmetric complex g × g-

matrices with positive definite imaginary part. For z ∈ Cg (viewed as a column vector), a matrix

τ ∈ Hg and η, η′ ∈ 1
2Zg we have the theta function with characteristic η = [ η′

η′′ ] given by

ϑ[η](z; τ) :=
∑

n∈Zg

exp(πit(n+ η′)τ(n + η′) + 2πit(n+ η′)(z + η′′)) .
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We agree that we always choose the entries of η′ and η′′ to be in the set {0, 1/2}. For an analytic

theta characteristic η, the corresponding theta function ϑ[η](z; τ) is either odd or even as a function

of z. We call the analytic theta characteristic η odd if the corresponding theta function ϑ[η](z; τ)

is odd, and even if the corresponding theta function ϑ[η](z; τ) is even.

For any subset S of {1, 2, . . . , 2g + 1} we define a theta characteristic ηS as in [Mu2], Chapter

IIIa: let

η2k−1 =
[

t(0 , ... , 0 , 1
2 , 0 , ... , 0)

t( 1
2 , ... , 1

2 , 0 , 0 , ... , 0)

]
, 1 ≤ k ≤ g + 1 ,

η2k =
[

t(0 , ... , 0 , 1
2 , 0 , ... , 0)

t( 1
2 , ... , 1

2 , 1
2 , 0 , ... , 0)

]
, 1 ≤ k ≤ g ,

where the non-zero entry in the top row occurs in the k-th position. Then we put ηS :=
∑

k∈S ηk

where the sum is taken modulo 1.

Definition 3.2.1. (Cf. [Lo], Section 3.) Let T be the collection of subsets of {1, 2, . . . , 2g + 1}
of cardinality g + 1. Write U = {1, 3, . . . , 2g + 1} and let ◦ denote the symmetric difference. The

modular discriminant ϕg is defined to be the function

ϕg(τ) :=
∏

T∈T

ϑ[ηT◦U ](0; τ)8

on Hg . The function ϕg is a modular form on Γg(2) = {γ ∈ Sp(2g,Z)|γ ≡ I2g mod 2} of weight 4r

where r =
(
2g+1
g+1

)
.

Consider an equation y2 = f(x) where f ∈ C[X ] is a monic and separable polynomial of degree

2g+ 1. Write f(x) =
∏2g+1

k=1 (x− ak) and denote by D =
∏

k<l(ak − al)
2 the discriminant of f . Let

X be the hyperelliptic Riemann surface of genus g defined by y2 = f(x). Then X carries a basis of

holomorphic differentials µk = xk−1dx/2y where k = 1, . . . , g. Further, in [Mu2], Chapter IIIa, §5
it is shown how, given an ordering of the roots of f , one can construct a canonical symplectic basis

of the homology of X . Throughout this chapter, we will always work with such a canonical basis of

homology, i.e., a certain ordering of the roots of a hyperelliptic equation will always be taken for

granted.

Let (µ|µ′) be the period matrix of the differentials µk with respect to a chosen canonical basis

of homology, and let τ = µ−1µ′.

Proposition 3.2.2. We have the formula

Dn = π4gr(detµ)−4rϕg(τ)

relating the discriminant D of the polynomial f to the value ϕg(τ) of the modular discriminant.

Proof. We follow the proof of [Lo], Proposition 3.2. Let S be a subset of {1, 2, . . . , 2g + 1} with

#(S ◦ U) = g + 1. Then Thomae’s formula (cf. [Mu2], Chapter IIIa, §8) holds:

Theorem 3.2.3. (Thomae’s formula) We have

ϑ[ηS ](0; τ)8 = (detµ)4π−4g
∏

k<l
k,l∈S◦U

(ak − al)
2
∏

k<l
k,l/∈S◦U

(ak − al)
2 .

If T ∈ T then obviously T ◦ U is a set S with #(S ◦ U) = g + 1, and conversely, every such set

S can be obtained in this way by taking a T ∈ T . Taking the product over all T ∈ T we obtain by

Thomae’s formula

ϕg(τ) = (det µ)4rπ−4gr
∏

T∈T



∏

k<l
k,l∈T

(ak − al)
2
∏

k<l
k,l/∈T

(ak − al)
2


 .
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The number of times a term (ak − al)
2 appears on the right hand side is easily seen to be n, hence

ϕg(τ) = (detµ)4rπ−4gr
∏

k<l(ak − al)
2n which is what we wanted.

Definition 3.2.4. Let X be a hyperelliptic Riemann surface of genus g ≥ 2 and let τ be a period

matrix forX formed on a canonical symplectic basis, given by an ordering of the roots of an equation

y2 = f(x) for X . Then we write ‖ϕg‖(τ) for the Petersson norm (det Imτ)2r · |ϕg(τ)| of ϕg(τ). This

does not depend on the choice of τ and hence it defines an invariant ‖ϕg‖(X) of X .

It follows from Proposition 3.2.2 that the invariant ‖ϕg‖(X) is non-zero.

3.3 Local coordinate

For our local computations on our hyperelliptic Riemann surface we need a convenient local coor-

dinate. We find one by embedding the Riemann surface into its jacobian and by taking one of the

euclidean coordinates.

Let X be a hyperelliptic Riemann surface of genus g ≥ 2, let y2 = f(x) with f monic of degree

2g+1 be an equation for X , let µk be the differential given by µk = xk−1dx/2y for k = 1, . . . , g, and

let (µ|µ′) be their period matrix formed on a canonical basis of homology. Let L be the lattice in

Cg generated by the columns of (µ|µ′). We have an embedding ι : X ↪→ Cg/L given by integration

P 7→
∫ P

∞(µ1, . . . , µg). We want to express the coordinates z1, . . . , zg, restricted to ι(X), in terms

of a local coordinate about 0 = ι(∞). This is established by the following lemma. In general, we

denote by O(w1, . . . , ws; d) a Laurent series in the variables w1, . . . , ws all of whose terms have total

degree at least d.

Lemma 3.3.1. The coordinate zg is a local coordinate about 0 on ι(X), and we have

zk =
1

2(g − k) + 1
z2(g−k)+1

g +O(zg ; 2(g − k) + 2)

on ι(X) for k = 1, . . . , g.

Proof. We can choose a local coordinate t about ∞ on X such that x = t−2 and y = −t−(2g+1) +

O(t;−2g). For P ∈ X in a small enough neighbourhood of ∞ on X and for a suitable integration

path on X we then have

zk(P ) =

∫ P

∞

xk−1dx

2y
=

∫ t(P )

0

t−2(k−1) · (−2t−3dt)

−2t−(2g+1) +O(t;−2g)

=

∫ t(P )

0

(
t2(g−k) +O(t; 2(g − k) + 1)

)
dt

=
1

2(g − k) + 1
t(P )2(g−k)+1 +O(t(P ); 2(g − k) + 2) .

By taking k = g we find zg = t+ O(t; 2) and for k = 1, . . . , g − 1 then

zk =
1

2(g − k) + 1
z2(g−k)+1

g +O(zg ; 2(g − k) + 2) ,

which is what we wanted.

3.4 Schur polynomials

In this section we assemble some facts on Schur polynomials. We will need these facts at various

places in the next sections. Fix a positive integer g. Consider the ring of symmetric polynomials
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with integer coefficients in the variables x1, . . . , xg . Let er be the elementary symmetric functions

given by the generating function E(t) =
∑

r≥0 ert
r =

∏g
k=1(1 + xkt).

Definition 3.4.1. Let d be a positive integer and let π = {π1, . . . , πh} with π1 ≥ . . . ≥ πh be a

partition of d. The Schur polynomial associated to π is the polynomial

Sπ := det(eπ′
k−k+l)1≤k,l≤h ,

where h is the length of the partition π, and where π′ is the conjugate partition of π given by

π′
k = #{l : πl ≥ k}, i.e., the partition obtained by switching the associated Young diagram around

its diagonal. The polynomial Sπ is symmetric and has total degree d. We denote by Sg the Schur

polynomial in g variables associated to the partition π = {g, g − 1, . . . , 2, 1}. Thus, the formula

Sg = det (eg−2k+l+1)1≤k,l≤g

holds, and the polynomial Sg has total degree g(g + 1)/2.

Let pr be the elementary Newton functions (power sums) given by the generating function

P (t) =
∑

r≥1 prt
r−1 =

∑
k≥1 xk/(1 − xkt). The following proposition is then a special case of

Theorem 4.1 of [BEL2].

Proposition 3.4.2. The Schur polynomial Sg can be expressed as a polynomial in the g functions

p1, p3, . . . , p2g−1 only. This polynomial is unique.

Definition 3.4.3. We define sg to be the unique polynomial in g variables given by the above

proposition.

The next proposition is a special case of Theorem 6.2 of [BEL2].

Proposition 3.4.4. Let s(x1, . . . , xg) ∈ C[x1, . . . , xg ] be a polynomial in g variables such that

for any set of g complex numbers w1, . . . , wg, the polynomial s(z1 − w, z2 − w3, . . . , zg − w2g−1)

in w either has exactly g roots w1, . . . , wg, or vanishes identically, if we give z the value z =

(p1(w1, . . . , wg), p3(w1, . . . , wg), . . . , p2g−1(w1, . . . , wg)). Then s is equal to the polynomial sg up to

a constant factor.

Definition 3.4.5. We define σg to be the polynomial in g variables given by the equation

σg(z1, . . . , zg) = sg(zg, 3zg−1, . . . , (2g − 1)z1) .

The following proposition is then the result of a simple calculation.

Proposition 3.4.6. Up to a sign, the homogeneous part of least total degree of σg is equal to the

Hankel determinant

H(z) = det




z1 z2 · · · z(g+1)/2

z2 z3 · · · z(g+3)/2

...
...

. . .
...

z(g+1)/2 z(g+3)/2 · · · zg




if g is odd, or

H(z) = det




z1 z2 · · · zg/2

z2 z3 · · · z(g+2)/2

...
...

. . .
...

zg/2 z(g+2)/2 · · · zg−1




if g is even.
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We conclude with some more general facts. These can all be found for example in Appendix A

to [Fu].

Proposition 3.4.7. Let π = {π1, . . . , πh} with π1 ≥ . . . ≥ πh be a partition. Then the formula

Sπ(1, . . . , 1) =
∏

k<l

πk − πl + l− k

l − k

holds. In particular, Sg(1, . . . , 1) = 2g(g−1)/2.

Definition 3.4.8. Let i = (i1, . . . , id) be a d-tuple of non-negative integers. The i-th generalised

Newton function p(i) is defined to be the polynomial

p(i) := pi1
1 · pi2

2 · . . . · pid

d ,

where the pr are the elementary Newton functions.

Proposition 3.4.9. The set of generalised Newton functions p(i), where i runs through the d-tuples

i = (i1, . . . , id) of non-negative integers with
∑
αiα = d, forms a basis of the Q-vector space of

symmetric polynomials of total degree d with rational coefficients.

Proposition 3.4.10. For a partition π of d and a d-tuple i = (i1, . . . , id), denote by ωπ(i) the

coefficient of the monomial xπ1
1 · . . . · xπd

d in p(i). Then the polynomial Sπ can be expanded on the

basis {p(i)} of generalised Newton functions of total degree d as Sπ =
∑

i

1
z(i) · ωπ(i) · p(i). Here

z(i) = i1!1
i1 · i2!2i2 · . . . · id!did .

3.5 Sigma function

We consider again hyperelliptic Riemann surfaces of genus g ≥ 2, defined by equations y2 = f(x)

with f monic and separable of degree 2g+ 1. We write f(x) = x2g+1 + λ1x
2g + · · ·+ λ2gx+ λ2g+1

and denote by λ the vector of coefficients (λ1, . . . , λ2g+1). In this section we study the sigma

function σ(z;λ) with argument z ∈ Cg and parameter λ. This is a modified theta function, studied

extensively in the nineteenth century. Klein observed that the sigma function serves very well to

study the function theory of hyperelliptic Riemann surfaces. For us it will be a convenient technical

tool for obtaining the local expansions that we need. We will give the definition of the sigma

function, as well as its power series expansion in z, λ. For more details we refer to the Enzyklopädie

der mathematischen Wissenschaften, Band II, Teil 2, Kapitel 7.XII. A modern reference is [BEL1],

where one also finds applications of the sigma function in the theory of the Korteweg-de Vries

differential equation.

As before, let µk be the holomorphic differential given by µk = xk−1dx/2y for k = 1, . . . , g, and

let (µ|µ′) be their period matrix formed on a canonical basis of homology. Let L be the lattice in

Cg generated by the columns of (µ|µ′). By the theorem of Abel-Jacobi we have a bijective map

Picg−1(X)
∼−→Cg/L given by

∑
k mkPk 7−→∑

k mk

∫ Pk

∞
(µ1, . . . , µg). Denote by Θ the image of the

theta divisor of classes of effective divisors of degree g− 1, and let q : Cg → Cg/L be the projection

map. Let τ = µ−1µ′. By Theorem 1.4.2, there exists a unique theta-characteristic δ such that

ϑ[δ](z; τ) vanishes to order one precisely along q−1(Θ). The characteristic δ is odd if g ≡ 1 or

2 mod 4, and even if g ≡ 0 or 3 mod 4.

Definition 3.5.1. Let ν be the matrix of A-periods of the differentials of the second kind νk =
1
4y

∑2g−k
l=k (l+ 1− k)λl+k+1x

kdx for k = 1, . . . , g. These differentials have a second order pole at ∞
and no other poles. The sigma function is then the function

σ(z;λ) := exp(−1

2
zνµ−1tz) · ϑ[δ](µ−1z; τ) .
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Using some of the facts on Schur polynomials from the previous section, we can give the power

series expansion of σ(z;λ). The result is probably well-known to specialists, but we couldn’t find

an explicit reference in the literature. For the special case g = 2, a somewhat stronger version of

the formula from the proposition below has been obtained by Grant, see [Gr], Theorem 2.11.

Proposition 3.5.2. The power series expansion of σ(z;λ) about z = 0 is of the form

σ(z;λ) = γ · σg(z) +O(λ) ,

where σg is the polynomial given by Definition 3.4.5 and where the symbol O(λ) denotes a power

series in z, λ in which each term contains a λk raised to a positive integral power. The constant γ

satisfies the formula

γ8n = π4g(r−n)(det µ)−4(r−n)ϕg(τ) .

If we assign the variable zk a weight 2(g− k)+1, and the variable λk a weight −2k, then the power

series expansion in z, λ of σ(z;λ) is homogeneous of weight g(g + 1)/2.

Proof. First of all, the homogeneity of the power series expansion in z, λ with respect to the assigned

weights follows from an explicit formula for σ(z;λ) given in [BEL3]. This homogeneity is also

mentioned there, cf. the concluding remarks after Corollary 1. Write σ(z;λ) = σ0(z) +O(λ) where

O(λ) denotes a power series in z, λ in which each term contains a λk raised to a positive integral

power. Because of the homogeneity, the series σ0(z) is necessarily a polynomial in the variables

z1, . . . , zg. By the Riemann vanishing theorem, there is a dense open subset U ⊂ C2g+1 such that for

any λ ∈ U , the function σ(z;λ) satisfies the following property: for any set of g points P1, . . . , Pg on

the hyperelliptic Riemann surface X = Xλ corresponding to λ, the function σ(z−
∫ P

∞(µ1, . . . , µg);λ)

in P on X either has exactly g roots P1, . . . , Pg , or vanishes identically, when we give the argument

z the value z =
∑

k

∫ Pk

∞ (µ1, . . . , µg). In the limit λ → 0 we find then, as in the proof of Lemma

3.3.1, that for any set of g complex numbers w1, . . . , wg the polynomial

σ0

(
1

2g − 1

(
zg − w2g−1

)
,

1

2g − 3

(
zg−1 − w2g−3

)
, . . . ,

1

3

(
z2 − w3

)
, z1 − w

)

in w either has exactly g roots w1, . . . , wg , or vanishes identically, for the value

z = (p1(w1, . . . , wg), p3(w1, . . . , wg), . . . , p2g−1(w1, . . . , wg)) .

By Proposition 3.4.4, the polynomial σ0 must be equal to the polynomial σg up to a constant

factor γ. As to this constant γ, we find in [Ba], Section IX a calculation of a constant γ ′ such that

σ(z;λ) = γ′ ·H(z)+O(z; b(g+3)/2c), where H(z) is the Hankel determinant from Proposition 3.4.6

and where now we consider the power series expansion only with respect to the variables z1, . . . , zg

and with respect to their usual weight deg(zk) = 1. By Proposition 3.4.6, this γ ′ is equal to our

constant γ, up to a sign. We just quote the result of Baker’s computation:

γ4 = ϑ(0; τ)4 ·
∏

k<l
k,l∈U

(ak − al)
2/(`1`3 · · · `2g+1) , where `r := −i ·

∏

k∈U
k 6=r

(ak − ar)/
∏

k/∈U

(ak − ar) .

By Thomae’s formula Theorem 3.2.3 we have

ϑ(0; τ)8 = (detµ)4π−4g
∏

k<l
k,l∈U

(ak − al)
2
∏

k<l
k,l/∈U

(ak − al)
2 .

