GLOBAL ATTRACTOR AND INERTIAL SETS
FOR A NONLOCAL KURAMOTO-SIVASHINSKY EQUATION

D. Hilhorst
Analyse Numéris et EDP, CNRS
Université de Paris Sud
F-91405 Orsay, Cedex, France

L.A. Peletier and A.I. Rotariu
Mathematical Institute
PB 9512, 2300 RA, Leiden, The Netherlands

G. Sivashinsky
School of Mathematical Sciences
Tel Aviv University, Israel

This paper is dedicated to Mark Vishik on the occasion of his eightieth birthday

Abstract. We consider a nonlinear fourth order parabolic equation with a nonlocal
term which describes the time evolution of a flame front. After having established
the existence of a global attractor for a corresponding boundary value problem, we
prove the existence of inertial sets.

1. Introduction. The premixed gas flame (a self-sustained wave of an exothermic
chemical reaction) is frequently situated in a nonuniform flow field and subjected
to large-scale flame stretch [7]. The latter, apart from affecting the burning rate
intensity, may also have a significant impact on the flame stability. It has long been
observed that wrinkled structures, occurring spontaneously in freely propagating
flames, may easily be suppressed in a stagnation point flow provided its intensity
is high enough [6].

To study the dynamics of an intrinsically unstable flame held in a stagnation
point flow, two model equations for the flame interface dynamics have recently
been proposed. The first model [9] deals with diffusively unstable flames while the
second model [8] deals with hydrodynamically unstable flames. These models may
easily be combined to describe the situation where the flame is subject to diffusive
and hydrodynamic instabilities occurring simultaneously. One thus ends up with
a unified formulation which in appropriately chosen units results in the following
initial-boundary value problem

\[
\begin{align*}
(P) & \quad u_t = -u_{xxxx} - u_{xx} - \frac{1}{2}(u_x)^2 + \gamma I(u) - \alpha(xu)_x \\
& \quad \text{for } (x,t) \in Q, \\
& \quad u_x = 0, \quad u_{xxx} = 0 \quad \text{for } x = \pm \ell, t \in \mathbb{R}^+, \\
& \quad u(x,0) = u_0(x) \quad \text{for } x \in (-\ell, \ell),
\end{align*}
\]
where $Q = (-\ell, \ell) \times \mathbb{R}^+$ and

$$I(u) = \sum_{n=1}^{\infty} \frac{n}{\ell} \left\{ \int_{-\ell}^{\ell} u(y, t) \cos\left(\frac{n\pi}{\ell} y\right) dy \right\} \cos\left(\frac{n\pi}{\ell} x\right). \quad (1.2)$$

The differential equation in Problem (1.1) is a generalisation of the classical Kuramoto-Sivashinsky (KS) equation

$$u_t + u_{xxxx} + u_{xx} + \frac{1}{2} (u_x)^2 = 0. \quad (1.3)$$

In these equations, $u(x, t)$ denotes the profile of the flame interface. The negative diffusion term $-u_{xx}$ represents the diffusive flame instability occurring in premixed gas flames with sufficiently light deficient reactant (e.g. lean hydrogen-air mixtures). The term u_{xxxx} models the dissipation of small-scale disturbances, and the nonlinear term $\frac{1}{2} (u_x)^2$ controls saturation of the growing large-scale disturbances.

Of the two terms in Problem (1.1) that have been added to the Kuramoto-Sivashinsky equation (1.3):

$$+\gamma I(u) - \alpha (xu)_x,$$

the nonlocal term $\gamma I(u)$ is caused by the hydrodynamic flame instability induced by the thermal expansion of the burnt gas, γ being the thermal expansion intensity ($0 < \gamma < 1$). The term involving α describes the stabilizing effect of the stretch induced by the flow, α being the stretch intensity ($\alpha > 0$).

Rather than directly working with the unknown function u, it is more convenient to work with its spatial gradient, $v = u_x$. It satisfies

$$(P) \quad \begin{cases} v_t = -v_{xxxx} - v_{xx} - vv_x \\
+ \gamma J(v) - \alpha xv_x - 2av \
& \text{for } (x, t) \in Q, \\
v = 0, \quad v_{xx} = 0 \
& \text{for } x = \pm\ell, \ t \in \mathbb{R}^+, \\
v(x, 0) = v_0(x) \
& \text{for } x \in (-\ell, \ell), \end{cases} \quad (1.4)$$

where

$$J(v) = \sum_{n=1}^{\infty} \frac{n}{\ell} \left\{ \int_{-\ell}^{\ell} v(y, t) \sin\left(\frac{n\pi}{\ell} y\right) dy \right\} \sin\left(\frac{n\pi}{\ell} x\right). \quad (1.5)$$

We assume that

$$v_0 \in L^2(-\ell, \ell). \quad (1.6)$$

Problem (P) is known to have a global solution in the distributional sense [5], [12]; for the precise definition we refer to Section 2. Specifically, we have the following proposition:

Proposition 1.1. Let T be an arbitrary positive number. Then there exists one and only one weak solution $v \in L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^2(\Omega))$ of Problem (1.4). In addition, $v \in C([0, T]; L^2(\Omega)) \cap L^2(\delta, T; H^4(\Omega))$ for any $\delta > 0$.

Here Ω denotes the spatial domain: $\Omega = (-\ell, \ell)$, $\|\cdot\|$ denotes the norm in $L^2(\Omega)$, $H^2(\Omega) = H^2(\Omega) \cap H^0_0(\Omega)$ and $H^4(\Omega) = H^4(\Omega) \cap H^0_0(\Omega)$.

In this paper we are interested in the large time behaviour of solutions of Problem (1.4), and in the existence of a Global Attractor and of Inertial Sets. For the KS-equation such questions have been taken up in [10], [3], [13] and [14]. In these papers the size of the domain (2ℓ) proved to be an important parameter. In [2] analogous questions were discussed for the Cauchy Problem of the KS-equation with the additional damping term $\alpha (xu)_x$. In the present paper we study the effect
of this damping term, as well as the destabilizing nonlocal term $\gamma I(u)$. Thus, two new parameters have entered the problem: α and γ. In fact, we find that rather than γ, the parameter

$$
\kappa = \frac{\gamma \ell}{2\pi}
$$

will play a central role in the analysis of Problem (1.4). If α is sufficiently large, the asymptotic behaviour of solutions is particularly simple. We find the following critical value:

$$
\alpha_0 \overset{\text{def}}{=} \frac{2}{3}(1 + \kappa^2).
$$

\textbf{Theorem 1.2.} If $\alpha > \alpha_0$, then there exist positive constants ν and M such that the solution $v(t)$ of Problem (1.4) satisfies

$$
\|v(t)\| \leq M e^{-\nu t} \quad \text{for} \quad t \geq 0.
$$

Thus, if $\alpha > \alpha_0$ then the trivial solution $v = 0$ is the unique global attractor.

For smaller values of α, no such simple statements are available, and the large time behaviour may be more complicated. We shall study this case for odd solutions of Problem (1.4), i.e. for solutions in the space $H = \{w \in L^2(\Omega) : w(-x) = -w(x), x \in \Omega\}$. Plainly, if $v_0 \in H$, then so is $v(t) \in H$ for every $t \geq 0$ and therefore this subspace of $L^2(\Omega)$ is invariant. Henceforth we shall mean by \{S(t) : t \geq 0\} the semigroup defined by Problem (1.4) on the space H.

Whereas the term involving α is stabilizing, we find – as expected – that the term involving γ is destabilizing, and in the results we prove below we need to restrict it. Specifically we need to assume that

$$
\kappa < \frac{1}{3^{7/4}(1 + 3\alpha)^{3/4}}.
$$

In addition, we assume throughout that $\ell > 2\pi$. In the following theorem we give two global bounds, one in $L^2(\Omega)$ and one in $H^1(\Omega)$. Below, and throughout the paper, we write

$$
\mu = \frac{11}{5}.
$$

\textbf{Theorem 1.3.} Let $\ell > 2\pi$, and let α and κ satisfy (1.10). Then

(a) The semigroup \{S(t) : t \geq 0\} possesses an absorbing set in H, and there exists a constant c_0 and a nondecreasing function $\tau_0(\cdot)$ such that

$$
\|S(t)v_0\| \leq c_0 \ell^{\mu} \quad \text{if} \quad t \geq \tau_0(\|v_0\|).
$$

(b) The semigroup \{S(t) : t \geq 0\} possesses an absorbing set in $H \cap H^1(\Omega)$ and there exists a constant c_1 and a nondecreasing function $\tau_1(\cdot)$ such that

$$
\|S(t)v_0\|_{H^1(\Omega)} \leq c_1 \ell^{5\mu/3} \quad \text{if} \quad t \geq \tau_1(\|v_0\|).
$$

It follows from Theorem 1.3 that the set

$$
B = \{v \in H \cap H^1_0(\Omega) : \|v\| \leq c_0 \ell^{\mu} \quad \text{and} \quad \|v_x\| \leq c_1 \ell^{5\mu/3}\}
$$

is absorbing for all bounded sets of H.

In view of [13], Theorem 1.1, Theorem 1.3 immediately implies the existence of a global attractor.
Theorem 1.4. The semigroup \(\{S(t) : t \geq 0\} \) possesses an attractor \(A \) which is compact, connected, and maximal in \(H \). In addition, it attracts the bounded sets of \(H \) and is also maximal among the functional invariant sets bounded in \(H \).

In order to characterize the global attractor we prove the existence of an inertial set, namely a compact set which contains the attractor, is positively invariant by the semigroup, has finite fractal dimension and attracts all solutions at an exponential rate. More precisely, we define the compact, connected set

\[
Y = \bigcup_{t \geq \tau_1} S(t)B,
\]

where \(\tau_1 \) was introduced in Theorem 1.3, and we note that the semigroup \(\{S(t) : t \geq 0\} \) leaves \(Y \) invariant.

Theorem 1.5. The semigroup \(\{S(t) : t \geq 0\} \) restricted to \(Y \) admits an exponential fractal attractor \(M \) in \(Y \) whose fractal dimension is estimated by

\[
d_F(M) \leq C\ell^{1+(2\mu/3)},
\]

(1.11)

where \(C \) is a positive constant which does not depend on \(\ell \).

It was established in [5] and [12] that the global attractor is quite regular. For completeness we formulate this result in the following theorem.

Theorem 1.6. The global attractor \(A \) of the semigroup \(\{S(t) : t \geq 0\} \) is bounded in \(H^{4n+2}(\Omega) \) for any \(n \geq 0 \) and consequently, \(A \) is contained in \(C^\infty(\Omega) \).

The plan of the paper is the following. In Section 2 we introduce the notion of a weak solution which we shall use in this paper. We derive a few calculus inequalities involving the linear elliptic operator in the parabolic equation in Problem (P) and prove the asymptotic estimate given in Theorem 1.2. In Section 3 we obtain uniform bounds in \(L^2(\Omega) \) and in \(H^1(\Omega) \). The main ingredients here are a variation on a Coercivity Lemma established in [3] and the estimates obtained in Section 2. In Section 4 we use a result of [4] to prove the existence of inertial sets. Finally, in the Appendix we prove the Coercivity Lemma (Lemma 3.2) that is used to obtain the attractors.