Combining, we obtain γ8 = D · π−4g · (det µ)4. The formula for γ that we gave then follows from

Proposition 3.2.2.
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Example 3.5.3. By way of illustration, we have computed σg for small g:

g σg

1 z1

2 −z1 + 1
3z

3
2

3 z1z3 − z2
2 − 1

3z2z
3
3 + 1

45z
6
3

4 z1z3 − z2
2 − z2

3z4 + z2z3z
2
4 − 1

3z1z
3
4 + 1

15z2z
5
4 − 1

105z3z
7
4 + 1

4725z
10
4

Remark 3.5.4. As can be seen from Proposition 3.4.6, the homogeneous part of least total degree

(with respect to the usual weight deg(zk) = 1) of σg(z) has degree b(g + 1)/2c. Hence, by a fun-

damental theorem of Riemann, the theta-characteristic δ gives rise to a linear system of dimension

b(g − 1)/2c on X .

3.6 Leading coefficients

In this section we calculate the leading coefficients of the power series expansions in zg of the

holomorphic functions ϑ[δ](gµ−1z; τ)|ι(X) andWzg (µ), the Wronskian in zg of the basis {µ1, . . . , µg}.

Proposition 3.6.1. The leading coefficient of the power series expansion of σ(gz;λ)|ι(X), and

hence of ϑ[δ](gµ−1z; τ)|ι(X), is equal to γ ·2g(g−1)/2, where γ is the constant from Proposition 3.5.2.

Proof. By Lemma 3.3.1 and Proposition 3.5.2, the power series expansion of σ(gz;λ)|ι(X) has the

form

σ(gz;λ)|ι(X) = γ · σg

(
g

2g − 1
z2g−1

g ,
g

2g − 3
z2g−3

g , . . . ,
g

3
z3

g , gzg

)
+O(zg ; g(g + 1)/2 + 1) .

Hence we need to calculate σg

(
g

2g−1 ,
g

2g−3 , . . . ,
g
3 , g
)
. By Definition 3.4.5 this is sg(g, g, . . . , g).

But by Proposition 3.4.2 and Definition 3.4.3 we have sg(g, g, . . . , g) = Sg(1, 1, . . . , 1), and by

Proposition 3.4.7 we have Sg(1, . . . , 1) = 2g(g−1)/2. The proposition follows.

Proposition 3.6.2. The leading coefficient of the power series expansion of the Wronskian Wzg (µ)

is equal to ±2g(g−1)/2.

Proof. Expanding the Wronskian yields

Wzg (µ) = det

(
1

(k − 1)!

dkzl

dzl
g

)

1≤k,l≤g

=

=




z2g−2
g z2g−4

g · · · z2
g 1

(2g − 2)z2g−3
g (2g − 4)z2g−5

g · · · 2zg 0
...

...
. . .

...
...(

2g−2
g−1

)
zg

g

(
2g−4
g−1

)
zg−2

g · · · 0 0




+O(zg ; g(g − 1)/2 + 1) .

Let A be the matrix of binomial coefficients A :=
((

2g−2k
g−l

))
1≤k,l≤g−1

. From the expansion of the

Wronskian it follows that, up to a sign, the required leading coefficient is equal to detA. We will

compute this number. First of all note that

detA =
(2g − 2)!(2g − 4)! · · · 2!

(g − 1)!(g − 2)! · · · 1!
det

(
1

(g − 2k + l)!

)

1≤k,l≤g−1

,
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where we define 1/n! := 0 for n < 0. Now let d = g(g − 1)/2 and consider the ring of symmetric

polynomials with integer coefficients in g − 1 variables. It is well known that for the elementary

symmetric functions er we have an expansion

er =
1

r!
det




p1 1 0 · · · 0

p2 p1 2 · · · 0

· · · · · · · · · · · · · · ·
pr−1 pr−2 pr−3 · · · r − 1

pr pr−1 pr−2 · · · p1



,

with pr the elementary Newton functions. From Definition 3.4.1 and this expansion it follows that

det(1/(g − 2k + l)!) is the coefficient of pd
1 in the expansion of Sg−1 with respect to the basis of

generalised Newton functions. By Proposition 3.4.10, this coefficient is equal to ωg−1(d)/d!, where

ωg−1(d) is the coefficient of xg−1
1 xg−2

2 · · ·x2
g−1xg in pd

1. Writing this out, it immediately follows that

det(1/(g − 2k + l)!) = 1/(g − 1)!(g − 2)! · · · 1!. Combining one finds detA = 2g(g−1)/2.

3.7 Proof of Theorem 3.1.2

Now we are ready to prove Theorem 3.1.2. Let X be a hyperelliptic Riemann surface of genus

g ≥ 2, and let W be one of its Weierstrass points.

Proof of Theorem 3.1.2. Fix a hyperelliptic equation y2 = f(x) for X with f monic and separable

of degree 2g+ 1 that puts W at infinity. Choose a canonical basis of the homology of X , and form

the period matrix (µ|µ′) of the differentials xk−1dx/2y for k = 1, . . . , g on this basis. Let L be the

lattice in Cg generated by the columns of (µ|µ′), and embed X into Cg/L with base point W as

in Section 3.3. We have the standard euclidean coordinates z1, . . . , zg on Cg/L and according to

Lemma 3.3.1 we have that zg is a local coordinate about W on X . The weight w of W is given by

w = g(g − 1)/2, cf. Remark 2.2.9. Consider then the following quantities:

A(W ′) = lim
Q→W

‖ϑ‖(gQ−W ′)

|zg|g
for Weierstrass points W ′ 6= W ;

A(W ) = lim
Q→W

‖ϑ‖(gQ−W )

|zg|w+g
= lim

Q→W

‖Fzg‖(Q)

|zg |w
;

B(W ) = lim
Q→W

|Wzg (ω)(Q)|
|zg |w

,

where Wzg (ω) is the Wronskian in zg of an orthonormal basis {ω1, . . . , ωg} of H0(X,Ω1
X). We have

by Theorem 2.1.2

G′(W,W ′)g =
A(W ′)∏

W ′′ A(W ′′)w/g3 for Weierstrass points W ′ 6= W ,

hence

∏

W ′ 6=W

G′(W,W ′)g =
1

A(W )
·
(∏

W ′

A(W ′)

) g+1

2g2

.

Further we have by Proposition 2.2.7, letting P approach W ,

T (X) = A(W )−(g+1) ·
(∏

W ′

A(W ′)

)w(g−1)

g3

· B(W )2 .
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Eliminating the factor
∏

W ′ A(W ′) yields

∏

W ′ 6=W

G′(W,W ′)(g−1)2 = A(W )4 ·B(W )−
2g+2

g · T (X)
g+1

g .

Now we use the results obtained in Section 3.6. Let τ = µ−1µ′. A simple calculation gives that

A(W ) is (det Imτ)1/4 times the absolute value of the leading coefficient of the power series expansion

of ϑ[δ](gµ−1z; τ)|ι(X) in zg. Hence by Propositions 3.5.2 and 3.6.1 we have

A(W ) = 2g(g−1)/2πg r−n
2n · (det Imτ)1/4 · | detµ|− r−n

2n · |ϕg(τ)|
1
8n .

Further we have by Proposition 1.4.1 that ‖µ1 ∧ . . . ∧ µg‖2 = (det Imτ) · | det µ|2. This gives that

|Wzg (ω)| = |Wzg (µ)| · (det Imτ)−1/2 · | detµ|−1. From Proposition 3.6.2 we derive then

B(W ) = 2g(g−1)/2 · (det Imτ)−1/2 · | detµ|−1 .

Plugging in our results for A(W ) and B(W ) finally gives the theorem.

Remark 3.7.1. The fact that the product from Theorem 3.1.2 is independent of the choice of the

Weierstrass point W follows a fortiori from the computations in the above proof. It would be

interesting to have an a priori reason for this independence.

3.8 The case g = 2

We can say a little bit more if we specialise to the case of a Riemann surface X of genus g = 2.

Note that such a Riemann surface is always hyperelliptic, and that it has 6 Weierstrass points, each

of weight 1. The Arakelov theory of Riemann surfaces of genus 2 has been studied in quite some

detail before, see especially the papers [Bo] and [BMM]. It will be convenient to work with the

function

ϕ′
2(τ) :=

∏

η even

ϑ[η](0; τ)2

on H2. This is a modular form on the full symplectic group Sp(4,Z) of weight 10. It relates to our

ϕ2 by the formula ϕ2 = (ϕ′
2)

4. If τ ∈ H2 is associated to a Riemann surface X of genus 2 then we

write ‖ϕ′
2‖(X) = (det Imτ)5|ϕ′

2(τ)|. This definition is independent of the choice of τ . Also we will

work with the modified ‖∆′
2‖(X) = 2−12‖ϕ′

2‖(X). We remark that this ‖∆′
2‖ is the ‖∆2‖ from the

papers [Bo] and [BMM]. Our aim in this section is to prove the following two theorems. Recall the

function ‖J‖ from Definition 1.4.11 above.

Theorem 3.8.1. Let W,W ′ be two Weierstrass points of X. Then the formula

G′(W,W ′)2 = 21/4π−2 · ‖ϕ′
2‖(X)−3/16 · ‖J‖(W,W ′)

holds.

Define the invariant ‖H‖(X) by

log ‖H‖(X) =
1

2

∫

Pic1(X)

log ‖ϑ‖ · ν2 .

This invariant has been introduced by Bost in [Bo].
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Theorem 3.8.2. The formula

S(X) = ‖∆′
2‖(X)−1/4 · ‖H‖(X)4

holds.

From Theorems 3.8.1 and 3.8.2 we obtain the following corollary.

Corollary 3.8.3. (i) Let W,W ′ be two Weierstrass points of X. Then the formula

G(W,W ′)2 = (2π)−2 · ‖∆′
2‖(X)−1/4 · ‖H‖(X) · ‖J‖(W,W ′)

holds.

(ii) For Faltings’ delta-invariant δ(X) of X, the formula

δ(X) = −16 log(2π) − log ‖∆′
2‖(X) − 4 log ‖H‖(X)

holds.

Proof. The first statement is a consequence of Theorems 3.8.1 and 3.8.2 and the definition of G′.

The second statement follows from Theorem 3.1.4, Theorem 3.8.2 and Theorem 2.1.3 relating the

delta-invariant to the invariants S(X) and T (X).

The above corollary is also obtained by Bost in [Bo], Proposition 4, and is more or less proved

in the appendix to [BMM]. Our approach is slightly different; in particular we think that in our

approach the appearance of the function ‖J‖ is more natural (see especially the proof of Lemma

3.8.6 below).

It would be interesting to have explicit formulas for S(X) in higher genera. For this we prob-

ably need a generalisation of Lemma 3.8.8 below, but this seems difficult. A possible approach is

suggested in [JK1].

We will frequently make use of Rosenhain’s identity, cf. also Theorem 4.5.1 below.

Theorem 3.8.4. (Rosenhain [Ro]) Let W,W ′ be two Weierstrass points of X. Then the formula

‖J‖(W,W ′) = π2 ·
∏

W ′′ 6=W,W ′

‖ϑ‖(W −W ′ +W ′′)

holds.

Corollary 3.8.5. (i) Let W,W ′ be two Weierstrass points of X. Then the formula

G(W,W ′)2 = 2−2 · ‖∆′
2‖(X)−1/4 · ‖H‖(X) ·

∏

W ′′ 6=W,W ′

‖ϑ‖(W −W ′ +W ′′)

holds.

(ii) Suppose y2 = f(x) is a hyperelliptic equation for X with f monic of degree 5. Choose an

ordering of its roots, and consider the canonical symplectic basis of homology that corresponds to

this ordering. Let (µ|µ′) be the period matrix of the differentials dx/2y, xdx/2y on this basis, and

let τ = µ−1µ′. Let W = (α1, 0) and let W ′ = (α2, 0). Then the formula

G(W,W ′)2 =
(2π) · |α1 − α2| · ‖H‖(X)

|f ′(α1)f ′(α2)|1/4(det Imτ)1/4| detµ|1/2

holds.
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Proof. We obtain (i) from Corollary 3.8.3 by Rosenhain’s formula. The formula in (ii) follows then

from the first by an application of Thomae’s formula, Theorem 3.2.3.

For the proof of Theorem 3.8.1 we need the following lemma. It is a specialisation to the case

g = 2 of some of the results from Section 3.6. Choose a hyperelliptic equation y2 = f(x) for X

with f monic and separable of degree 5. Choose an ordering of its roots, and consider the canonical

symplectic basis of homology that corresponds to this ordering. Let (µ|µ′) be the period matrix of

the differentials dx/2y, xdx/2y on this basis, and let τ = µ−1µ′. Let L be the lattice in C2 generated

by the columns of (µ|µ′), and make an embedding ι : X ↪→ C2/L as in Section 3.5, taking the point

at infinity as a base point. Let z = (z1, z2) be the standard euclidean coordinates on C2/L. Let δ

be the odd analytic theta characteristic such that ϑ[δ](µ−1z; τ) vanishes identically on ι(X). Let γ

be the constant from Proposition 3.5.2.

Lemma 3.8.6. We have

ϑ[δ](2µ−1z; τ)|ι(X) = 2γz3
2 +O(z2; 5) .

Further, for odd δ′ different from δ let J(δ, δ′)(τ) be the Jacobian

J(δ, δ′)(τ) = (∂(ϑ[δ], ϑ[δ′])/∂(z1, z2))(0; τ) .

Then the expansion

ϑ[δ′](2µ−1z; τ)|ι(X) = −2γ−1J(δ, δ′)(τ) · (detµ)−1z2 +O(z2; 3)

holds.

Proof. The first expansion follows directly from Propositions 3.5.2 and 3.6.1. As to the second,

observe that

ϑ[δ′](2µ−1z; τ) = 2
∂ϑ[δ′](µ−1z; τ)

∂z1
|z=0 · z1 + 2

∂ϑ[δ′](µ−1z; τ)

∂z2
|z=0 · z2 +O(z1, z2; 3)

locally about 0. When restricted to ι(X), we know by Lemma 3.3.1 that z2 becomes a local

coordinate about 0 and that z1 = 1
3z

3
2 +O(z2; 4) locally about 0. Thus when expanded with respect

to the coordinate z2 we get

ϑ[δ′](2µ−1z; τ)|ι(X) = 2
∂ϑ[δ′](µ−1z; τ)

∂z2
|z=0 · z2 +O(z2; 3)

about 0. It remains to compute the constant ∂ϑ[δ′](µ−1z;τ)
∂z2

|z=0. From Proposition 3.5.2 and the table

accompanying this proposition we get that ∂ϑ[δ](µ−1z;τ)
∂z2

|z=0 = 0, and that ∂ϑ[δ](µ−1z;τ)
∂z1

|z=0 = −γ.
This gives

−γ · ∂ϑ[δ′](µ−1z; τ)

∂z2
|z=0 = det

(
∂ϑ[δ](µ−1z;τ)

∂z1
|z=0

∂ϑ[δ′](µ−1z;τ)
∂z1

|z=0

∂ϑ[δ](µ−1z;τ)
∂z2

|z=0
∂ϑ[δ′](µ−1z;τ)

∂z2
|z=0

)
.

But on the other hand we have

det

(
∂ϑ[δ](µ−1z;τ)

∂z1
|z=0

∂ϑ[δ′](µ−1z;τ)
∂z1

|z=0

∂ϑ[δ](µ−1z;τ)
∂z2

|z=0
∂ϑ[δ′](µ−1z;τ)

∂z2
|z=0

)
= (det µ)−1 · J(δ, δ′)(τ) .

Together this gives the required constant.

Proof of Theorem 3.8.1. As in the proof of Theorem 3.1.2, we fix a hyperelliptic equation y2 = f(x)
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for X with f monic of degree 5 that puts W at infinity. We choose a canonical basis of the

homology of X , and form the period matrix (µ|µ′) of the differentials dx/2y, xdx/2y on this basis.

Let τ = µ−1µ′ and let κ be the Riemann vector from Theorem 1.4.2 corresponding to infinity. The

Abel-Jacobi map tκ · u : Pic1(X)
∼−→C2/Z2 + τZ2 from Theorem 1.4.2 induces an identification of

the set of Weierstrass points of X with the set of odd analytic theta characteristics in dimension 2, a

Weierstrass point P corresponding to the characteristic η = [ η′

η′′ ] such that (tκ ·u)(P ) = [η′ + τ ·η′′].
In particular, the Weierstrass point W corresponds to the characteristic δ. Let δ′ be the analytic

theta characteristic corresponding to W ′, and for a general Weierstrass point W ′′, denote by δ′′ the

corresponding analytic theta characteristic. From the definition of G′ and Theorem 2.1.2 it follows

that

G′(W,W ′)2 = lim
P→W

‖ϑ‖(2P −W ′)

(
∏

W ′′ ‖ϑ‖(2P −W ′′))
1/8

.

We compute the right hand side with Lemma 3.8.6; we find that it is equal to

2|γ|−1(det Imτ)1/4 · |J(δ, δ′)(τ)| · | detµ|−1

(
2|γ|∏δ′′ 6=δ

(
2|γ|−1(det Imτ)1/4 · |J(δ, δ′′)(τ)| · | detµ|−1

))1/8
,

where γ is the constant from Proposition 3.5.2. Using the formula for γ from Proposition 3.5.2 we

can rewrite this as

21/4π−3/4 · ‖ϕ′
2‖(X)−1/16


 ∏

W ′′ 6=W

‖J‖(W,W ′′)




−1/8

· ‖J‖(W,W ′) .

Rosenhain’s formula Theorem 3.8.4 gives that
∏

W ′′ 6=W ‖J‖(W,W ′′) = π10‖ϕ′
2‖(X). Plugging this

in finally gives the theorem.

We next proceed to the proof of Theorem 3.8.2. We will make use of the fact, special to the

case g = 2, that the theta divisor in the jacobian of X can be identified with X itself. We need two

lemmas.

Lemma 3.8.7. Let W,W ′,W ′′ be distinct Weierstrass points on X. Then

lim
P→W

‖ϑ‖(P −W +W ′)

‖ϑ‖(2σ(P ) −W ′′)
=

‖J‖(W,W ′)

2‖J‖(W,W ′′)
,

where σ is the hyperelliptic involution of X.

Proof. This follows from the second expansion in Lemma 3.8.6.

The next lemma is Proposition 14 in [BMM]. The proof is by no means trivial, and seems

difficult to generalise to higher genera.

Lemma 3.8.8. Let W,W ′ be two distinct Weierstrass points of X. Then the equality

∑

W ′′ 6=W,W ′

log ‖ϑ‖(W −W ′ +W ′′) −
∫

Θ+W−W ′

log ‖ϑ‖ · ν = 2 log 2 + 2 log ‖H‖(X)

holds, the sum running over the Weierstrass points different from W and W ′.

Proof of Theorem 3.8.2. Let R,R′ be two points on X and let W ′′ be a Weierstrass point of X . We

apply Green’s formula Lemma 1.1.6 to the functions f1(P ) = ‖ϑ‖(R−R′ + P ) = (‖ϑ‖ · φR−R′ )(P )

and f2(P ) = ‖ϑ‖(2P −W ′′) = (‖ϑ‖ · φ−W ′′)(P ). Here for a divisor D on X we use the notation
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ϕD introduced in Proposition 1.4.5. The divisor of f1 on X is R′ + σ(R), and the divisor of f2

on X is W + 2W ′′, where W is the divisor of Weierstrass points on X . By Proposition 1.4.5 we

have 1
2πi∂∂ log f2

1 = 2µ and 1
2πi∂∂ log f2

2 = 8µ outside the zeroes of f1 and f2, respectively. Green’s

formula gives

−8

∫

X

log ‖ϑ‖(R−R′ + P ) · µ(P ) + 2

∫

X

log ‖ϑ‖(2P −W ′′) · µ(P )

= log ‖ϑ‖(2R′ −W ′′) + log ‖ϑ‖(2σ(R) −W ′′) −
∑

W∈W

log ‖ϑ‖(R−R′ +W )

− 2 log ‖ϑ‖(R−R′ +W ′′) ,

in other words,

4

∫

Θ+R−R′

log ‖ϑ‖ · ν + 2 logS(X)

= − log ‖ϑ‖(2R′ −W ′′) − log ‖ϑ‖(2σ(R) −W ′′) +
∑

W∈W

log ‖ϑ‖(R−R′ +W )

+ 2 log ‖ϑ‖(R−R′ +W ′′) ,

where ν is the canonical translation invariant (1,1)-form on Pic1(X) introduced in Section 1.4. We

have used that Θ can be identified with X and that ν restricts to 2µ on Θ. Now fix two distinct

Weierstrass points W,W ′. Summing the above equation over the 4 Weierstrass points W ′′ 6= W,W ′

we obtain

16

∫

Θ+R−R′

log ‖ϑ‖ · ν + 8 logS(X)

= −
∑

W ′′ 6=W,W ′

log ‖ϑ‖(2R′ −W ′′) −
∑

W ′′ 6=W,W ′

log ‖ϑ‖(2σ(R) −W ′′)

+ 4
∑

W∈W

log ‖ϑ‖(R−R′ +W ) + 2
∑

W ′′ 6=W,W ′

log ‖ϑ‖(R−R′ +W ′′) .

Now let R →W and R′ →W ′. We obtain from Lemma 3.8.7 and Theorem 3.8.4

16

∫

Θ+W−W ′

log ‖ϑ‖ · ν + 8 logS(X)

=
∑

W ′′ 6=W,W ′

log

( ‖J‖(W,W ′)2

4‖J‖(W,W ′′)‖J‖(W ′,W ′′)

)
+ 6

∑

W ′′ 6=W,W ′

log ‖ϑ‖(W −W ′ +W ′′)

= 16
∑

W ′′ 6=W,W ′

log ‖ϑ‖(W −W ′ +W ′′) − 32 log 2 − 2 log ‖∆′
2‖(X) .

The theorem then follows by plugging in the result mentioned in Lemma 3.8.8.
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Chapter 4

Hyperelliptic Riemann surfaces II

In the present chapter we give a proof of Theorem 3.1.3. The idea will be to construct a certain

isomorphism of line bundles on the moduli stack Ig of hyperelliptic curves of genus g. Over the

complex numbers, these line bundles carry certain hermitian metrics, and we obtain Theorem 3.1.3

by computing the norm of corresponding sections in both line bundles. The proof is given in Section

4.4. In the sections 4.1 till 4.3 some preliminary work is done. As an application of Theorem 3.1.3

we prove in Section 4.5 a formula expressing a certain product of Jacobian Nullwerte, associated

to a hyperelliptic Riemann surface, as a product of certain Thetanullwerte. In this way we prove a

part of a conjecture formulated by Guàrdia [Gu2].

4.1 Hyperelliptic curves

In this section we assemble some general facts on hyperelliptic curves over an arbitrary base scheme.

We will assume all our base schemes to be locally noetherian. The basic reference for this section

is [LK].

Definition 4.1.1. Let B be a locally Noetherian scheme, and let p : X → B be a smooth projective

curve of genus g ≥ 2. We call such a curve hyperelliptic if there exists an involution σ ∈ AutB(X )

such that for every geometric point b of B, the quotient Xb/〈σ〉 is isomorphic to P1
κ(b)

. For a

hyperelliptic curve p : X → B, the involution σ is uniquely determined. This is well-known for

B = Spec(k) with k an algebraically closed field, and the general case follows from this by the fact

that AutB(X ) is unramified over B (cf. [DM], Theorem 1.11). We call σ the hyperelliptic involution

of X .

Definition 4.1.2. By a twisted P1
B we mean a smooth, projective curve of genus 0 over B. By

[LK], Corollary 3.4, if q : Y → B is a twisted P1
B , there exists an étale surjective morphism B′ → B

such that YB′ ∼= P1
B′ .

A hyperelliptic curve p : X → B carries a relative dualising sheaf (or, what amounts to the same

in this case, a sheaf of relative differentials) ωX/B. We will sometimes leave out the subscript X/B
if the context is clear.

Proposition 4.1.3. Let p : X → B be a hyperelliptic curve of genus g ≥ 2 and let σ be the

hyperelliptic involution of X . The following properties hold: (i) the quotient map X → X/〈σ〉 is a

finite, faithfully flat B-morphism h : X → Y of degree 2, where Y → B is a twisted P1
B; (ii) after

an étale surjective base change B′ → B we obtain from this a finite, faithfully flat B′-morphism

h : XB′ → P1
B′ of degree 2; (iii) the image Y ′ of the canonical morphism π : X → P(p∗ωX/B)

is a twisted P1
B, and its formation commutes with arbitrary base change; (iv) there exists a closed
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embedding j : Y → P(p∗ωX/B) such that π = j · h. After a faithfully flat base change B ′ → B, the

embedding j is isomorphic to the Veronese morphism P1
B′ ↪→ Pg−1

B′ .

Proof. See [LK], Theorem 5.5, Lemmas 5.6 and 5.7, and Remark 5.11.

4.2 Canonical isomorphisms

In this section we construct a canonical isomorphism on the base which involves the relative dualising

sheaf and the Weierstrass subscheme of a hyperelliptic curve p : X → B. We make use of the Deligne

bracket and its canonical metrisation, defined in Section 1.3. Lemma 4.2.1 and Corollary 4.2.2 are

modelled on [BMM], Proposition 1 and Proposition 2, respectively.

Lemma 4.2.1. Let p : X → B be a hyperelliptic curve of genus g ≥ 2 and let σ be the hyperelliptic

involution of X . For any σ-invariant section P : B → X of p we have a unique isomorphism

ωX/B
∼−→OX ((2g − 2)P ) ⊗ p∗〈P, P 〉⊗−(2g−1)

which induces by pulling back along P the adjunction isomorphism 〈P, ωX/B〉∼→〈P, P 〉⊗−1. Its for-

mation commutes with arbitrary base change. In the case B = Spec(C), this isomorphism is an

isometry if one endows both members with their canonical Faltings-Arakelov metrics.

Proof. First of all, let P be any section of p. Let h : X → Y be the morphism from Proposition

4.1.3(i) with Y a twisted P1
B with structure morphism q : Y → B. By composing P with h we obtain

a section Q of q, and hence we can write Y ∼= P(V ) for some locally free sheaf V of rank 2 on B

(cf. [LK], Proposition 3.3). On the other hand, consider the canonical morphism π : X → P(p∗ω).

We have a natural isomorphism ω ∼= π∗(OP(p∗ω)(1)). Let j : Y → P(p∗ω) be the closed embedding

given by Proposition 4.1.3(iv). By that same proposition, and by using a faithfully flat descent

argument, we have a natural isomorphism j∗(OP(p∗ω)(1)) ∼= OP(V )((g − 1)). By [EGA], II.4.2.7

there is a unique line bundle L on B such that OP(V )((g−1)) ∼= OP(V )((g−1) ·Q)⊗q∗L. By pulling

back along h, we find a natural isomorphism ω
∼→OX ((g − 1) · (P + σ(P ))) ⊗ p∗L. In the special

case where P is σ-invariant, this can be written as a natural isomorphism ω
∼→OX ((2g−2)P )⊗p∗L.

Pulling back along P we find that L ∼= 〈ω, P 〉 ⊗ 〈P, P 〉⊗−(2g−2) and with the adjunction formula

〈P, P 〉 ∼= 〈−P, ω〉 then finally L ∼= 〈P, P 〉⊗−(2g−1). It is now clear that we have an isomorphism

ω
∼→OX ((2g − 2)P ) ⊗ p∗〈P, P 〉⊗−(2g−1) which induces by pulling back along P an isomorphism

〈P, ωX/B〉∼→〈P, P 〉⊗−1. Possibly after multiplying with a unique global section of O∗
B , we can

establish that the latter isomorphism be the canonical adjunction isomorphism. The commutativity

with base change is clear from the general base change properties of the relative dualising sheaf and

the Deligne bracket. Turning now to the case B = Spec(C), note that since both members of the

isomorphism have admissible metrics with the same curvature form, the isomorphism must multiply

the Arakelov metrics by a constant on X . Since the adjunction isomorphism is an isometry, the

isomorphism is an isometry at P , hence everywhere.

Corollary 4.2.2. Let p : X → B be a hyperelliptic curve of genus g ≥ 2. For any two σ-invariant

sections P,Q of p we have a canonical isomorphism of line bundles on B

〈ωX/B , ωX/B〉 ∼−→〈P,Q〉⊗−4g(g−1) ,

and its formation commutes with arbitrary base change. In the case B = Spec(C), this isomorphism

is an isometry if one endows both members with their canonical Faltings metrics.

Proof. By Lemma 4.2.1, we have canonical isomorphisms ω
∼→OX ((2g−2)P )⊗p∗〈P, P 〉⊗−(2g−1) and

ω
∼→OX ((2g − 2)Q)⊗ p∗〈Q,Q〉⊗−(2g−1). It follows that OX ((2g − 2)(P −Q)) comes from the base,

56



and hence 〈(2g − 2)(P −Q), P −Q〉 is canonically trivial on B. Expanding, this gives a canonical

isomorphism 〈P, P 〉⊗2g−2 ⊗〈Q,Q〉⊗2g−2 ∼→〈P,Q〉⊗2(2g−2) of line bundles on B. Expanding next the

right hand member of the canonical isomorphism

〈ω, ω〉 ∼→〈OX ((2g − 2)P ) ⊗ p∗〈P, P 〉⊗−(2g−1), OX ((2g − 2)Q) ⊗ p∗〈Q,Q〉⊗−(2g−1)〉

gives then the result. The commutativity with base change is clear. Finally it is readily verified that

all isomorphisms here become isometries when restricted to B = Spec(C). Indeed, the Arakelov

metric on OX ((2g− 2)(P −Q)) becomes a constant metric when one trivialises it; as a consequence

the metric on 〈(2g − 2)(P − Q), P − Q〉 becomes the trivial metric. That the other isomorphisms

are isometries follows from Lemma 4.2.1.

Definition 4.2.3. Let p : X → B be a hyperelliptic curve with hyperelliptic involution σ. Then

we call Weierstrass subscheme of X the fixed point subscheme of X under the action of 〈σ〉. It is

denoted by WX/B . We recall at this point that in general locally, on an affine scheme with ring R,

the fixed point scheme for the action of a finite group G is defined by the ideal IG of R generated

by the set {r − g(r)|r ∈ R, g ∈ G}.

Proposition 4.2.4. The following properties hold: the Weierstrass subscheme WX/B of X is the

subscheme associated to an effective Cartier divisor on X relative to B. It is finite and flat over B of

degree 2g+ 2, and its formation commutes with arbitrary base change. The Weierstrass subscheme

WX/B is étale over a point b ∈ B if and only if the residue characteristic of b is not 2. After

a faithfully flat base change, the Weil divisor given by the Weierstrass subscheme WX/B can be

written as a sum W1 + · · · +W2g+2 of (not necessarily distinct) sections of p.

Proof. See [LK], Proposition 6.3, Proposition 6.5, Corollary 6.8 and Theorem 7.3.

We call Weierstrass divisor the Weil divisor on X given by the Weierstrass subscheme; we will

also denote it by WX/B, and no confusion is to be expected here. We will sometimes leave out the

subscript X/B if the context is clear.

Example 4.2.5. Consider the genus 2 curve p : X → B = Spec(Z[1/5]) given by the affine equation

y2 +x3y = x. One checks that it has good reduction everywhere, hence p : X → B is a hyperelliptic

curve according to our definition. Over the ring R′ = R[ζ5,
5
√

2] it acquires six σ-invariant sections

W0, . . . ,W5 where W0 is given by x = 0 and Wk is given by x = −ζk
5

5
√

4 for k = 1, . . . , 5. One can

check by hand that these σ-invariant sections do not meet over points of residue characteristic 6= 2,

so that indeed the Weierstrass subscheme W is étale over such points. Over a prime of characteristic

2, all σ-invariant sections meet in one point W0 given in coordinates by x = y = 0. The degree 2

quotient map h : XF2 → Y = XF2/〈σ〉 ∼= P1
F2

is ramified only in this point W0.

Remark 4.2.6. In general, if B is the spectrum of a field of characteristic 2, then h : X → X/〈σ〉
ramifies in at most g + 1 distinct points (cf. [LK], Remark on p. 104).

In the following proposition we relate the relative dualising sheaf and the Weierstrass subscheme

by a canonical isomorphism of line bundles on the base.

Proposition 4.2.7. Let p : X → B be a hyperelliptic curve of genus g ≥ 2. Then we have a

canonical isomorphism of line bundles

ν : 〈ωX/B , ωX/B〉⊗(2g+2)(2g+1) ∼−→〈WX/B ,WX/B ⊗ ωX/B〉⊗−4g(g−1) ,

whose formation commutes with arbitrary base change, and which is an isometry in the case B =

Spec(C).
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Proof. By Proposition 4.2.4, after a faithfully flat base change we can write W as a sum of sections

W = W1 + · · ·+W2g+2. By the adjunction formula for the Deligne bracket we then have a canonical

isomorphism 〈W,W ⊗ω〉 ∼−→⊗
i6=j〈Wi,Wj〉, which is an isometry in the case B = Spec(C). On the

other hand, by Corollary 4.2.2 we have 〈Wi,Wj〉⊗−4g(g−1) ∼−→〈ω, ω〉 for each i 6= j, which is again

an isometry in the case B = Spec(C). The general case follows by faithfully flat descent.

4.3 Canonical sections

The purpose of this section is to prove the following two propositions.

Proposition 4.3.1. Let B be a regular scheme and let p : X → B be a hyperelliptic curve of genus

g ≥ 2. Then the line bundle (det p∗ωX/B)⊗8g+4 has a canonical trivialising global section ΛX/B. In

the case B = Spec(C), let n =
(

2g
g+1

)
, let r =

(
2g+1
g+1

)
and let ‖∆g‖(X) = 2−(4g+4)n‖ϕg‖(X) where X

is the Riemann surface X (C). Then for the norm ‖Λ‖ of Λ the formula ‖Λ‖n = (2π)4g2r‖∆g‖(X)g

holds.