2. Preliminaries. Before turning to the proofs of Theorems 1.2-1.5 we introduce some notation, give definitions, and present – for easy reference – a few technical lemmas which will be used throughout the text.

The analysis of Problem (1.4) will be carried out in the spaces \(L^2(\Omega) \), \(H^1_0(\Omega) \) and \(\mathcal{H}^2(\Omega) = H^2(\Omega) \cap H^1_0(\Omega) \). Their norms will be defined by

\[
\|v\|_{H^2} = \|v_x\| \quad \text{and} \quad \|v\|_{\mathcal{H}^2(\Omega)} = \|v_{xx}\|,
\]

(2.1)

where \(\|\cdot\| \) denotes the norm in \(L^2(\Omega) \), and \(\Omega = (-\ell, \ell) \). The pairing between \(\mathcal{H}^2(\Omega) \) and its dual \((\mathcal{H}^2(\Omega))^\prime \) will be denoted by \(\langle \cdot, \cdot \rangle \). We also introduce the linear second order operator

\[
Lw \overset{\text{def}}{=} -w_{xx} + \gamma J(w) - \alpha x w_x - 2\alpha w,
\]

(2.2)

so that the equation for \(v \) can be written compactly as

\[
v_t + v_{xxxx} = Lv - vv_x.
\]

(2.3)
Definition 2.1. Let T be an arbitrary positive number. A function v is called a weak solution of Problem (1.4) on (0, T) if
(i) \(v \in L^2(0, T; H^2(\Omega)) \cap L^\infty(0, T; L^2(\Omega)) \);
(ii) \(v_t \in L^2(0, T; (H^2(\Omega))') \);
(iii) Equation (2.3) is satisfied in the sense of distributions in \(Q_T \), i.e.
\[
\langle v_t, \varphi \rangle + \int_{\Omega} (v_{xx} \varphi_{xx} - Lv \varphi + vv_x \varphi) = 0
\]
for all \(\varphi \in L^2(0, T; H^2(\Omega)) \) and for a.e. \(t \in (0, T) \);
(iv) \(v(0) = v_0 \).

With the eigenvalues \(\lambda_n \) and the corresponding odd eigenfunctions \(\zeta_n \) of the Laplacian \(-d^2/dx^2\) on \(\Omega \), with Dirichlet boundary conditions, the nonlocal term \(J(v) \) can be written more transparently as
\[
J(w) = \sum_{n=1}^{\infty} n(w, \zeta_n)\zeta_n = \frac{\ell}{\pi} \sum_{n=1}^{\infty} \lambda_n^{1/2} (w, \zeta_n)\zeta_n, \tag{2.4}
\]
where
\[
\lambda_n = \left(\frac{n\pi}{\ell} \right)^2 \text{ and } \zeta_n(x) = \frac{1}{\sqrt{\ell}} \sin \left(\frac{n\pi x}{\ell} \right) \quad n = 1, 2, \ldots \tag{2.5}
\]

Lemma 2.1. The functional \(J : H^1(\Omega) \to L^2(\Omega) \) is well defined and
\[
\|J(w)\| \leq \frac{\ell}{\pi} \|w_x\| \quad \text{for } w \in H^1(\Omega). \tag{2.6}
\]
If \(w \) is odd, then equality holds.

Proof. Because the sequence \(\{\zeta_n\} \) is orthonormal, we have
\[
\|J(w)\|^2 = \frac{\ell^2}{\pi^2} \sum_{n=1}^{\infty} \lambda_n (w, \zeta_n)^2 \text{ for any } w \in H^1(\Omega).
\]
If \(w \) is odd, we can write \(w = \sum_{n=1}^{\infty} (w, \zeta_n)\zeta_n \). Therefore,
\[
\|w_x\|^2 = \sum_{n=1}^{\infty} (w, \zeta_n)^2 \| (\zeta_n)_x \|^2 = \sum_{n=1}^{\infty} \lambda_n (w, \zeta_n)^2,
\]
so that
\[
\|J(w)\| = \frac{\ell}{\pi} \|w_x\|. \tag{2.7}
\]
Let \(w \in H^1(\Omega) \). Then we can write \(w = w_1 + w_2 \), where
\[
w_1(x) = \frac{1}{2} \{w(x) - w(-x)\} \text{ is odd}
\]
and
\[
w_2(x) = \frac{1}{2} \{w(x) + w(-x)\} \text{ is even.}
\]
Since \(w_2 \) is even and \(\zeta_n \) is odd, it follows that \((w_2, \zeta_n) = 0 \) for every \(n \geq 1 \), and hence
\[
J(w) = J(w_1) \quad \text{for } w \in H^1(\Omega). \tag{2.8}
\]
Because \(w_1 \) is odd, it follows from (2.7) and (2.8) that
\[
\|J(w)\| = \|J(w_1)\| = \frac{\ell}{\pi} \|w_{1x}\|. \tag{2.9}
\]
From the fact that \((w_1 x, w_2 x) = 0\), we deduce that
\[
\|w_x\|^2 = \|w_1 x\|^2 + \|w_2 x\|^2 \geq \|w_1 x\|^2.
\]
Combining this with (2.9) we obtain
\[
\|J(w)\| \leq \frac{\ell}{\pi} \|w_x\| \text{ for any } w \in H^1(\Omega).
\]

The following two estimates involving \(L\) will prove very useful.