Proposition 4.3.2. Let B be an irreducible regular scheme with generic characteristic 6= 2, and let

p : X → B be a hyperelliptic curve of genus g ≥ 2. Then the line bundle 〈WX/B ,WX/B ⊗ωX/B〉 has

a canonical trivialising global section ΞX/B. In the case B = Spec(C), the norm ‖Ξ‖ of Ξ satisfies

‖Ξ‖ = 2−(2g+2)
∏

(W,W ′)G(W,W ′), the product running over all ordered pairs of Weierstrass points

of the Riemann surface X (C).

For the proofs we need three lemmas. At this point we follow [Ka], Section 6 rather closely. Let

B = Spec(R) with R a discrete valuation ring with quotient field K and residue field k. Assume

that char(K) 6= 2. The quotient map R → k is denoted, as usual, by a bar .̄ Let p : X → B be a

hyperelliptic curve of genus g ≥ 2.

Lemma 4.3.3. After a finite étale surjective base change with a discrete valuation ring R′ domi-

nating R, there exists an open affine subscheme U ∼= Spec(E) of X ′ with E = A[y]/(y2 + ay + b),

where A = R′[x] and a, b ∈ A, such that f := a2 − 4b ∈ K ′[x] is separable of degree 2g+ 2 and such

that deg a ≤ g+1 and deg b ≤ 2g+2. For the reduced polynomials a, b ∈ k ′[x] we have deg a = g+1

or deg b ≥ 2g + 1.

Proof. After a finite étale surjective base change with a discrete valuation ring R′ dominating R,

we have by Proposition 4.1.3 a finite faithfully flat R′-morphism h′ : X ′ → P1
R′ of degree two.

Choose a point ∞ ∈ P1
K′ such that XK′ → P1

K′ is unramified above ∞, and let x be a coordinate

on V = P1
K′ −∞. We can then describe U := h′−1(V ) as U ∼= Spec(E) with E = A[y]/(y2 +ay+ b)

where A = R′[x] and a, b ∈ A. Moreover, if we assume the degree of a to be minimal, we have

deg a ≤ g + 1 and deg b ≤ 2g + 2. Next let us consider the degree of f . By Proposition 4.2.4, the

Weierstrass subscheme WX ′/B′ is finite and flat over B′ of degree 2g+ 2. By definition, the ideal of

WX ′/B′ is generated by y − σ(y) = 2y + a on U . Note that (2y + a)2 = a2 − 4b = f , which defines

the norm under h′ of WX ′/B′ in P1
R′ . Since this norm is also finite and flat of degree 2g+2 over B ′,

and since WX ′/B′ is entirely supported in U by our choice of ∞, we obtain that deg(f) = 2g + 2.

Since the norm of WX ′/B′ in P1
R′ is étale over K ′ by Proposition 4.2.4, the polynomial f ∈ K ′[x]

is separable. Consider finally the reduced polynomials a, b ∈ k′[x]. Regarding y as an element of

k′(Xk′), we have div(y) ≥ −min(deg a, 1
2 deg b) · h′∗(∞) by the equation for y. On the other hand

it follows from Riemann-Roch that y has a pole at both points of h′∗(∞) of order strictly larger

than g. This gives then the last statement of the lemma.

Lemma 4.3.4. Suppose we have an open affine subscheme U ∼= Spec(E) on X as in Lemma 4.3.3.

Then the differentials xidx/(2y+ a) for i = 0, . . . , g− 1 are nowhere vanishing on U and extend to

regular global sections of ωX/B.
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Proof. Let F be the polynomial y2+ay+b ∈ A[y], and let Fx and Fy be its derivatives with respect to

x and y, respectively. It is readily verified that the morphism ΩE/R = (Edx+Edy)/(Fxdx+Fydy) →
E given by dx 7→ Fy, dy 7→ −Fx, is an isomorphism of E-modules. This gives that the differentials

xidx/(2y + a) for i = 0, . . . , g − 1 are nowhere vanishing on U . For the second part of the lemma,

it suffices to show that the differentials xidx/(2y + a) for i = 0, . . . , g − 1 on the generic fiber UK

extend to global sections of ΩXK/K—but this is well-known to be true.

Suppose that a polynomial f ∈ K[x] of degree d factors over an extension of K as f =

H
∏d

i=1(x − αi). Then its discriminant D(f) is given as D(f) = H2d−2
∏

i 6=j(αi − αj). Recall

that this element lies in R if the coefficients of f lie in R.

Lemma 4.3.5. Suppose we have an open affine subscheme U ∼= Spec(E) on X as in Lemma 4.3.3.

Then the modified discriminant ∆(f) = 2−(4g+4) ·D(f) is a unit of R.

Proof. In the case that the characteristic of k is 6= 2, this is not hard to see: we know that WXk/k

is étale of degree 2g + 2 by Proposition 4.2.4, and hence f remains separable of degree 2g + 2 in

k[x] under the reduction map. So let us assume from now on that the characteristic of k equals 2.

If C is any ring, and if P (T ) =
∑n

i=0 uiT
i and Q(T ) =

∑m
i=0 viT

i are two polynomials in C[T ], we

denote by Rn,m
T (P,Q) ∈ C the resultant of P and Q. Recall the following property of the resultant:

suppose that at least one of un, vm is non-zero, and that C is a field. Then Rn,m
T (P,Q) = 0 if

and only if P and Q have a root in common in an extension field of C. Let F be the polynomial

y2 + a(x)y+ b(x) in A[y] with A = R[x], and let Fx and Fy be its derivatives with respect to x and

y, respectively. We set Q = R2,1
y (F, Fx) and P = R2,1

y (F, Fy) = 4b− a2 = −f . Let H ∈ R be the

leading coefficient of P , and abbreviate the modified discriminant ∆(f) of f by ∆. A calculation (cf.

[Lo], Section 1) shows that R2g+2,4g+2
x (P,Q) = (H ·∆)2. We should read this equation as a formal

identity between certain universal polynomials in the coefficients of a(x) and b(x). Doing so, we

may conclude that ∆ ∈ R and that H2 divides R2g+2,4g+2
x (P,Q) in R. To finish the argument, we

distinguish two cases. First assume that H 6= 0. Then degP = 2g+2 and again a calculation shows

that R2g+2,4g+2
x (P ,Q) = (H ·∆)2. The fact that Xk is smooth implies that R2g+2,4g+2

x (P ,Q) is non-

zero, and altogether we obtain that ∆ is non-zero. Next assume that H = 0. Then since P = a2 we

obtain that deg a ≤ g and hence degP ≤ 2g. By Lemma 4.3.3 we have then 2g+1 ≤ deg b ≤ 2g+2.

But then from 2 deg(y) = deg(ay + b) and deg(y) > g (cf. the proof of Lemma 4.3.3) it follows

that in fact deg b = 2g + 2 and hence deg db
dx = 2g since we are in characteristic 2. This implies

that degQ = 4g. A calculation shows that R2g,4g
x (P ,Q) = ∆

2
. Again by smoothness of Xk we may

conclude that R2g,4g
x (P ,Q) is non-zero. This finishes the proof.

Example 4.3.6. Consider once more the curve over R = Z[1/5] given in Example 4.2.5 above. In the

notation from Lemma 4.3.3, we have a = x3, b = −x. We compute D(a2−4b) = D(x6 +4x) = 21255

so that ∆(f) = 55 which is indeed a unit in R.

We can now prove Propositions 4.3.1 and 4.3.2.

Proof of Proposition 4.3.1. Possibly after a faithfully flat base change we may assume, by Propo-

sition 4.1.3, that p is a morphism p : X → P1
B . The scheme X is covered by affine schemes

U ∼= Spec(E) with E = A[y]/(y2 +ay+ b) and A a polynomial ring R[x]. For such an affine scheme

U , consider V := Spec(A). In the line bundle (det p∗ωU/V )⊗8g+4 we have a rational section

ΛU/V := ∆(f)g ·
(

dx

2y + a
∧ . . . ∧ xg−1dx

2y + a

)⊗8g+4

,

where ∆(f) is as in Lemma 4.3.5. One can check that this element does not depend on any choice

of affine equation y2 + ay+ b for U , and moreover, these sections coincide on overlaps. Hence they
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build a canonical rational section ΛX/B of (det p∗ωX/B)⊗8g+4. By Lemma 4.3.4 and Lemma 4.3.5,

this ΛX/B is a global trivialising section. The general case follows by faithfully flat descent. Now

consider the case B = Spec(C). In that case, we can make a change of coordinates y ′ := 2y + a,

x′ := x so that we may write y′2 = f(x′) as an equation for X , with f := a2 − 4b. We have

Λ =
(
2−(4g+4) ·D

)g
(
dx′

y′
∧ . . . ∧ x′g−1dx′

y′

)⊗8g+4

,

where D is the discriminant of f . Consider the Riemann surface X = X (C). Using the dif-

ferentials µ1 = dx′/2y′, . . . , µg = x′g−1dx′/2y′ corresponding to the equation y′ = f(x′) and a

canonical basis of the homology of X , we form a period matrix (µ|µ′) and the associated ma-

trix τ = µ−1µ′ in the Siegel upper half space. According to Proposition 3.2.2 we have the

formula Dn = π4gr(det µ)−4rϕg(τ). We put ∆g = 2−(4g+4)n · ϕg . Let z1, . . . , zg be the stan-

dard euclidean coordinates on Cg/Zg + τZg . Recall that we have a canonical isomorphism j :

detH0(X,Ω1
X)

∼−→ detH0(Cg/Zg + τZg ,Ωg). Then we have

j⊗(8g+4)n(Λ⊗n) = j⊗(8g+4)n

((
2−(4g+4) ·D

)gn
(
dx′

y′
∧ . . . ∧ x′g−1dx′

y′

)⊗(8g+4)n
)

= j⊗(8g+4)n

(
2−(4g+4)gnπ4g2r(detµ)−4grϕg(τ)

g

(
dx′

y′
∧ . . . ∧ x′g−1dx′

y′

)⊗(8g+4)n
)

= j⊗(8g+4)n

(
(2π)4g2r(detµ)−4gr∆g(τ)

g

(
dx′

2y′
∧ . . . ∧ x′g−1dx′

2y′

)⊗(8g+4)n
)

= (2π)4g2r∆g(τ)
g(dz1 ∧ . . . ∧ dzg)

⊗(8g+4)n .

The claim on the norm of Λ follows since ‖dz1 ∧ . . . ∧ dzg‖ =
√

det Imτ .

Proof of Proposition 4.3.2. By Propositions 4.1.3 and 4.2.4 we can assume, possibly after a faith-

fully flat base change, that the image of the canonical map h : X → X/〈σ〉 is isomorphic to P1
B ,

and that W is a sum of sections W = W1 + · · ·+W2g+2. The latter gives by the adjunction formula

for the Deligne bracket a canonical isomorphism 〈W,W ⊗ ω〉 ∼−→
⊗

i6=j〈Wi,Wj〉. The latter line

bundle contains a canonical rational section Ξ′ :=
⊗

i6=j〈si, sj〉 with si and sj canonical sections

of OX (Wi) and OX (Wj), respectively. We claim that Ξ := 2−(2g+2) · Ξ′ is a trivialising global

section. The first statement of the proposition follows then by faithfully flat descent. In order to

prove the claim, we assume that B = Spec(R) with R a discrete valuation ring with char(K) 6= 2.

Also we assume that its discrete valuation v is normalised in the sense that v(K∗) = Z. Then

the valuation v(Ξ′) of Ξ′ at the closed point b of B is given by the sum
∑

i6=j(Wi,Wj) of the lo-

cal intersection multiplicities (Wi,Wj) above b of pairs of Wi,Wj . Suppose that Wi is given by

a polynomial x − αi, and write αi as a shorthand for the corresponding section of P1
R. By the

projection formula (cf. [Li], Theorem 9.2.12) we have for the local intersection multiplicities that

4(Wi,Wj) = (2Wi, 2Wj) = (h∗αi, h
∗αj) = 2(αi, αj) for each i 6= j hence (Wi,Wj) = 1

2 (αi, αj)

for each i 6= j. Now the local intersection multiplicity (αi, αj) on P1
R above b is calculated to be

v(αi − αj). This gives that v(Ξ′) =
∑

i6=j(Wi,Wj) = 1
2

∑
i6=j v(αi − αj) = 1

2v(D(f)). By Lemma

4.3.5 we have v(D(f)) = (4g + 4)v(2) hence if we define Ξ = 2−(2g+2) · Ξ′ we obtain a section with

v(Ξ) = 0, which is what we wanted. Turning finally to the case B = Spec(C), we see, since the

adjunction isomorphism is an isometry, that ‖Ξ‖ = 2−(2g+2)
∏

i6=j ‖〈si, sj〉‖. The required formula

follows.
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4.4 Proof of Theorem 3.1.3

In this section we give a proof of Theorem 3.1.3. We will work on the universal hyperelliptic curve

of genus g. To be precise, let Ig be the category with objects the hyperelliptic curves p : X → B

of genus g, and morphisms given by cartesian diagrams. Then Ig is an algebraic stack in the sense

of Deligne-Mumford [DM], and according to [LL], Theorem 3, the stack Ig is a smooth, closed

substack of dimension 2g − 1 of the moduli stack Mg of smooth curves of genus g. We denote the

universal family on Ig by Ug.

The idea of the proof will be to apply our results from the previous section to the universal

map p : Ug → Ig , in order to obtain a canonical isomorphism of line bundles on Ig. We obtain the

theorem by comparing the norms of corresponding sections in these line bundles. We will need one

more lemma.

Lemma 4.4.1. We have that H0(Ig ,Gm) = {−1,+1}.

Proof. It suffices to see that H0(Ig ⊗C,Gm) = C∗ for then the lemma follows since Ig → Spec(Z) is

smooth and surjective. We can describe Ig ⊗C as the space of (2g+ 2)-tuples of distinct points on

P1 modulo projective equivalence, that is we can write Ig⊗C = ((C\{0, 1})2g−1−∆)/S2g+2 (in the

orbifold sense) where ∆ denotes the fat diagonal and where S2g+2 is the symmetric group acting by

permutation on 2g+2 points on P1. According to [HM], the first homology of (C\{0, 1})2g−1−∆ is

isomorphic to the irreducible representation of S2g+2 corresponding to the partition {2g, 2} of 2g+2;

in particular it does not contain a trivial representation of S2g+2. This proves that H1(Ig ⊗ C,Q)

is trivial, and hence H0(Ig ⊗ C,Gm) = C∗.

Proposition 4.4.2. Let p : Ug → Ig be the universal hyperelliptic curve of genus g. Then there is

a canonical isomorphism

ψ : (det p∗ω)⊗12(8g+4)(2g+2)(2g+1) ∼−→〈W,W ⊗ ω〉−⊗4(8g+4)g(g−1)

of line bundles on Ig. This isomorphism has the property that

ψ(Λ⊗12(2g+2)(2g+1)) = ±Ξ−⊗4(8g+4)g(g−1) .

Over the complex numbers, the norm of ψ is equal to
(
(2π)−4g exp(δ)

)(8g+4)(2g+2)(2g+1)
.

Proof. By Theorem 1.6.1, we have on Ig a canonical isomorphism µ : (det p∗ω)⊗12 ∼−→〈ω, ω〉. Fur-

ther, by Proposition 4.2.7 we have a canonical isomorphism

ν : 〈ω, ω〉⊗(2g+2)(2g+1) ∼−→〈W,W ⊗ ω〉⊗−4g(g−1) .

Combining, we obtain a canonical isomorphism ψ as required. According to Theorem 1.6.1, the

isomorphism µ has norm (2π)−4g exp(δ) over the complex numbers, and by Proposition 4.2.7 the

isomorphism ν is an isometry. This easily implies the statement on the norm of ψ. Now let us

consider the canonical sections Λ and Ξ of Propositions 4.3.1 and 4.3.2. Since Ig is smooth, these

are trivialising global sections. We conclude that ψ(Λ⊗12(2g+2)(2g+1)) = Ξ−⊗4(8g+4)g(g−1) only up

to an element of H0(Ig ,Gm). However, we know by Lemma 4.4.1 that the latter group is just

{−1,+1}.

We can now give the proof of Theorem 3.1.3.

Proof of Theorem 3.1.3. Let p : X → B = Spec(C) be the complex hyperelliptic curve such that

X = X (C). By taking norms on both sides of the isomorphism in Proposition 4.4.2 we arrive at
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the following fundamental formula:

(
(2π)−4g exp(δ(X))

)(8g+4)(2g+2)(2g+1) ‖Λ‖(B)12(2g+2)(2g+1) = ‖Ξ‖(B)−4g(g−1)(8g+4) .

Now let us see what we have for the individual terms from this formula. First, by Proposition

4.3.1 we have ‖Λ‖(B)n = (2π)4g2r‖∆g‖(X)g, where ‖∆g‖(X) = 2−(4g+4)n · ‖ϕg‖(X). Second, by

Proposition 4.3.2 and the definition of G′ we have

‖Ξ‖(B) = 2−(2g+2)
∏

(W,W ′)

G(W,W ′) = 2−(2g+2)S(X)(2g+2)(2g+1)/g3 ∏

(W,W ′)

G′(W,W ′) ,

the product running over all ordered pairs of distinct Weierstrass points. Finally we have by

Theorem 2.1.3 that exp(δ(X)/4) = S(X)−(g−1)/g2 · T (X). We find the theorem by plugging in

these results.