Lemma 2.2. For any \(w \in H^2(\Omega)\) and any \(s \in \mathbb{R}^+\) we have
\[
(w, Lw) \leq (1 + \kappa s)\|w_x\|^2 + \left(\frac{\kappa}{s} - \frac{3\alpha}{2}\right)\|w\|^2
\]
and
\[
\|Lw\| \leq \|w_{xx}\| + (2\kappa + \alpha\ell)\|w_x\| + 2\alpha\|w\|.
\]

Proof. We multiply \(Lw\) by \(w\) and integrate over \(\Omega\). When we integrate by parts, and use the bound for \(J(w)\) of Lemma 2.1, we obtain
\[
(w, Lw) = - (w, w_{xx}) + \gamma (J(w), w) - \alpha (xw, w_x) - 2\alpha \|w\|^2
\]
\[
\leq \|w_x\|^2 + 2\kappa \|w_x\| \|w\| - \frac{3\alpha}{2} \|w\|^2
\]
\[
\leq \|w_x\|^2 (1 + \kappa s) + \left(\frac{\kappa}{s} - \frac{3\alpha}{2}\right)\|w\|^2,
\]
as asserted.

From the definition (2.2) of \(L\) we deduce that
\[
\|Lw\| \leq \|w_{xx}\| + \gamma \|J(w)\| + \alpha \|xw_x\| + 2\alpha \|w\|.
\]
Because \(\|xw_x\| \leq \ell \|w_x\|\), the second assertion follows.

Lemma 2.3. Let \(v\) be the solution of Problem (1.4). Then
\[
\frac{d}{dt}\|v\|^2 + A \|v_{xx}\|^2 \leq B \|v\|^2,
\]
where
\[
A = 1 - \kappa s \quad \text{and} \quad B = 1 - 3\alpha + \kappa s + \frac{2\kappa}{s},
\]
and \(s\) is an arbitrary positive constant.

Proof. We take the duality product of (2.3) with \(v\). This yields the equation
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2 + \|v_{xx}\|^2 = (v, Lv) - (v^2, v_x).
\]
Applying Lemma 2.2 and using the fact that \((v^2, v_x) = 0\), it follows that
\[
\frac{1}{2} \frac{d}{dt} \|v\|^2 + \|v_{xx}\|^2 \leq (1 + \kappa s) \|v_x\|^2 + \left(\frac{\kappa}{s} - \frac{3\alpha}{2}\right)\|v\|^2
\]
\[
\leq \frac{1}{2} \{(1 + \kappa s) \left(\|v_x\|^2 + \|v\|^2\right) + \left(\frac{\kappa}{s} - \frac{3\alpha}{2}\right)\|v\|^2\},
\]
where we have used the inequality
\[
\|v_x\|^2 \leq \frac{1}{2} \left\{\|v_{xx}\|^2 + \|v\|^2\right\}.
\]
With the constants A and B defined as in (2.14), the desired inequality follows from (2.15).

Corollary 2.4. If $\alpha > \alpha_0$, then there exist positive constants ν and M such that
\[
\|v(t)\| \leq Me^{-\nu t} \quad \text{for} \quad t > 0.
\]

Proof. We use the estimate from Lemma 2.3 and put $s = \frac{1}{\kappa}$. Then $A = 0$ and we obtain
\[
\frac{d}{dt}\|v\|^2 \leq -2\nu \|v\|^2,
\]
where
\[
\nu = \frac{3}{2}(\alpha - \alpha_0).
\]
The critical value α_0 is given by (1.8). One integration now yields (1.9) with $M = \|v(0)\|$.

The Uniform Gronwall Lemma (see [13], p. 89) will be used in several places and for convenience we state it here. It applies to the differential inequality
\[
\frac{dy}{dt} \leq gy + h \quad \text{for} \quad t \geq t_0,
\]
in which g and h are are positive, locally integrable functions on (t_0, ∞).

Lemma 2.5. Let $y(t)$ satisfy (2.17), and let
\[
\int_t^{t+r} g(s) \, ds \leq a_1, \quad \int_t^{t+r} h(s) \, ds \leq a_2, \quad \int_t^{t+r} y(s) \, ds \leq a_3,
\]
where $r, a_1, a_2,$ and a_3 are positive constants. Then
\[
y(t+r) \leq \left(\frac{a_3}{r} + a_2\right)\exp(a_1) \quad \text{for} \quad t > t_0.
\]

3. **Absorbing sets in $L^2(\Omega)$ and in $H^1(\Omega)$.** In this section we prove the existence of absorbing sets in $L^2(\Omega)$ and $H^1(\Omega)$. Using these results, we prove the existence of the global attractor for the semigroup $\{S(t) : t \geq 0\}$, defined by the solution $v(t) = S(t)v_0$ of Problem (1.4).

We first prove a global bound in $L^2(\Omega)$; we recall that $\mu = 11/5$.

Theorem 3.1. Let α, γ and ℓ satisfy (1.10). Then the semigroup $S(t)$ possesses an absorbing set in $L^2(\Omega)$. More precisely, there exists a constant c_0 which does not depend on ℓ and a nondecreasing function $\tau_0(\cdot)$ such that
\[
\|S(t)v_0\|_{L^2(\Omega)} \leq c_0\ell^\mu \quad \text{if} \quad t \geq \tau_0(\|v_0\|_{L^2(\Omega)}).
\]

The main idea of the proof is the introduction of a suitably chosen translation of the dependent variable,
\[
v(x,t) = \phi(x) + w(x,t).
\]
The function ϕ is then so chosen that we can derive a differential inequality for $\|w(t)\|$ which enables us to obtain a uniform bound for $\|w(t)\|$.
Below we present a Coercivity Lemma, similar to one used in [3], that establishes the existence of a function ϕ which has the required properties. For $u, v \in X \overset{\text{def}}{=} H \cap H^2(\Omega)$, and $\omega > 0$, we define the weighted bilinear form

$$ (u, v)_{\omega\phi} \overset{\text{def}}{=} (u_{xx}, v_{xx}) - (u_x, v_x) + \omega(u v, \phi_x), $$

(3.1)

where it is assumed that $\phi_x \in L^2(\Omega)$. Note that if we set $L_0 u = -u_{xxxx} - u_{xx}$, then for $\phi \in C_0^\infty(\Omega)$,

$$ (u, v)_{\omega\phi} = -\int_\Omega u (L_0 - \omega \phi_x)v. $$

Lemma 3.2. For every $\ell > 2\pi$ there exists a function $\phi \in X$ such that for any $\omega \in [\frac{1}{4}, 1]$ and any function $w \in X$ the following inequality holds:

$$ (w, w)_{\omega\phi} \geq \frac{1}{4} \|w_{xx}\|^2 + \frac{1}{4}\|w\|^2. $$

(3.2)

The function ϕ can be chosen so that

$$ (\phi, \phi)_{\omega\phi} \leq C_1 \ell^{n+1} $$

(3.3)

and

$$ \|\phi\| \leq C_2 \ell^{\mu} \quad \text{and} \quad \|\phi_x\| \leq C_3 \ell^{n-1}, $$

(3.4)

where C_1, C_2 and C_3 are positive constants.

Corollary 3.3. For the function ϕ and the constant ω chosen in Lemma 3.2, the bilinear form $(u, v)_{\omega\phi}$ is an inner product on X.

For the proofs of Lemma 3.2 and Corollary 3.3 we refer to the Appendix.

Proof. (of Theorem 3.1) When we write the solution v of Problem (1.4) as

$$ v(x, t) = \phi(x) + w(x, t), $$

where ϕ is the function determined in Lemma 3.2, then w satisfies the equation

$$ w_t = -w_{xxxx} - \phi_{xxxx} - w_{xx} - \phi_{xx} - w\phi_x - \phi w_x - \phi \phi_x + \gamma J(w) + \gamma J(\phi) - \alpha x w_x - \alpha x \phi_x - 2\omega w - 2\alpha \phi, $$

(3.5)

in the sense of distributions in Q_T. We first establish a differential inequality for $\|w(t)\|:

Lemma 3.4. Let $\ell > 2\pi$, and let

$$ \kappa \leq \frac{1}{3^{7/4}(1 + 3\alpha)^{3/4}}. $$

Then, there exist positive constants σ and C, which do not depend on ℓ, such that

$$ \frac{d}{dt}\|w\|^2 \leq -\sigma\|w\|^2 + C\ell^{2\mu}. $$

(3.6)

Proof. Let us take the duality product of (3.5) with w. Since $\phi \in H^2(\Omega)$, we obtain

$$ \frac{1}{2}\frac{d}{dt}\|w\|^2 = -(w, w)_{\phi} - (w, \phi)_{\phi} + \gamma (J(w), w) + \gamma (J(\phi), w)
- \alpha (x, w\phi_x) - \alpha (x, w\phi_x) - 2\alpha \|w\|^2 - 2\alpha (w, \phi). $$

(3.7)
For the first two terms on the right hand side of (3.7) we have
\[-(w, w)_\frac{\partial}{\partial t} - (w, \phi)_\phi \leq -(w, w)_\frac{\partial}{\partial t} + \varepsilon \frac{1}{2}(w, w)_\phi + \frac{1}{2\varepsilon}(\phi, \phi)_\phi\]
\[= -\left(1 - \frac{\varepsilon}{2}\right)(w, w)_\frac{\partial}{\partial t} + \frac{1}{2\varepsilon}(\phi, \phi)_\phi, \quad (3.8)\]
where we have used Corollary 3.3 and \(\varepsilon\) is an arbitrary positive number such that \(\varepsilon < 1\).

For the other terms on the right-hand-side of (3.7) we have that
\[(x, ww_x) = -\frac{1}{2}\|w\|^2, \quad (3.9)\]
and
\[|(x, w\phi_x)| \leq \frac{\ell}{2}\|\phi\|^2 + \frac{\ell}{2\theta}\|\phi_x\|^2, \quad (3.10)\]
and
\[-2(w, \phi) \leq \frac{1}{\theta}\|\phi\|^2 + \theta\|w\|^2, \quad (3.11)\]
where \(\theta\) and \(\delta\) are arbitrary positive constants, and, in view of Lemma 2.1,
\[\gamma[(J(w), w)] \leq 2\kappa\|w\||\|w_x\| \leq \kappa\eta\|w\|^2 + \frac{2}{\eta}\|w_x\|^2 \quad (3.12)\]
and
\[\gamma[(J(\phi), w)] \leq 2\kappa\|\phi\||\phi_x\| \leq \kappa\nu|\phi|^2 + \frac{2}{\nu}\|\phi_x\|^2, \quad (3.13)\]
where \(\eta\) and \(\nu\) are arbitrary positive constants, and we recall that \(\kappa = \ell\gamma/2\pi\).