Remark 4.4.3. We have not been able to find in general a formula for G′(W,W ′) with W,W ′ just

two Weierstrass points. It follows from Corollary 3.8.5 above that in the case g = 2 we have

G′(W,W ′)2 = 21/4 · ‖ϕ2‖(X)−3/64 ·
∏

W ′′ 6=W,W ′

‖ϑ‖(W −W ′ +W ′′) .

We guess that in general we have

(??) G′(W,W ′)g = A(X) ·
∏

S={W1,...,Wg−1}

W,W ′ /∈S

‖ϑ‖(W −W ′ +W1 + · · · +Wg−1) ,

with A(X) some invariant of X . Such a result is consistent with Theorems 3.1.2 and 3.1.3 above.

4.5 Jacobian Nullwerte

In this section we derive from Theorem 3.1.3 a relation between certain products of Jacobian

Nullwerte and certain products of Thetanullwerte, associated to hyperelliptic Riemann surfaces.

The theme of this section finds its origin in Jacobi’s derivative formula, discovered by Jacobi around

1830: let η1 be the odd analytic theta characteristic in genus one, and let η2, η3, η4 be the even

ones. We then have an equality

ϑ[η1]
′(0; τ) = −πϑ[η2](0; τ)ϑ[η3](0; τ)ϑ[η4](0; τ)

of functions of τ in the complex upper half plane. It is natural to ask for generalisations of this

identity to higher dimensions. For this one considers the following so-called Jacobian Nullwerte: let

η1, . . . , ηg be g odd theta characteristics in dimension g. Then we put

J(η1, . . . , ηg)(τ) := (∂(ϑ[η1], . . . , ϑ[ηg ])/∂(z1, . . . , zg))(0; τ) .

These Jacobian Nullwerte are modular forms on the Siegel upper half space Hg. A first generalisa-

tion of Jacobi’s derivative formula was stated by Rosenhain around 1850.

Theorem 4.5.1. (Rosenhain [Ro]) Let η1, . . . , η6 be the six odd theta characteristics in g = 2. Let

τ ∈ H2. Then for every pair of distinct ηk, ηl, the identity

J(ηk, ηl)(τ) = ±π2
∏

m6=k,l

ϑ[ηk + ηl − ηm](0; τ)
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holds. Here the sum ηk + ηl − ηm is taken modulo 1, and the characteristics ηk + ηl − ηm occurring

in the product are even.

After that, some scattered generalisations of Jacobi’s derivative formula were obtained by, among

others, Riemann, Thomae [Th] and Frobenius [Fr]. A general result was proved by Igusa. In order

to state this result, we need the notion of a fundamental system of theta characteristics. This notion

was already employed by the nineteenth century authors.

Definition 4.5.2. For an analytic theta characteristic η, we put e(η) = 1 if η is even, and e(η) = −1

if η is odd. Given three analytic theta characteristics η1, η2, η3 we define

e(η1, η2) = e(η1)e(η2)e(η1 + η2) and e(η1, η2, η3) = e(η1)e(η2)e(η3)e(η1 + η2 + η3). We say that

the triplet {η1, η2, η3} is azygetic (resp. zygetic) if e(η1, η2, η3) = −1 (resp. e(η1, η2, η3) = 1). A

fundamental system of analytic theta characteristics is a set S = {η1, . . . , η2g+2} of 2g + 2 theta

characteristics such that the η1, . . . , ηg are odd, the ηg+1, . . . , η2g+2 are even, and every triplet

{ηk, ηl, ηm} ⊂ S is azygetic.

Theorem 4.5.3. (Igusa [Ig2]) Let g ≥ 2 be an integer. Let η1, . . . , ηg be odd analytic theta char-

acteristics such that the function J(η1, . . . , ηg)(τ) on Hg is not identically zero and is contained in

the C-algebra generated by the Thetanullwerte ϑ[η](0; τ), with η running through the even charac-

teristics. Then η1, . . . , ηg can be completed to form a fundamental system, and:

J(η1, . . . , ηg)(τ) = πg
∑

{ηg+1,...,η2g+2}∈S

±
2g+2∏

k=g+1

ϑ[ηk](0; τ) ,

where S is the set of all (g + 2)-tuples {ηg+1, . . . , η2g+2} of even theta characteristics such that

{η1, . . . , ηg , ηg+1, . . . , η2g+2} form a fundamental system. If τ is a period matrix of a hyperelliptic

Riemann surface, then there is exactly one non-zero term in the sum at the right hand side of the

equality.

Now, consider a hyperelliptic Riemann surfaceX of genus g ≥ 2. Fix an orderingW1, . . . ,W2g+2

of the Weierstrass points of X . Consider an equation y2 = f(x) with f monic of degree 2g + 1

that puts W2g+2 at infinity. We have then as usual the period matrix (µ|µ′) of the differentials

dx/2y, . . . , xg−1dx/2y on a canonical symplectic basis of the homology of X . Let τ = µ−1µ′, let

κ ∈ Cg/Zg + τZg be the Riemann vector associated to infinity by Theorem 1.4.2, and consider the

Abel-Jacobi map tκ ·u : Picg−1(X)
∼−→Cg/Zg+τZg from Theorem 1.4.2. As was explained there, the

Abel-Jacobi map induces an identification of the set of classes of semi-canonical divisors on X (i.e.,

divisors D with 2D linearly equivalent to a canonical divisor) with the set of theta characteristics,

the class [D] of D corresponding to η = [ η′

η′′ ] where (tκ · u)([D]) = [η′ + τ · η′′]. We can be even

more precise. Recall the definition of the analytic theta characteristics ηk for k = 1, . . . , 2g + 1

from Section 3.2. We there defined for a subset S of {1, 2, . . . , 2g + 1} a theta characteristic ηS

by putting ηS :=
∑

k∈S ηk. We extend this definition here to subsets S of {1, 2, . . . , 2g + 2} by

putting ηS :=
∑

k∈S
k 6=2g+2

ηk. Further, as before we put U = {1, 3, . . . , 2g+1} and we let ◦ denote the

symmetric difference.

Lemma 4.5.4. Let X be a hyperelliptic Riemann surface of genus g ≥ 2 and fix an ordering

W1, . . . ,W2g+2 of its Weierstrass points. Consider the identification of the set of classes of semi-

canonical divisors with the set of analytic theta characteristics as above. (i) The semi-canonical

divisor Wi1 + · · · + Wig−1 corresponds to the characteristic ηT◦U where T = {i1, . . . , ig−1}. (ii)

The semi-canonical divisor Wi1 + · · · +Wig −Wig+1 corresponds to the characteristic ηT◦U where

T = {i1, . . . , ig+1}.

Proof. See [Mu2], Chapter IIIa, Proposition 6.2.
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In [Gu2], Guàrdia proves the following result.

Lemma 4.5.5. Let X be a hyperelliptic Riemann surface of genus g ≥ 2 and fix an ordering

W1, . . . ,W2g+2 of its Weierstrass points. Consider the identification of the set of classes of semi-

canonical divisors with the set of analytic theta characteristics as above. Let {i1, . . . , i2g+2} be a

permutation of the set {1, . . . , 2g+2}. Denote by ηk for k = 1, . . . , g the analytic theta characteristic

corresponding to the semi-canonical divisor
∑g

l=1
l6=k

Wil
, and denote by ηk for k = g+1, . . . , 2g+2 the

analytic theta characteristic corresponding to the semi-canonical divisor (
∑g

l=1Wil
) −Wik

. Then

the set {η1, . . . , η2g+2} is a fundamental system of theta characteristics.

It follows from Lemma 4.5.4 that the set Fg that one gets by letting {i1, . . . , i2g+2} range

over the permutations of {1, . . . , 2g + 2}, is independent of the chosen ordering of the Weier-

strass points, and even independent of X . In fact, the cardinality of Fg is
(
2g+2

g

)
and an element

{η1, . . . , ηg , ηg+1, . . . , η2g+2} ∈ Fg is determined by the set {η1, . . . , ηg}.
Considering Igusa’s result Theorem 4.5.3, Guàrdia states in [Gu2] the following conjecture:

Conjecture 4.5.6. (Guàrdia [Gu2]) Let g ≥ 2 be an integer. Let {η1, . . . , ηg, ηg+1, . . . , η2g+2} be

a fundamental system contained in Fg, and let τ be a period matrix associated to a hyperelliptic

Riemann surface. Then the formula

J(η1, . . . , ηg)(τ) = ±πg

2g+2∏

k=g+1

ϑ[ηk](0; τ)

holds.

Using the results from this chapter we are able to prove an easy consequence of Conjecture 4.5.6,

mentioned by Guàrdia himself already in [Gu2].

Theorem 4.5.7. Let T be the set of subsets of {1, 2, . . . , 2g+1} of cardinality g+1. Let τ ∈ Hg be

a period matrix associated to a hyperelliptic Riemann surface. Let m =
(
2g+2

g

)
. Then the formula

∏

{η1,...,ηg,ηg+1,...,η2g+2}∈Fg

J(η1, . . . , ηg)(τ) = ±πgm
∏

T∈T

ϑ[ηT◦U ](0; τ)2g+2

holds.

If we take the product over all {η1, . . . , ηg , ηg+1, . . . , η2g+2} ∈ Fg in the formula from Conjecture

4.5.6, we obtain the formula from Theorem 4.5.7.

In order to prove Theorem 4.5.7, we focus on a fixed hyperelliptic Riemann surface X of genus

g ≥ 2, marked with an ordering W1, . . . ,W2g+2 of its Weierstrass points. Associated to these data

we have an equation y2 = f(x) putting W2g+2 at infinity; we have then the period matrix (µ|µ′),

the matrix τ and the identification Picg−1(X)
∼−→Cg/Zg + τZg as explained above.

Recall the definition of the function ‖J‖ from Definition 1.4.11. From Theorem 1.4.12 we derive

the following proposition, which, in combination with Theorem 3.1.3, easily gives Theorem 4.5.7.

Proposition 4.5.8. We have

∏

(W,W ′)

G′(W,W ′)n(g−1)

= T (X)−(g+2)m · ‖ϕg‖(X)(g
2−1)/2 ·

∏

{i1,...,ig}

‖J‖(Wi1 , . . . ,Wig )−(2g+4) ,

the first product running over all ordered pairs of distinct Weierstrass points, the second product

running over the subsets of {1, . . . , 2g + 2} of cardinality g.
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Proof. From Theorem 1.4.12 and Theorem 2.1.3 we derive the relation

g∏

k=1

G′(Pk , Q)2g−2 =
1

T (X)
· ‖ϑ‖(P1 + · · · + Pg −Q)2g−2

‖J‖(P1, . . . , Pg)2
·
∏

k 6=l

G′(Pk, Pl)

for generic P1, . . . , Pg, Q ∈ X . Let Wi1 , . . . ,Wig be g distinct Weierstrass points. We obtain

∏

W /∈{Wi1 ,...,Wig }

g∏

k=1

G′(Wik
,W )2g−2

=
1

T (X)g+2
·
∏

W /∈{Wi1 ,...,Wig}
‖ϑ‖(Wi1 + · · · +Wig −W )2g−2

‖J‖(Wi1 , . . . ,Wig )2g+4
·
∏

k 6=l

G′(Wik
,Wil

)g+2 .

Taking the product over all sets of indices {i1, . . . , ig} of cardinality g we find

∏

(W,W ′)

G′(W,W ′)n(g−1)

=
1

T (X)(g+2)m
·
∏

{i1,...,ig}

∏
W /∈{Wi1 ,...,Wig}

‖ϑ‖(Wi1 + · · · +Wig −W )2g−2

‖J‖(Wi1 , . . . ,Wig )2g+4
.

Since Wi1 + · · ·+Wig −Wig+1 ∼Wi′1
+ · · ·+Wi′g −Wi′g+1

if and only if {i1, . . . , ig+1} = {i′1, . . . , i′g+1}
or {i1, . . . , ig+1} ∪ {i′1, . . . , i′g+1} = {1, . . . , 2g + 2} (cf. [Mu2], Chapter IIIa, Proposition 6.1), we

have, by Lemma 4.5.4(ii) and the definition of the modular discriminant from Section 3.2, that

∏

{i1,...,ig+1}

‖ϑ‖(Wi1 + · · · +Wig −Wig+1 )
4 = ‖ϕg‖(X) ,

where the product runs over the subsets of {1, . . . , 2g + 2} of cardinality g + 1. Hence we have

∏

{i1,...,ig}

∏

W /∈{Wi1 ,...,Wig}

‖ϑ‖(Wi1 + · · · +Wig −W )2g−2 = ‖ϕg‖(X)(g
2−1)/2 .

Plugging this in finishes the proof.

Proof of Theorem 4.5.7. Let X be a hyperelliptic Riemann surface of genus g ≥ 2 and fix an

ordering W1, . . . ,W2g+2 of its Weierstrass points. A comparison of Proposition 4.5.8 with Theorem

3.1.3 immediately yields that

∏

{i1,...,ig}

‖J‖(Wi1 , . . . ,Wig )4 = π4gm‖ϕg‖(X)g+1 ,

where the product runs over the subsets of {1, . . . , 2g + 2} of cardinality g. Dividing left and right

by the appropriate power of det Imτ and using the definitions of ‖J‖ and Fg we find that

∏

{η1,...,ηg ,ηg+1,...,η2g+2}∈Fg

|J(η1, . . . , ηg)(τ)|4 = π4gm|ϕg(τ)|g+1 ,

where τ is a period matrix associated to X . Taking 4th roots and applying the maximum principle

we find ∏

{η1,...,ηg,ηg+1,...,η2g+2}∈Fg

J(η1, . . . , ηg)(τ) = επgm
∏

T∈T

ϑ[ηT◦U ](0; τ)2g+2
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with ε a complex number of modulus 1. We find the right value of ε by considering Fourier

expansions on the left and the right as in [Ig1], pp. 86–88.

4.6 Jacobi’s derivative formula

The arguments leading to the proof of Theorem 4.5.7 specialise to the case g = 1 with only little

modifications. In the present section we spell out the details, leading to a proof of Jacobi’s derivative

formula mentioned at the beginning of Section 4.5. In contrast to traditional proofs, which rely on

special analytic or combinatorial properties of the theta function, such as the heat equation, the

present proof gives insight into the algebraico-geometric structure behind the formula.

Proof of Jacobi’s derivative formula. We consider the universal elliptic curve p : U1 → M1. Let ω

be the relative dualising sheaf of p. By Theorem 1.6.1, we have on M1 an isomorphism

µ : (p∗ω)⊗12 ∼−→〈ω, ω〉 ,

which is unique up to sign. Now it is easy to see that the canonical homomorphism p∗p∗ω → ω is

in fact an isomorphism; in particular ω is pulled back from the base. This implies that 〈ω, ω〉 is

canonically isomorphic to the trivial line bundle OM1 , also as a metrised line bundle. This means

that we have a canonical global trivialising section Ξ of 〈ω, ω〉, with unit length over the complex

numbers. Consider next the line bundle (p∗ω)⊗12. It follows from Proposition 4.3.1 that this line

bundle carries a canonical global trivialising section Λ, which we can write as

Λ = 24π12(ϑ[η2](0; τ)ϑ[η3](0; τ)ϑ[η4](0; τ))8(dz)⊗12

on the elliptic curve C/Z+ τZ. As in Lemma 4.4.1, we have H0(M1,Gm) = {−1,+1}, hence, as in

the proof of Proposition 4.4.2, we have µ(Λ) = ±Ξ. Now by Theorem 1.6.1 the norm of µ is equal

to (2π)−4 exp(δ). Further, the norm of Λ is ‖Λ‖ = 24π12(Imτ)6|ϑ[η2](0; τ)ϑ[η3](0; τ)ϑ[η4](0; τ)|8
and the norm of Ξ is ‖Ξ‖ = 1. Combining gives that

π8(Imτ)6|ϑ[η2](0; τ)ϑ[η3](0; τ)ϑ[η4](0; τ)|8 exp(δ(X)) = 1 .

By Theorem 2.1.3 and Proposition 2.3.3 we have for the delta-invariant

exp(−δ(X)) = (Imτ)6|ϑ[η1]
′(0; τ)|8 ,

and plugging this in gives

|ϑ[η1]
′(0; τ)| = π|ϑ[η2](0; τ)ϑ[η3](0; τ)ϑ[η4](0; τ)| .

By the maximum principle we find an equality of holomorphic functions

ϑ[η1]
′(0; τ) = επϑ[η2](0; τ)ϑ[η3](0; τ)ϑ[η4](0; τ)

of τ in the complex upper half plane, where ε is a complex constant of modulus 1. We find the

right value ε = −1 by considering q-expansions as in [Mu2], Chapter I, §13.
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Chapter 5

Elliptic curves

In this chapter we give a rather self-contained and fairly elementary discussion of the Arakelov

theory of elliptic curves. Many results on the Arakelov theory of elliptic curves are already known

by [Fa2] and Szpiro’s paper [Sz], but our approach is different. In particular, we base our discussion

on a projection formula for the Arakelov-Green function on Riemann surfaces of genus 1 related by

an isogeny. From this formula we derive a projection formula for Arakelov intersections, as well as

a formula for the so-called “energy of an isogeny”. Both of these formulas seem new. In fact, the

latter formula provides an answer to a question posed by Szpiro in [Sz].

Using the new results, we give alternative proofs of several of the earlier results. For example,

we arrive at explicit formulas for the Arakelov-Green function on an elliptic curve, for the canonical

norm in the holomorphic cotangent bundle, and for the self-intersection of a point. We also give an

elementary proof of a recent result due to Autissier [Au] on the average height of the quotients of

an elliptic curve by its cyclic subgroups of a fixed order.

5.1 Analytic projection formula

We start by studying the fundamental (1,1)-form µ with respect to isogenies. Let X and X ′ be

Riemann surfaces of genus 1, and suppose that f : X → X ′ is an isogeny, say of degree N . Let µX

and µX′ be the fundamental (1,1)-forms of X and X ′, respectively.

Proposition 5.1.1. (i) We have f∗µX′ = N · µX ;

(ii) the canonical isomorphism f ∗ : H0(X ′,Ω1
X′)

∼−→H0(X,Ω1
X) given by inclusion has norm

√
N .

Proof. We identify X with a complex torus C/Λ, and obtain X ′ as the quotient of C/Λ by a

finite subgroup Λ′/Λ. Hence we may identify X ′ with C/Λ′. A small computation shows that the

differentials dz/
√

vol(Λ) and dz/
√

vol(Λ′) are orthonormal bases of H0(X,Ω1
X) and H0(X ′,Ω1

X′),

respectively. We obtain the proposition by observing that N = vol(Λ)/vol(Λ′).

Proposition 5.1.1 gives rise to a projection formula for the Arakelov-Green function.

Theorem 5.1.2. (Analytic projection formula) Let X and X ′ be Riemann surfaces of genus 1 and

let GX and GX′ be the Arakelov-Green functions of X and X ′, respectively. Suppose we have an

isogeny f : X → X ′. Let D be a divisor on X ′. Then the canonical isomorphism of line bundles

f∗OX′(D)
∼−→OX (f∗D)

is an isometry. In particular we have a projection formula: for any P ∈ X the formula

GX(f∗D,P ) = GX′(D, f(P ))
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holds.

Proof. Let N be the degree of f . By Proposition 5.1.1 we have

curvf∗OX′(D) = f∗(curvOX′(D)) = f∗((degD) · µX′) = N · (degD) · µX = deg(OX (f∗D)) · µX ,

which means that f∗OX′(D) is an admissible line bundle on X . Hence by Proposition 1.1.3 we have

‖f∗(sD)‖f∗OX′ (D) = c · ‖sf∗D‖OX(f∗D) for some constant c where sD and sf∗D are the canonical

sections of OX′(D) and OX(f∗D), respectively. But since

∫

X

log ‖f∗(sD)‖f∗OX′ (D) ·µX =
1

N

∫

X

log ‖f∗(sD)‖f∗OX′ (D) ·f∗µX′ =

∫

X′

log ‖sD‖OX′ (D) ·µX′ = 0 ,

this constant is equal to 1.

5.2 Energy of an isogeny

At this point, we recall some notation from Section 2.3. Let τ be an element of the complex upper

half plane, and write q = exp(2πiτ). Then we have the eta-function η(τ) = q1/24
∏∞

k=1(1− qk) and

the modular discriminant ∆(τ) = η(τ)24 = q
∏∞

k=1(1 − qk)24. The latter is the unique normalised

cusp form of weight 12 on SL(2,Z). Suppose that we have a Riemann surfaceX of genus 1 identified

with a complex torus C/Z+τZ. Then we put ‖η‖(X) = (Imτ)1/4 · |η(τ)| and ‖∆‖(X) = ‖η‖(X)24 =

(Imτ)6 · |∆(τ)|. These definitions do not depend on the choice of τ , and hence they define invariants

of X .

In [Sz], Szpiro proves the following statement (cf. Théorème 1): let E and E ′ be semi-stable

elliptic curves defined over a number field K, and suppose we have an isogeny f : E → E ′. Then

the formula

∑

σ:K↪→C

∑

Pσ∈Kerfσ,
Pσ 6=0

logG(0, Pσ) =
[K : Q]

2
logN +

∑

σ:K↪→C

log
‖η‖(E′

σ)2

‖η‖(Eσ)2

holds, where N is the degree of f and where the sum is over the complex embeddings of K. Szpiro

then asks whether a similar statement holds without the sum over the complex embeddings. The

following theorem gives a positive answer to that question. The terminology “energy of an isogeny”

is adopted from [Sz].

Theorem 5.2.1. (Energy of an isogeny) Let X and X ′ be Riemann surfaces of genus 1. Suppose

we have an isogeny f : X → X ′. Then we have

∏

P∈Kerf,P 6=0

G(0, P ) =

√
N · ‖η‖(X ′)2

‖η‖(X)2
,

where N is the degree of f .

It is the purpose of the present section to prove Theorem 5.2.1. En passant we make the

Arakelov-Green function and the canonical norm on the holomorphic cotangent bundle explicit, see

Propositions 5.2.5 and 5.2.6. These formulas are also given in [Fa2], but the proofs there rely on a

consideration of the eigenvalues and eigenfunctions of the Laplace operator. Our approach is more

elementary.

Definition 5.2.2. Let X be a Riemann surface of genus 1. Let ω be a holomorphic differential of

norm 1 in H0(X,Ω1
X). Then we put A(X) := ‖ω‖Ar for the norm of ω in Ω1

X .
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Proposition 5.2.3. Let f : X → X ′ be an isogeny of degree N . Then the formula

∏

P∈Kerf,P 6=0

G(0, P ) =

√
N · A(X)

A(X ′)

holds.

Proof. Let ν be the norm of the isomorphism of line bundles f ∗Ω1
X′

∼→Ω1
X given by the usual

inclusion. We will compute ν in two ways. First of all, consider an ω′ ∈ H0(X ′,Ω1
X′) of norm 1, so

that ω′ has norm A(X ′) in Ω1
X′ . Then by Proposition 5.1.1 we have that f ∗(ω′) has norm

√
N in

H0(X,Ω1
X), hence it has norm

√
N ·A(X) in Ω1

X . This gives

ν =

√
N · A(X)

A(X ′)
.

On the other hand, by Theorem 5.1.2, the canonical isomorphism f ∗(OX′(0))
∼→OX (Kerf) is an

isometry. Tensoring with the isomorphism f ∗Ω1
X′

∼→Ω1
X gives an isomorphism

f∗(Ω1
X′(0))

∼−→Ω1
X(0) ⊗

⊗

P∈Kerf,P 6=0

OX(P )

of norm ν given in local coordinates by

f∗(
dz

z
) 7→ dz

z
⊗ s

where s is the canonical section of
⊗

P∈Kerf,P 6=0OX (P ). By the definition of the canonical norm

on the holomorphic cotangent bundle, the dz/z have norm 1, so we find

ν =
∏

P∈Kerf,P 6=0

G(0, P ) .

Together with the earlier formula for ν this implies the proposition.

The following corollary seems to be well-known, see for instance [SU], Lemme 6.2.

Corollary 5.2.4. Denote by X [N ] the kernel of the multiplication-by-N map X → X. Then the

formula ∏

P∈X[N ],P 6=0

G(0, P ) = N

holds.

Proof. Immediate from Proposition 5.2.3.

Let τ be an element of the complex upper half plane. We recall the identities

(a) (exp(πiτ/4) · ϑ(0; τ)ϑ(1/2; τ)ϑ(τ/2; τ))8 = 28 · ∆(τ)

and

(b)

(
exp(πiτ/4) · ∂ϑ

∂z

(
1 + τ

2
; τ

))8

= (2π)8 · ∆(τ) .

The first can be proved by the fact that the left hand side is a cusp form on SL(2,Z) of weight 12.

The second follows then from the first by an application of Jacobi’s derivative formula which we

proved in Section 4.6.
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Proposition 5.2.5. (Faltings [Fa2]) Let X be a Riemann surface of genus 1, and write X =

C/Z + τZ with τ in the complex upper half plane. For the Arakelov-Green function G on X the

formula

G(0, z) =
‖ϑ‖(z + (1 + τ)/2; τ)

‖η‖(X)

holds.

Proof. It is not difficult to check that ‖ϑ‖(z+ (1 + τ)/2) vanishes only at z = 0, with order 1. Also

it is not difficult to check that ∂z∂z log ‖ϑ‖(z + (1 + τ)/2)2 = 2πiµX for z 6= 0. By the defining

properties of the Arakelov-Green function we have from this that G(0, z) = c · ‖ϑ‖(z+ (1 + τ)/2; τ)

where c is some constant. It remains to compute this constant. If we apply Corollary 5.2.4 with

N = 2 we obtain

c3 · ‖ϑ‖(0; τ)‖ϑ‖(1/2; τ)‖ϑ‖(τ/2; τ) = G(0, 1/2)G(0, τ/2)G(0, (1 + τ)/2) = 2 .

Combining this with identity (a) we obtain c = ‖η‖(X)−1.

Proposition 5.2.6. (Faltings [Fa2]) For the invariant A(X), the formula

A(X) =
1

(2π)‖η‖(X)2

holds.

Proof. We follow the argument from [Fa2]: writing X = C/Z + τZ we can take dz/
√

Imτ as

an orthonormal basis of H0(X,Ω1
X). By the definition of the canonical metric on Ω1

X we have

‖dz/
√

Imτ‖Ar = (
√

Imτ )−1 · limz→0 |z|/G(0, z). We obtain the required formula by using the

explicit formula for G(0, z) in Proposition 5.2.5 and the identity (b) mentioned above.

Proof of Theorem 5.2.1. Immediate from Propositions 5.2.3 and 5.2.6.

We conclude this section with a corollary, dealing with the value of the Arakelov-Green function

on pairs of 2-torsion points.

Proposition 5.2.7. Let X be a Riemann surface of genus 1 and suppose that y2 = 4x3 −px− q =:

f(x) is a Weierstrass equation for X. Write f(x) = 4(x− α1)(x − α2)(x − α3). Let P1 = (α1, 0),

P2 = (α2, 0) and P3 = (α3, 0). Then the formulas

G(P1, P2)
12 =

16 · |α1 − α2|2
|α1 − α3| · |α2 − α3|

,

G(P1, P3)
12 =

16 · |α1 − α3|2
|α1 − α2| · |α3 − α2|

,

G(P2, P3)
12 =

16 · |α2 − α3|2
|α2 − α1| · |α3 − α1|

hold.

Proof. This follows directly from an application of Thomae’s formula Theorem 3.2.3 and the explicit

formula for G(0, z) in Proposition 5.2.5.

We remark that this proposition has been obtained by Szpiro in [Sz] in the special case that X

is the Riemann surface associated to a Frey curve y2 = x(x + a)(x − b), where a, b are non-zero

integers with 24|a and b ≡ −1 mod 4 (cf. [Sz], Section 1.3).

70



5.3 Arakelov projection formula

In this section we prove a projection formula for Arakelov intersections on arithmetic surfaces of

genus 1. The essential idea is to use the analytic projection formula from Theorem 5.1.2; the rest

of the proof is quite straightforward. We will use the Arakelov projection formula in Section 5.5.

Definition 5.3.1. Let p : E → B and p′ : E ′ → B be arithmetic surfaces of genus 1, and suppose

there exists a proper B-morphism f : E → E ′. Let D be an Arakelov divisor on E , and write

D = Dfin +
∑

σ ασ · Eσ . The pushforward f∗D of D is defined to be the Arakelov divisor f∗D :=

f∗Dfin + d ·∑σ ασ · E′
σ on E ′, where f∗Dfin is the usual pushforward of the Weil divisor Dfin.

Next let D′ be an Arakelov divisor on E ′. The pullback f∗D′ of D′ is to be the Arakelov divisor

f∗D′ := f∗D′
fin +

∑
σ α

′
σ · Eσ on E , where f∗D′

fin is the pullback of the Weil divisor D′
fin on E ′,

defined in the usual way using Cartier divisors.

Theorem 5.3.2. (Arakelov projection formula) Let E and E ′ be elliptic curves defined over a

number field K, and let p : E → B and p′ : E ′ → B be arithmetic surfaces over the ring of

integers of K with generic fibers isomorphic to E and E ′, respectively. Suppose we have an isogeny

f : E → E′, and suppose that f extends to a B-morphism f : E → E ′. Let D be an Arakelov

divisor on E and let D′ be an Arakelov divisor on E ′. Then the equality of intersection products

(f∗D′, D) = (D′, f∗D) holds.

For the proof we need a lemma. Recall the definition of the principal Arakelov divisor (f) of a

non-zero rational function f from Section 1.2.

Lemma 5.3.3. Let g be a non-zero function in K(E ′). (i) We have (f∗g)inf = f∗(g)inf . (ii) We

have f∗(g) = (f∗g), and hence f∗ descends to a group homomorphism Ĉl(E ′) → Ĉl(E).

Proof. In order to prove (i), let σ be a complex embedding. Let N be the degree of f . Then

we have −
∫

Eσ
log |f∗g|σ · µEσ = − 1

N

∫
Eσ

log |f∗g|σ · f∗µE′
σ

= −
∫

E′
σ

log |g|σ · µE′
σ
, and this means

(f∗g)inf = f∗(g)inf . This gives (i). Next it is clear that f ∗(g)fin = (f∗g)fin. Together with (i) this

gives (ii).

Remark 5.3.4. Under the canonical isomorphism Ĉl
∼−→P̂ic from Theorem 1.2.7, the group homo-

morphism f∗ : Ĉl(E ′) → Ĉl(E) is just the canonical group homomorphism f ∗ : P̂ic(E ′) → P̂ic(E)

defined by pullback of metrised line bundles.

Proof of Theorem 5.3.2. We may restrict to the case where both D and D′ are Arakelov divisors

with trivial contributions “at infinity”. By the moving lemma on E ′ (cf. [Li], Corollary 9.1.10)

we can find a function g ∈ K(E ′) such that D′′ := D′ + (g)fin and f∗D have no components

in common. Obviously D′′ + (g)inf is Arakelov linearly equivalent to D′, and hence by Lemma

5.3.3(ii) the pull-back f∗D′′ + f∗(g)inf is linearly equivalent to f∗D′. By Lemma 5.3.3(i) this

means that f∗D′′ + (f∗g)inf is linearly equivalent to f∗D′. It is therefore sufficient to prove that

(f∗D′′+(f∗g)inf , D) = (D′′+(g)inf , f∗D). It is clear that ((f∗g)inf , D) = ((g)inf , f∗D), so it remains

to prove that (f∗D′′, D) = (D′′, f∗D). By the traditional projection formula (cf. [Li], Theorem

9.2.12 and Remark 9.2.13) we have (f ∗D′′, D)fin = (D′′, f∗D)fin. For the contributions at infinity

we can reduce to the case where D and D′′ are sections of E → B and E ′ → B, respectively. Let

σ be a complex embedding of K. Let Dσ and D′′
σ be the points corresponding to D and D′′ on

Eσ and E′
σ . Then for the local intersection at σ we have (f ∗D′′, D)σ = (D′′, f∗D)σ by the analytic

projection formula from Proposition 5.1.2. The theorem follows.

Remark 5.3.5. In general, an isogeny f : E → E ′ may not extend to a morphism E → E ′. However,

if E ′ is a minimal arithmetic surface, then it contains the Néron model of E ′/K, and hence by the

universal property of the Néron model, any isogeny f extends. In any case we can achieve that f

extends after blowing up finitely many closed points on E .
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The following corollary appears in Szpiro’s paper [Sz].

Corollary 5.3.6. (Szpiro [Sz]) Let D1, D2 be Arakelov divisors on E ′. Let N be the degree of f .

Then the formula

(f∗D1, f
∗D2) = N · (D1, D2)

holds.

Proof. It is not difficult to see (cf. [Li], Theorem 7.2.18 and Proposition 9.2.11) that f∗f
∗D2 =

N ·D2. Theorem 5.3.2 then gives (f∗D1, f
∗D2) = (D1, f∗f

∗D2) = (D1, N ·D2) = N · (D1, D2).

5.4 Self-intersection of a point

Let p : E → B be an arithmetic surface of genus 1. In the present section we compute the self-

intersection (P, P ) of a section of p.

Theorem 5.4.1. (Szpiro [Sz]) Let E be a semi-stable elliptic curve over a number field K, and let

p : E → B be its regular minimal model over the ring of integers of K. Let P : B → E be a section

of p, and denote by ∆(E/K) the minimal discriminant ideal of E/K. Then the formula

(P, P ) = − 1

12
log |NK/Q(∆(E/K))|

holds.

Before we give the proof, we recall two geometric results.

Proposition 5.4.2. Let p : E → B be a minimal arithmetic surface of genus 1. Then the canonical

homomorphism p∗p∗ωE/B → ωE/B is an isomorphism.