Substituting (3.8)-(3.13) into (3.7) and setting \(\varepsilon = \frac{\pi}{6}\) we arrive at the inequality
\[\frac{1}{2}\frac{d}{dt}\|w\|^2 \leq -\frac{2}{3}(w, w)_\frac{\partial}{\partial t} + \left\{(\kappa(\eta + \nu) + \alpha\left(\theta + \frac{1}{2}\ell\delta\right)\right\}\|w\|^2\]
\[+ \frac{\kappa}{\eta}\|w_x\|^2 + R(\phi, \alpha, \kappa, \ell), \quad (3.14)\]
where
\[R(\phi, \alpha, \kappa, \ell) = \frac{3}{4}(\phi, \phi)_\phi + \left(\frac{\alpha\ell}{2\theta} + \frac{\kappa}{\mu}\right)\|\phi_x\|^2 + \frac{\alpha}{\theta}\|\phi\|^2. \quad (3.15)\]
Using the coercivity of \((v, v)_\phi/4\), established in Lemma 3.2, in (3.14) we obtain
\[\frac{1}{2}\frac{d}{dt}\|w\|^2 \leq -\frac{1}{6}\|w_{xx}\|^2 - \frac{1}{6}\|w\|^2 + \frac{\kappa}{\eta}\|w_x\|^2\]
\[+ \left\{(\kappa(\eta + \mu) + \alpha\left(\theta + \frac{1}{2}\ell\delta - \frac{3}{2}\right)\right\}\|w\|^2 + R(\phi, \alpha, \kappa, \ell). \quad (3.16)\]
We now fix \(\eta\) and \(\nu\) so that
\[\kappa\eta = a \quad \text{and} \quad \kappa\nu = b, \]
where \(a\) and \(b\) will be fixed constants. When we use Young’s inequality in the form
\[\frac{\kappa^2}{a}\|w_x\|^2 \leq \frac{1}{6}\|w_{xx}\|^2 + \frac{3\kappa^2}{2a^2}\|w\|^2. \]
we deduce from (3.16) that
\[\frac{1}{2}\frac{d}{dt}\|w\|^2 \leq -\frac{1}{6} - (a + b) + a\left(\frac{3}{2} - \theta - \frac{1}{2}\ell\delta\right) - \frac{3\kappa^2}{2a^2}\|w\|^2 + R(\phi, \alpha, \kappa, \ell). \quad (3.17)\]
Setting \(\delta\ell = 1\) and \(\theta = \frac{1}{2}\) in (3.17) results in
\[\frac{d}{dt}\|w\|^2 \leq -\sigma\|w\|^2 + 2R(\phi, \alpha, \kappa, \ell), \quad (3.18)\]
where
\[\sigma \overset{\text{def}}{=} \frac{1 + 3\alpha}{3} - 2(a + b) - \frac{3\kappa^4}{a^2}. \]
Since \(\phi \) is the function constructed in Lemma 3.2, it satisfies (3.2), (3.3), and (3.4), and thus, there exists a positive constant \(C \) such that
\[R(\phi, \alpha, \kappa, \ell) \leq C \ell^{\mu + 1} + \left\{ \frac{\kappa^2}{b} + \frac{\alpha}{2} \ell^2 + 2\alpha \left(\frac{\ell}{\pi} \right)^2 \right\} \| \phi_x \|^2 \leq C \ell^{2\mu}. \] (3.19)
The coefficient \(\sigma \) will be positive if
\[\kappa^4 < \frac{1}{9} a^2 \{ 1 + 3\alpha - 6(a + b) \}. \]
Since we may choose \(b \) arbitrary small, it suffices that
\[\kappa^4 < \frac{1}{9} a^2 (1 + 3\alpha - 6a). \] (3.20)
We now choose \(a \) such that the right hand side of (3.20) becomes largest, i.e. we set \(a = (1 + 3\alpha)/9 \). This then yields the condition
\[\kappa^4 < \frac{1}{3^3} (1 + 3\alpha)^3, \]
which we have assumed to be satisfied.

From Lemma 3.4 it follows, using Gronwall’s Lemma applied to (3.6), that
\[\| w(t) \|^2 \leq \| w_0 \|^2 e^{-\sigma t} + \frac{C}{\sigma} (1 - e^{-\sigma t}) \ell^{2\mu} \] for all \(t \in \mathbb{R}^+ \), (3.21)
in which \(C \) is a positive constant. We now introduce the time
\[\tau_0 = \frac{2}{\sigma} \log \| w_0 \|. \]
Then
\[\| w(t) \|^2 < 1 + \frac{C}{\sigma} \ell^{2\mu} \leq C_0 \ell^{2\mu} \] for \(t \geq \tau_0 \).
Since \(v = \phi + w \) and \(\| \phi \| = O(\ell^\mu) \), this completes the proof of Theorem 3.1.

In the next theorem we prove the existence of an absorbing set in \(H^1(\Omega) \).

Theorem 3.5. Let \(\ell > 2\pi \), and let \(\alpha \) and \(\kappa \) satisfy (1.10). Then the semigroup \(S(t) \) possesses an absorbing set in \(H^1(\Omega) \). There exists a constant \(c_1 \) which does not depend on \(\ell \) and a nondecreasing function \(\tau_1(\cdot) \) such that
\[\| S(t)v_0 \|_{H^1(\Omega)} \leq c_1 \ell^{6\mu/3} \] if \(t \geq \tau_1(\| v_0 \|_{L^2(\Omega)}) \).

As a first step we prove a bound for \(\| v_x \| \).