Proof. See [Li], Corollary 9.3.27.

Proposition 5.4.3. Let p : U1 → M1 be the universal stable elliptic curve. Then there is a

canonical isomorphism (p∗ω)⊗12 ∼−→O(∆) of line bundles on M1. Let Λ be the canonical global

section of (p∗ω)⊗12 given by this isomorphism. Then for a Riemann surface X = C/Z + τZ of

genus 1 we can write Λ = (2π)12∆(τ)(dz)⊗12.

Proof. The canonical isomorphism follows from the theory of the Tate elliptic curve. Over M1, the

section Λ is to be identified with the Λ from Proposition 4.3.1 above, which is also applicable in

our case. The formula follows from the proof of Proposition 4.3.1.

Proof of Proposition 5.4.1. By the adjunction formula we have to prove that 12 d̂egP ∗ωE/B =

log |NK/Q(∆(E/K))|. By Proposition 5.4.2 we have a canonical isomorphism p∗ωE/B
∼−→P ∗ωE/B ,

and what we will do is consider the image of the section ΛE/B, given by Proposition 5.4.3, in

(P ∗ωE/B)⊗12, and compute its Arakelov degree. As is clear from the canonical isomorphism in

Proposition 5.4.3, the finite places yield a contribution log |NK/Q(∆(E/K))|. As to the infinite

places, recall that by Proposition 5.2.6 we have ‖dz‖Ar =
√

Imτ/((2π)‖η‖(X)2) for a Riemann

surface X = C/Z + τZ of genus 1. Together with the formula in Proposition 5.4.3 we obtain that

‖Λσ‖Ar = 1 for each complex embedding σ, and hence the infinite contributions vanish. This gives

the proposition.

The proof of Theorem 5.4.1 given in [Sz] is much more involved. The above proof in fact answers

a question raised in [Sz] on the norm ‖Λ‖Ar of Λ in Ω⊗12. Note that Proposition 5.4.2 also proves

that (ωE/B , ωE/B) = 0 on a minimal arithmetic surface p : E → B of genus 1, a fact observed by

Faltings [Fa2] for the semi-stable case.
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5.5 Average height of quotients

In this final section we study the average height of quotients of an elliptic curve by its cyclic

subgroups of fixed order. Using our results from the previous sections, we give an alternative proof

of a formula due to Autissier [Au]. A slightly less general result appears in [SU], and in fact our

method is very much in the spirit of this latter paper. The main difference is perhaps that in our

approach we do not need to consider the distribution of torsion points on the bad fibers. In fact

we do not need any non-trivial arithmetic information at all; the main ingredients are the Arakelov

projection formula from Theorem 5.3.2, the formula for the “energy of an isogeny” from Theorem

5.2.1, and the formula for the self-intersection of a point from Theorem 5.4.1. Amusingly, we shall

mention at the end of this section how a purely arithmetic result, namely the injectivity of torsion,

follows from our Arakelov-theoretic results.

We start with an explicit formula for the Faltings height hF (E) of an elliptic curve E (cf.

Definition 1.5.6). This formula is certainly well-known, cf. [Si], Proposition 1.1.

Proposition 5.5.1. Let E be a semi-stable elliptic curve over a number field K. Let ∆(E/K) be

the minimal discriminant ideal of E/K. Then the formula

hF (E) =
1

[K : Q]

(
1

12
log |NK/Q(∆(E/K))| − 1

12

∑

σ

log((2π)12‖∆‖(Eσ))

)

holds. Here the sum runs over the complex embeddings of K.

Proof. This follows directly from Proposition 5.4.3.

Example 5.5.2. Proposition 5.5.1 makes it possible to compute the Faltings height of elliptic curves

explicitly. The answers that we get in the case of elliptic curves with complex multiplication are

given by the celebrated Chowla-Selberg formula. This is described for instance in [De1], §1. Let E

be an elliptic curve defined over a number field K. Suppose that E/K has complex multiplication

by the full ring of integers of an imaginary quadratic field F . It is well-known that E then has

potentially everywhere good reduction. As a consequence, the formula

12 [K : Q]hF (E) = −
∑

σ

log((2π)12 · ‖∆‖(τσ))

holds, where the sum is over the complex embeddings of K. The Chowla-Selberg formula evaluates

the right-hand side of this expression. Let −D be the discriminant of F , let h be the class number

of F , and let w be the number of roots of unity in F . The result is then that

hF (E) = −1

2
log


 π√

D
·
( ∏

0<m<D

Γ(m/D)(
D
m )

)w/2h

 ,

where (D
· ) is the Dirichlet character of conductor D. For instance, for the elliptic curve E1/Q

given by y2 = x3 − x (with j = 1728), which has complex multiplication by the ring of integers of

F = Q(
√
−1), we have D = 4, h = 1 and w = 4 hence

hF (E1) = − log

(
Γ(1/4) · √π
Γ(3/4) ·

√
2

)
= −1.3105329259115095183...

For the elliptic curve E2/Q given by y2 = x3 − 1 (with j = 0), which has complex multiplication
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by the ring of integers of F = Q(
√
−3), we have D = 3, h = 1 and w = 6 hence

hF (E2) = −1

2
log

((
Γ(1/3)

Γ(2/3)

)3

· π√
3

)
= −1.3211174284280379150...

Actually, this is the infimum of hF on M1(Q).

Now let’s turn to the result of Autissier. First we introduce some notations. Let N be a positive

integer. Then we denote by eN the number of cyclic subgroups of order N on an elliptic curve

defined over C, which is

eN = N
∏

p|N

(
1 +

1

p

)
,

where the product is over the primes dividing N . Further we put

λN =
∑

p|N
pr‖N

pr − 1

pr−1(p2 − 1)
log p ,

where the notation pr‖N means that pr|N and pr+1 - N . For an elliptic curve E and a finite

subgroup C of E we denote by EC the quotient of E by C.

In [SU] we find the following theorem.

Theorem 5.5.3. (Szpiro-Ullmo [SU]) Let E be a semi-stable elliptic curve defined over a number

field K. Suppose that E has no complex multiplication over K and that the absolute Galois group

Gal(K/K) acts transitively on the points of order N on E. Let C be a cyclic subgroup of order N

on E. Then the formula

hF (EC) = hF (E) +
1

2
logN − λN

holds.

One may wonder what one can say without the assumption that Gal(K/K) acts transitively.

In [Au] we find a proof of the following statement. The price we pay for dropping the assumption

on Gal(K/K) is that we can only deal with the average over all C.

Theorem 5.5.4. (Autissier [Au]) Let E be an elliptic curve defined over a number field K. Then

the formula
1

eN

∑

C

hF (EC) = hF (E) +
1

2
logN − λN

holds, where the sum runs over the cyclic subgroups of E of order N .

In fact, this formula was already stated in [SU] under the restriction that N is squarefree.

Autissier’s proof uses the Hecke correspondence TN and a generalised intersection theory for higher-

dimensional arithmetic varieties. The disadvantage of this approach is that the analytic machinery

needed to deal with the contributions at infinity becomes quite complicated. We will give a proof of

Theorem 5.5.4 which is much more elementary. Besides this merit, we also think that the structure

of the somewhat strange constant λN becomes more clear through our approach. It would be

interesting to have a generalisation of Theorem 5.5.4 to abelian varieties of higher dimension.

Theorem 5.5.4 follows directly from the following two propositions, by using the explicit formula

for hF in Proposition 5.5.1. The next proposition occurs as Lemme 5.4 in [SU].

Proposition 5.5.5. Let E be a semi-stable elliptic curve over a number field K and suppose that

all N -torsion points are K-rational. Then one has

∑

C

(
log |NK/Q(∆(E/K))| − log |NK/Q(∆(EC/K))|

)
= 0 .
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Here the sum runs over the cyclic subgroups of E of order N .

Proposition 5.5.6. Let X be a Riemann surface of genus 1. Then

1

eN

∑

C

(
1

12
log ‖∆‖(X)− 1

12
log ‖∆‖(XC)

)
=

1

2
logN − λN ,

where the sum runs over the cyclic subgroups of X of order N .

Our first step is to reduce these two propositions to the following two:

Proposition 5.5.7. Let E be a semi-stable elliptic curve over a number field K and suppose that

all N -torsion points are K-rational. Extend all N -torsion points of E over the regular minimal

model of E/K. Then one has ∑

C

∑

Q∈C
Q6=O

(Q,O) = 0 ,

where the first sum runs over the cyclic subgroups of E of order N , and the second sum runs over

the non-zero points in C.

Proposition 5.5.8. Let X be a Riemann surface of genus 1. Then one has

1

eN

∑

C

∑

Q∈C
Q6=0

logG(Q, 0) = λN .

Here the first sum runs over the cyclic subgroups of X of order N , and the second sum runs over

the non-zero points in C.

The latter proposition is an improvement of Proposition 6.5 in [SU], which gives an analogous

statement, but only with the left hand side summed over the complex embeddings of K, and divided

by [K : Q]. Our result holds in full generality for an arbitrary Riemann surface of genus 1.

Proof of Proposition 5.5.5 from Proposition 5.5.7. Let C be any cyclic subgroup of E, and let O′

be the zero-section of EC . Extend it over the minimal regular model of EC/K. We then have

1

12
log |NK/Q(∆(E/K))| − 1

12
log |NK/Q(∆(EC/K))| = (O′, O′) − (O,O)

by Theorem 5.4.1. The latter is equal to
∑

Q∈C
Q6=O

(Q,O) by Theorem 5.3.2. Summing over all cyclic

subgroups of E of order N and using Proposition 5.5.7 we find the result.

Proof of Proposition 5.5.6 from Proposition 5.5.8. By Theorem 5.2.1 we have for any subgroup C

of X of order N that

1

12
log ‖∆‖(X) − 1

12
log ‖∆‖(XC) =

1

2
logN −

∑

Q∈C
Q6=0

logG(Q, 0) .

The statement of Proposition 5.5.6 is then immediate from Proposition 5.5.8.

In order to prove Proposition 5.5.7, we make use of the following combinatorial lemma.

Lemma 5.5.9. Let M be a positive integer with M |N . Let E be an elliptic curve defined over

an algebraically closed field of characteristic zero. Then each cyclic subgroup of E of order M is

contained in exactly eN/eM cyclic subgroups of order N .
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Proof. This follows easily by fixing a basis for the N -torsion and then considering the induced

natural transitive left action of SL(2,Z) on the set of cyclic subgroups of order M and order N .

Proof of Proposition 5.5.7. Let E[M ] be the set of points of exact order M on E. By Lemma 5.5.9

we have ∑

C

∑

Q∈C
Q6=O

(Q,O) =
∑

M|N
M>1

eN

eM

∑

Q∈E[M ]

(Q,O) .

We claim that for any positive integer M , we have
∑

Q∈E[M ](Q,O) = 0. Indeed, we have

∑

Q∈E[M ],Q6=O

(Q,O) = 0

for all M by Theorem 5.3.2 and then the claim follows by Möbius inversion.

Also for the proof of Proposition 5.5.8 we will need a lemma. For a Riemann surface X of genus

1, and M > 1 an integer, we put

t(M) =
∑

Q∈X[M ]

logG(Q, 0) ,

the sum running over the set X[M ] of points of exact order M on X .

Part of the following lemma is also given in [SU], cf. Lemme 6.2.

Lemma 5.5.10. We have

t(pr) = log p

for any prime integer p and any positive integer r. Moreover we have t(M) = 0 for any positive

integer M which is not a prime power.

Proof. By Corollary 5.2.4 we have

∑

Q∈X[M ],Q6=0

logG(Q, 0) = logM .

The lemma follows from this by Möbius inversion.

Proof of Proposition 5.5.8. For any divisor M |N , let X [M ] be the set of points of exact order M on

X and let t(M) =
∑

Q∈X[M ] logG(Q, 0) as in Lemma 5.5.10 where it is understood that t(1) = 0.

Then by Lemma 5.5.9 we can write

1

eN

∑

C

∑

Q∈C
Q6=0

logG(Q, 0) =
1

eN

∑

M |N

eN

eM
· t(M) .

Lemma 5.5.10 gives us that

1

eN

∑

M |N

eN

eM
· t(M) =

∑

p|N
pr‖N

(
1

ep
+ · · · + 1

epr

)
log p .

Finally note that epk = pk(1 + 1/p) which gives

1

ep
+ · · · + 1

epr

=
pr − 1

pr−1(p2 − 1)
.

From this the result follows.
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Remark 5.5.11. An alternative proof of Proposition 5.5.6 can be given by classical methods using

modular forms identities, see for instance [CT], Proposition VII.3.5(b) for the case that N is a

prime, and [Au], Lemme 2.2 and Lemme 2.3 for the general case. We preferred to give an argument

using Arakelov theory, indicating that Arakelov theory can sometimes be used to derive analytic

results on Riemann surfaces in a short manner. We have seen another instance of this in Section 4.5,

where we gave an Arakelov theoretic proof of a certain higher-dimensional modular forms identity.

We finish with a corollary from the results above. This corollary gives another interpretation to

the constant λN .

Corollary 5.5.12. Let E be a semi-stable elliptic curve over a number field K and suppose that

all N -torsion points are K-rational. Extend these torsion points over the minimal regular model of

E/K. Then one has
1

[K : Q]

1

eN

∑

C

∑

Q∈C
Q6=O

(Q,O)fin = λN ,

where the first sum runs over the cyclic subgroups of E of order N , and the second sum runs over

the non-zero points in C.

Proof. Let C be a finite cyclic subgroup of E. Note that by definition of the Arakelov intersection

product ∑

Q∈C
Q6=O

(Q,O) =
∑

Q∈C
Q6=O

(Q,O)fin −
∑

Q∈C
Q6=O

∑

σ

logG(Qσ, 0) .

The corollary follows therefore easily from Proposition 5.5.7 and Proposition 5.5.8.

Note that Corollary 5.5.12 is purely arithmetical in nature. It should also be possible to give a

direct proof, but probably this would require a more ad hoc approach, making for instance a case

distinction between the supersingular and the ordinary primes for E/K. Also note that Corollary

5.5.12 immediately gives the classical arithmetic result that, for any prime number p, the p-torsion

points are injective on a fiber at a prime of characteristic different from p. Indeed, take N = p

in the formula from Corollary 5.5.12, then the right hand side is a rational multiple of log p, and

so the same holds for the left hand side. This means that the local intersections (Q,O)fin, which

are always non-negative, are in fact zero at primes of characteristic different from p. Hence, each

p-torsion point Q stays away from O on fibers above such primes. Of course the argument can be

repeated with O replaced by any other p-torsion point.
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Chapter 6

Numerical examples

As was explained in the Introduction, it is important to know how to calculate Arakelov invariants

explicitly. Our Theorems 2.1.2 and 2.1.3 provide a solution to this problem. We illustrate this in

the present chapter by computing examples of Arakelov invariants of hyperelliptic curves of small

genus. In Section 6.1 we say some words on implementation. In Section 6.2 we focus on curves of

genus 2. The computational aspects of this case are well-documented in [BMM]. Our approach in

Section 6.2 will be different, but we do not pretend to be able to attain significantly better results.

In Section 6.3 we consider a hyperelliptic curve of genus 3. In particular we find an explicit result

for its delta-invariant. As far as we know, no explicit values of Arakelov invariants in genus 3 have

been obtained so far, and it seems that the method and results in Section 6.3 are new.

6.1 Implementation

The difficulties in computing Arakelov invariants are usually caused by the analytic contributions

at infinity. In this section we explain what we need to compute exactly, and how one can do this,

given the results in this thesis.

Let X be a compact and connected Riemann surface of genus g > 0. First of all we need a

period matrix (Ω1|Ω2) for X . It is well-known that if X has many automorphisms, it is possible to

compute such a period matrix purely theoretically. For example, there is a beautiful theory dealing

with periods of elliptic curves with complex multiplication, as we saw in the previous chapter. An

exact period matrix for the genus 2 Riemann surface associated to the equation y2 + y = x5, which

visibly admits at least 10 automorphisms, was given in [BMM].

Next, when exact computations turn out not to be possible, one can often resort to a long

tradition going back at least to Gauss which is concerned with finding algorithms to give rapidly

converging series of approximations to periods. These algorithms can be very efficient for special

types of curves. In general, however, there is no other method than to approximate the occurring

line integrals directly. If one does this, one has various numerical integration methods at one’s

disposal, and nowadays many of these have been implemented in computer algebra packages such

as Maple or Mathematica. These allow one to approximate periods very efficiently.

Once one has a period matrix, one has the associated matrix τ = Ω−1
1 Ω2 in the Siegel upper

half space of degree g and if the period matrix was on the basis {ω1, . . . , ωg} of H0(X,Ω1
X), we also

find the length of ω1 ∧ . . .∧ωg with respect to the Faltings metric on ∧gH0(X,Ω1
X), by the formula

‖ω1 ∧ . . . ∧ ωg‖2 = (det Imτ) · | det Ω1|2

from Proposition 1.4.10. These results allow one to calculate the analytic contributions to the
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Faltings height of a curve.

Next we want to calculate the delta-invariant and certain values of the Arakelov-Green function.