Lemma 3.6. We have
\[\frac{d}{dt} \| v_x \|^2 + \| v_{xxx} \|^2 \leq K(\alpha, \kappa, \ell) \| v_x \|^2 + 12\alpha^2 \| v \|^2 + \frac{1}{4\vartheta} \| v \|^6, \] (3.22)
in which
\[K(\alpha, \kappa, \ell) \overset{\text{def}}{=} 3(2\kappa + \alpha\ell)^2 + 8 + \vartheta^7/4, \] (3.23)
and \(\vartheta \) an arbitrary positive constant.
Proof. Let t be such that $v_{xx} \in \mathcal{H}^2(\Omega)$ and $v_t \in (\mathcal{H}^2(\Omega))'$. We take the duality product of equation (2.3) with v_{xx} and integrate by parts. This yields the identity
\[
\frac{1}{2} \frac{d}{dt} \|v_x\|^2 + \|v_{xxx}\|^2 = -(Lv, v_{xx}) + (v v_x, v_{xx}). \tag{3.24}
\]

To estimate the first term on the right hand side of (3.24), we use inequality (2.11) and obtain
\[
| (Lv, v_{xx}) | \leq \{ \|v_x\| + (2\kappa + \alpha \ell) \|v_x\| + 2\alpha \|v\|\} \|v_{xx}\| \\
\leq \frac{1}{2} \{ \|v_x\| + (2\kappa + \alpha \ell) \|v_x\| + 2\alpha \|v\|^2 \} + \frac{1}{2} \|v_{xx}\|^2 \\
\leq \frac{3}{2} \{ \|v_x\|^2 + (2\kappa + \alpha \ell)^2 \|v_x\|^2 + 4\alpha^2 \|v\|^2 \} + \frac{1}{2} \|v_{xx}\|^2 \\
\leq \left\{ \frac{3}{2} (2\kappa + \alpha \ell)^2 + \frac{1}{\eta} \right\} \|v_x\|^2 + 6\alpha^2 \|v\|^2 + \eta \|v_{xx}\|^2. \tag{3.25}
\]

Here we estimated $\|v_{xx}\|$ by means of the inequality
\[
2 \|v_{xx}\|^2 = -2 (v_x, v_{xxx}) \leq \frac{1}{\eta} \|v_x\|^2 + \eta \|v_{xx}\|^2
\]
in which η is an arbitrary positive constant.

To obtain a bound for the second term on the right hand side of (3.24), we use the following calculus inequality:
\[
\|w\|_{L^4(\Omega)} \leq \|w_x\|^{1/4} \|w\|^{3/4}, \quad \text{for} \quad w \in H_0^1(\Omega). \tag{3.26}
\]
It is proved by first integrating the identity $(w^2)_x = 2 w w_x$ over $(-\ell, \ell)$ to obtain
\[
w^2(x) = 2 \int_{-\ell}^x w w_x \leq 2 \int_{-\ell}^x |w| |w_x|,
\]
and then over (x, ℓ) to obtain a similar estimate involving an integral over (x, ℓ). Adding the two estimates then yields the uniform bound
\[
w^2(x) \leq \|w\| \|w_x\| \quad \text{for any} \quad x \in (-\ell, \ell). \tag{3.27}
\]
Multiplying this inequality by $w^2(x)$ and integrating it over $(-\ell, \ell)$, we obtain (3.26). To bound the second term on the right of (2.23) we integrate by parts, use Schwarz's inequality and (3.26):
\[
|(v v_x, v_{xx})| = \frac{1}{4} \|v^2, v_{xxx}\| \leq \frac{\lambda}{4} \|v_{xxx}\|^2 + \frac{1}{4\lambda} \|v\|^4_{L^4(\Omega)} \\
\leq \frac{\lambda}{4} \|v_{xxx}\|^2 + \frac{1}{4\lambda} \|v_x\| \|v\|^3 \\
\leq \frac{\lambda}{4} \|v_{xxx}\|^2 + \frac{\vartheta}{8\lambda} \|v_x\|^2 + \frac{1}{8\vartheta \lambda} \|v\|^6. \tag{3.28}
\]
Here λ and ϑ are arbitrary positive constants. When we set $\eta = \frac{1}{\lambda}$ in (3.25) and $\lambda = 1$ in (3.28), and substitute the resulting estimates into the right hand side of (3.24), we obtain the desired differential inequality. \hfill \square

We complete the proof of Theorem 3.5 by applying the Uniform Gronwall Lemma to the differential inequality (3.22). We identify
\[
y = \|v_x\|, \quad g = K(\alpha, \kappa, \ell) \quad \text{and} \quad h = 12\alpha^2 \|v\|^2 + \frac{1}{4\vartheta} \|v\|^6,
\]
and set $\vartheta = \ell^{4\mu/3}$. Then there exists a constant $C_1 = C_1(\alpha) > 0$ such that

$$K(\alpha, \kappa, \ell) \leq C_1 \ell^{4\mu/3},$$

and hence we have $a_1 = C_1 \ell r^{4\mu/3}$. Also, from Theorem 3.1 we conclude that there exists a constant $C_2 > 0$ such that

$$12\alpha^2 \|v\|^2 + \frac{1}{4\vartheta} \|\vartheta\| \leq C_2 \ell^{14\mu/3},$$

so that we can take $a_2 = C_2 \ell r \ell^{14\mu/3}$.