These we need in order to be able to calculate Arakelov intersection numbers, such as the self-

intersection of the relative dualising sheaf, or the height of a rational point. A suitable formula for

the self-intersection of the relative dualising sheaf follows for instance from the proof of Proposition

2.5.4.

As is clear from Theorems 2.1.2, 2.1.3 and 2.2.8, we need to be able to calculate certain values of

the function ‖ϑ‖ on Picg−1(X) and of the function ‖J‖ on Symg(X), but also we need to calculate

the integral

logS(X) = −
∫

X

log ‖ϑ‖(gP −Q) · µ(P )

over the Riemann surface X .

The first problem is not difficult by the explicit formulas for ‖ϑ‖ and ‖J‖ given in Chapter 1.

We work with the usual identification

Picg−1(X)
∼−→Cg/Zg + τZg ,

∑
mkPk 7→

∑
mk

∫ Pk

P0

(η1, . . . , ηg) + κ(P0) ,

with κ(P0) the Riemann vector for a base point P0. Here the basis {η1, . . . , ηg} is given as

{η1, . . . , ηg} = {ω1, . . . , ωg} · tΩ−1
1 , and the Riemann vector κ(P0) = (κ(P0)1, . . . , κ(P0)g) can be

made explicit by the classical formula

κ(P0)k =
1 + τkk

2
−
∑

l6=k

∫

Al

ηl(x)

∫ x

P0

ηk for k = 1, . . . , g ,

see [Fay], p. 43. The A1, . . . , Ag are the A-chains in homology leading to the part Ω1 of the

period matrix. Using the explicit formulas in Chapter 1 it is not difficult to carry out an a priori

investigation which shows how many terms in the defining series for ϑ and ∂ϑ
∂z we have to compute

in order to approximate a value of ‖ϑ‖ or ‖J‖ with a prescribed accuracy.

The second problem, to calculate the integral, is more difficult. First of all, one needs to make the

form µ explicit. This can be done using our basis {ω1, . . . , ωg} of holomorphic differentials: it follows

from the definition and Riemann’s bilinear relations that if one puts h =
(
Ω1(Imτ)

tΩ1

)−1
then the

form µ can be written as µ = i
2g

∑g
k,l=1 hkl · ωk ∧ ωl. Using a local coordinate and writing out the

differentials ω1, . . . , ωg in this local coordinate one next tries to convert the integral into an integral

over a domain in C, using the standard euclidean coordinates. The main problem is, however, that

the integrand has singularities at the Weierstrass points of X . This means that any numerical

approximation has to take special care of these points. If the weights of the Weierstrass points are

not too large, one can perhaps safely resort to the defining equation of logS(X). Otherwise, one

probably does better by using the formula in Proposition 2.2.6, which involves a similar integral, but

this integral has only a singularity at the chosen point P , and the order of vanishing of ‖ϑ‖(gP −Q)

at Q = P is equal to g. However, one has to note that the error produced in calculating the

integral will be multiplied by g2 if one wants to obtain logS(X) in this way. In the computer

algebra package Mathematica, it is possible to specify the points in an integration domain at which

the evaluation of an integral needs special care, for instance because of the presence of logarithmic

singularities in the integrand. There are special packages available particulary suited for integrands

with logarithmic singularities, also in 2 dimensions.

Let’s make the above more explicit in the case of hyperelliptic Riemann surfaces, which seems

the easiest case from the computational point of view. Our numerical examples in Sections 6.2 and

6.3 below deal with this case. Suppose that we deal with a hyperelliptic Riemann surface X of

genus g ≥ 2 given by an equation y2 = f(x) with f(x) ∈ C[x] separable of degree 2g + 1. Fix an
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ordering of the roots of f . Recall that in [Mu2], Chapter IIIa, §5 a traditional and canonical way

is given to build a symplectic basis {A1, . . . , Ag, B1, . . . , Bg} for the homology of X . We take this

basis as a starting point, and with Mathematica we compute the periods of, say, the differentials

ω1 = dx/y, . . . , ωg = xg−1dx/y. This involves making appropriate branch cuts in C, and then taking

line integrals over paths that become the loops A1, . . . , Bg on the 2-sheeted cover X of P1, reversing

the orientation each time one crosses a branch cut. The line integrals involved in the Abel-Jacobi

map are carried out in a similar way. We only still need the Riemann vector, but this is done in

[Mu2], Chapter IIIa, §5: if we take ∞ as a base-point on X , then κ is given by κ = κ1 + τ · κ2

mod Zg + τZg with κ1 =
(

g
2 ,

g−1
2 , . . . , 1, 1

2

)
and κ2 =

(
1
2 ,

1
2 , . . . ,

1
2

)
. We will turn to specific details

concerning the computation of logS(X) in the sections below.

6.2 Example with g = 2

In broad lines, the computational aspects of Arakelov theory for genus 2 curves have been discussed

already in [BMM]. For concrete calculations, however, the authors specialise to the case of semi-

stable arithmetic surfaces whose singular fibers are irreducible curves with a single double point,

cf. Section 3 of [BMM]. We want to give formulas for the Arakelov invariants of an arbitrary semi-

stable arithmetic surface of genus 2. Although not worked out in detail in [BMM], it is certainly

well-known among experts how to do this.

For a Riemann surfaceX of genus 2, we denote by ‖∆′
2‖(X) the invariant of X defined in Section

3.8. This is the ‖∆2‖(X) occurring in [BMM].

Proposition 6.2.1. Let p : X → B = Spec(R) be a semi-stable arithmetic surface of genus 2 with

good reduction at all primes dividing 2. Then the formulas

10 d̂eg det p∗ωX/B =
∑

b

εbδb log #k(b) −
∑

σ

log((2π)20‖∆′
2‖(Xσ))

and

(ωX/B, ωX/B) =
∑

b

(
6

5
εb − 1)δb log # log k(b) +

1

20

∑

σ

log ‖∆′
2‖(Xσ) + 4

∑

σ

logS(Xσ)

hold, where b runs through the closed points of B and where εb = 2 if the stable geometric fiber at

b is the union of two curves of genus 1 meeting at a single point, and εb = 1 otherwise.

Proof. We can assume that the generic fiber of X is given by an equation y2 = f(x), with f(x) a

separable polynomial of degree 6 defined over the quotient field of R. Let D be the discriminant

of f . In [Ue], Proposition 2.1 it is shown that the element ΛX/B = D · (dx/y ∧ xdx/y)⊗10 defines

a rational section of (det p∗ωX/B)⊗10 independent of the choice of equation y2 = f(x). By an

argument as in Lemma 4.3.1 to deal with the infinite contributions we obtain

10 d̂eg det p∗ωX/B =
∑

b

db log #k(b) −
∑

σ

log((2π)20‖∆′
2‖(Xσ)) ,

where db = ordb(ΛX/B). According to the Table in §5 of [Ue] one has db = εbδb with εb as in

the proposition. This gives the first formula. The second formula follows from Noether’s formula,

where we eliminate the factor
∑

σ δ(Xσ) by using Corollary 3.1.5.

Let us turn to a concrete example. We take smooth projective curves Xt given by the equation

y2 + (x2 + 1)y = x5 + t ,
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with t ∈ Z. One can check that the Xt are curves of genus 2 defined over Q and having good

reduction at 2. Moreover, if t 6≡ 3 mod 7 then Xt has semi-stable reduction over Q. Contrary to

the family of curves considered in Section 3 of [BMM], various types of reduction will occur.

Let us specialise for example to t = 7. We find (in the standard Kodaira notation employed

in [Ue]) reduction I1−1−0 (an irreducible curve with 2 double points) at 3, reduction I2−0−0 (a

union of a smooth curve of genus 1 and a P1 of self-intersection -2) at 5, and reduction I1−0−0 (an

irreducible curve with a single double point) at 29 and 339617. Thus, δ3 = δ5 = 2, δ29 = δ339617 = 1

and all ε’s are 1.

Let us proceed by computing the Arakelov invariants of X = X7. We take an equation y2 = f(x)

for X with f monic and separable of degree 5. We compute the period matrix (Ω1|Ω2) on the

differentials dx/y and xdx/y as described in Section 6.1. We obtain

‖∆′
2‖(X) = 2.067079790957566... · 10−5

With Proposition 6.2.1 we find

hF (X) = −0.44517827222228057...

Using Theorem 3.1.4 we compute

logT (X) = −3.9806368335392663...

In order to calculate logS(X) we make use of the formula

logS(X) = −4

∫

X

log ‖ϑ‖(2P −Q) · µ(Q) +
1

2

∑

W∈W

log ‖ϑ‖(2P −W )

derived from Corollary 2.2.6. We do this since the integrand in the defining equation of logS(X)

diverges at infinity. Write x = u+iv with u, v real. We want to express µ in terms of the coordinates

u, v. This is done by the following lemma.

Lemma 6.2.2. Let h be the matrix given by h =
(
Ω1(Imτ)

tΩ1

)−1
. Then we can write

µ = (h11 + 2h12u+ h22(u
2 + v2)) · dudv

2|f |

in the coordinates u, v.

Proof. Let ωk = xk−1dx/y for k = 1, 2. As we have noted above, the form µ is given by µ =
i
4

∑2
k,l=1 hkl · ωk ∧ ωl. Expanding this expression gives the result, where we note that the matrix h

is real symmetric, since our defining equation for X is defined over the real numbers.

We can now carry out the integral, choosing an arbitrary point P and taking care of the singu-

larity of the integrand at this point P . We find the approximation

logS(X) = 0.77...

leading to

δ(X) = −16.69...

by Theorem 2.1.3 and finally to

e(X) = 4.53...

by Proposition 6.2.1.
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We have checked the computation by also calculating the invariant log ‖H‖(X) and using the

formulas in Section 3.8. It turns out that calculating the invariant log ‖H‖ is done much faster by

Mathematica. Hence, it seems that for the computations on the analytic side in genus 2 it is better

to stick to the approach in [BMM].

In [BMM] the curve Y/Q given by y2 + y = x5 is discussed. The results imply that

‖∆′
2‖(Y ) = 2.07046497... · 10−5

and

δ(Y ) = −16.68...

The reader will notice that these values are rather close to the values for ‖∆′
2‖(X) and δ(X) found

above. This is no coincidence: a calculation shows that the family Xt over P1(C) has potentially

good reduction at infinity, with smooth fiber isomorphic to Y .

Using Proposition 6.2.1 and the fact that Y has potentially everywhere good reduction, one

finds (as in [BMM])

hF (Y ) = −2.597239125..., e(Y ) = 0.2152...

On the other hand, for t ∈ Z one finds that hF (Xt) and e(Xt) tend to infinity as |t| tends to infinity.

This illustrates the complicated behaviour of the functions hF and e on the moduli space of curves.

Finally, we remark that a PARI program for computing the reduction and the potential stable

reduction of curves of genus 2 defined over Q is available at the homepage of Qing Liu.

6.3 Example with g = 3

In this section we turn again to the methods developed in Section 3 of [BMM]. We generalise some

of the results there to hyperelliptic curves of higher genera, and conclude with a numerical example

in genus 3.

First of all, we prove a result on the self-intersection of the relative dualising sheaf. Let p : X → B

be a semi-stable arithmetic surface whose generic fiber is a hyperelliptic curve of genus g ≥ 2.

According to [DM], Theorem 1.11, the hyperelliptic involution on the generic fiber extends uniquely

to an involution σ ∈ AutB(X ).

Proposition 6.3.1. Assume that p : X → B has two σ-invariant sections P,Q : B → X . Assume

furthermore that the fibers of p are irreducible. Then the formula

(ωX/B, ωX/B) = −4g(g − 1) · (P,Q)

holds.

Proof. We follow the argument in [BMM], Section 1.3. Let U be the largest open subset of B

over which p is smooth. According to Lemma 4.2.1, the line bundle ωX/B ⊗ OX (−(2g − 2)P ) ⊗
p∗〈P, P 〉⊗(2g−1) has a nowhere vanishing section s when restricted to XU . Thus, this s can be seen

as a rational section of that same bundle on X . Let VP its divisor. Its support is disjoint with XU ,

and we have a canonical isomorphism

ωX/B
∼−→OX ((2g − 2)P ) ⊗ p∗〈P, P 〉⊗−(2g−1) ⊗OX (VP ) .

Pulling back along P we find a canonical isomorphism 〈ωX/B, P 〉
∼−→〈P, P 〉⊗−1 ⊗ 〈P,OX (VP )〉,

extending the canonical adjunction isomorphism 〈ωX/B, P 〉U ∼−→〈P, P 〉⊗−1
U over U . But we know

the adjunction isomorphism extends over B, so we must have that 〈P,OX (VP )〉 is trivial. Since X
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is normal and since by assumption all fibers of p are irreducible, we find that VP = 0. The formula

follows then by a calculation as in the proof of Corollary 4.2.2 above.

Let K be a number field, and let A be its ring of integers. Let F ∈ A[x] be monic of degree

2g + 1 with F (0) and F (1) a unit in A. Put R(x) = x(x− 1) + 4F (x). Suppose that the following

conditions hold for R: (i) the discriminant D of R is non-zero; (ii) for every prime ℘ of A of residue

characteristic 6= 2 we have v℘(D) = 0 or 1; (iii) if char(℘) 6= 2 and v℘(D) = 1, then R (mod ℘) has

a unique multiple root, and its multiplicity is 2. As in [BMM], Section 3 one may then prove the

following statement.

Proposition 6.3.2. The equation

CF : y2 = x(x− 1)R(x)

defines a hyperelliptic curve of genus g over K. It extends to a semi-stable arithmetic surface

p : X → B = Spec(A). We have that X has bad reduction at ℘ if and only if char(℘) 6= 2 and

v℘(D) = 1. In this case, the bad fiber is an irreducible curve with a single double point. The

differentials dx/y, . . . , xg−1dx/y form a basis of the OB-module p∗ωX/B. The points W0,W1 on CF

given by x = 0 and x = 1 extend to disjoint σ-invariant sections of p.

As for the Arakelov invariants of CF , we find from this the following result.

Proposition 6.3.3. At a complex embedding σ : K ↪→ C, let Ωσ = (Ω1σ |Ω2σ) be a period matrix

for the Riemann surface corresponding to CF ⊗σ,K C, formed on the basis dx/y, . . . , xg−1dx/y.

Further, let τσ = Ω−1
1σ Ω2σ. Then

d̂eg det p∗ωX/B = −1

2

∑

σ

log
(
| det Ω1σ |2(det Imτσ)

)
,

where the sum runs over the complex embeddings of K. Further, the formula

(ωX/B , ωX/B) = 4g(g − 1)
∑

σ

logGσ(W0,W1)

holds.

Proof. The first statement follows by Lemma 1.4.1 and Proposition 6.3.2. The second follows from

Proposition 6.3.1 and Proposition 6.3.2.

For our numerical example, we choose the polynomial F (x) = x5 + 6x4 + 4x3 − 6x2 − 5x − 1

defined over Q. Then the corresponding R(x) = x(x− 1) + 4F (x) satisfies the conditions described

above. The corresponding hyperelliptic curve (which we will call X from now on) of genus 3 has

bad reduction at the primes p = 37, p = 701 and p = 14717. An equation is given by

X : y2 = x(x− 1)(4x5 + 24x4 + 16x3 − 23x2 − 21x− 4) .

We choose an ordering of the Weierstrass points ofX . We construct from this a canonical symplectic

basis of the homology of (the Riemann surface corresponding to) X . Using Mathematica, we

compute the periods of the differentials dx/y, xdx/y, x2dx/y. This leads, by Proposition 6.3.3, to

the numerical approximation

hF (X) = −1.280295247656532068...

With Theorem 3.1.4 we find the following numerical approximation to logT (X):

logT (X) = −4.44361200473681284...
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It remains then to calculate the invariant logS(X). Again we compute it by using Corollary 2.2.6.

Write x = u+ iv with u, v real. The analogue of Lemma 6.2.2 is as follows, with basically the same

proof.

Lemma 6.3.4. Let h be the 3 × 3-matrix given by h =
(
Ω1(Imτ)

tΩ1

)−1
. Then we can write

µ =
(
h11 + 2h12u+ 2h13(u

2 − v2) + h22(u
2 + v2) + 2h23u(u

2 + v2) + h33(u
2 + v2)2

)
· dudv

3|f |

in the coordinates u, v.

Using this, and taking care of the singularities of the integrand, we find the approximation

logS(X) = 17.57...

In order to check this result, we have taken several choices for P . Also, to exclude a possible

systematic error, we have checked that µ integrates to 1 over X .

By Theorem 2.1.3 we have

δ(X) = −33.40...

and using Theorem 2.1.2 we can approximate, by taking Q = W1 and letting P approach W0,

G(W0,W1) = 2.33...

By Proposition 6.3.3 we finally find

e(X) = 20.32...

The running times of the computations were negligible, except for the computation of the integral

involved in logS(X), which took about 7 hours on the author’s laptop.
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75 (1990), 203–217.

[Mu1] D. Mumford, Stability of projective varieties, l’Ens. Math. 23 (1977), 33–100.

[Mu2] D. Mumford, Tata Lectures on Theta I,II. Progr. in Math. vol. 28, 43, Birkhäuser Verlag
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