It remains to determine a_3. We do this by interpolating between $\|v\|$ and $\|v_{xx}\|$, as in inequality (2.16). For $\|v\|$, we use the bound from Theorem 3.1. To estimate $\|v_{xx}\|$, we use Lemma 2.3, where we set $s = \frac{1}{\ell^2}$, so that $A = \frac{1}{\ell^2}$. We then integrate the differential inequality (2.13) over $(t, t + r)$ for some $r > 0$ and $t \geq \tau_0$, and, once again, use the bound for $\|v\|$, this time at t and at $t + r$. We thus arrive at the estimate

$$\int_t^{t+r} \|v_{xx}\|^2 \leq C(1 + r) \ell^{2\mu}$$

for some positive constant C. If we now integrate (2.16) over $(t, t + r)$, we obtain

$$\int_t^{t+r} \|v_x\|^2 \leq C_3(1 + r) \ell^{2\mu} \defeq a_3.$$

It follows that

$$\|v_x(t + r)\|^2 \leq C\left(\frac{1}{r} \ell^{2\mu} + r \ell^{4\mu/3}\right) e^{C_1 r \ell^{4\mu/3}},$$

where C is some positive constant. We choose $r = \ell^{-4\mu/3}$. Then

$$\|v_x(t + r)\|^2 \leq C \ell^{10\mu/3} e^{C_1}.$$

Since $\ell > 2\pi$, we conclude that

$$\|v_x(t + r)\| \leq C \ell^{5\mu/3} \text{ for } t \geq \tau_0,$$

and hence

$$\|v_x(t)\| \leq C \ell^{5\mu/3} \text{ for } t \geq \tau_1 = \tau_0 + \ell^{-4\mu/3}.$$

This completes the proof of Theorem 3.5.

From [13], Theorem 1.1, p. 23, we can now conclude the main result of this section.

Theorem 3.7. The semigroup $S(t)$ associated with Problem (1.4) maps H into itself. It possesses in H a global attractor that is compact and connected.

4. **Inertial sets.** The object of this section is to prove the existence of inertial sets, namely compact sets which contain the attractor, are positively invariant by the semigroup, have a finite fractal dimension and attract all solutions at an exponential rate. We also obtain an upper bound for the fractal dimension of the attractor.

In Section 3 it was proved that the set

$$B = \{ v \in H \cap H_0^1(\Omega) : \|v\| \leq \rho_0 \text{ and } \|v_x\| \leq \rho_1 \}, \quad (4.1)$$

where

$$\rho_0 = c_0 \ell^{\mu} \quad \text{and} \quad \rho_1 = c_1 \ell^{5\mu/3}, \quad (4.2)$$

where $\mu = 11/5$, is absorbing for all bounded subsets of H, the set of odd functions in $L^2(\Omega)$. A direct consequence of these estimates and (3.27) is that for $v \in B$,

$$\|v\|_{L^\infty(\Omega)} \leq \|v\|^{1/2} \|v_x\|^{1/2} \leq \sqrt{c_0 c_1} \ell^{4\mu/3}. \quad (4.3)$$
We define the positively invariant set
\[Y = \bigcup_{t \geq \tau_1} S(t)B, \tag{4.4} \]
where \(\tau_1 = \tau_1(\|v_0\|) \) was introduced in Theorem 3.5.

To prove the existence of an inertial fractal set for \(\{S(t)\}_{t \geq 0}, Y \) we use a result of [4] (see Theorem 3.1 on p. 32 of [4]). To apply this theorem it is required to show that there exists a time \(t_* > 0 \) such that the map
\[S_* \overset{\text{def}}{=} S(t_*) \tag{4.5} \]
has the following properties:

(A) \(S_* \) is Lipschitz continuous on \(Y \);

(B) \(S_* \) satisfies the squeezing property defined below:

Definition 4.1. Let \(G \) be a Lipschitz continuous map from \(Y \) to itself. Then \(G \) is said to have the squeezing property in \(Y \) if for some \(\delta \in (0, \frac{1}{2}) \) there exists an orthogonal projection \(P = P(\delta) \) in \(H \) of rank equal to \(N_0(\delta) \) such that for every \(v_1 \) and \(v_2 \) in \(H \) which satisfies
\[\|(I - P)(Gv_1 - Gv_2)\|_H > \|P(Gv_1 - Gv_2)\|_H \]
the following inequality holds:
\[\|(Gv_1 - Gv_2)\|_H \leq \delta \|v_1 - v_2\|_H. \]

In Lemma 4.1 we prove the first property; in fact we show that \(S(t) \) is Lipschitz continuous for any \(t \in [0, T] \) where \(T \) is an arbitrary positive constant.

Lemma 4.1. For any \(t \in [0, T] \), the semigroup \(S(t) : Y \to Y \) associated with Problem (1.4) is Lipschitz continuous on \(H \).

Proof. Let \(v_1(x, t) \) and \(v_2(x, t) \) be two solutions of Problem (1.4) with the initial values \(v_{10} \) and \(v_{20} \) respectively in \(X \). Their difference
\[w(x, t) = v_1(x, t) - v_2(x, t) \]
satisfies the equation
\[w_t + w_{xxxx} = Lw - (\overline{v}w)_x, \tag{4.6} \]
where \(\overline{v} = \frac{1}{2}(v_1 + v_2) \) is an element of \(B \) as well. When we multiply equation (4.6) by \(w \) and integrate over \(\Omega \), we obtain
\[\frac{1}{2} \frac{d}{dt} \|w\|^2 + \|w_{xx}\|^2 = (Lw, w) + (\overline{v}, w_{xx}). \tag{4.7} \]
The first term on the right of (4.7) can be estimated by means of Lemma 2.2. To estimate the second term, we write
\[\|(\overline{v}, w_{xx})\| \leq \|\overline{v}\|_{L^\infty(\Omega)} \|w\| \|w_{xx}\|. \]
Thus, since \(\|w_{xx}\|^2 \leq \|w\| \|w_{xx}\| \), we obtain
\[\|(\overline{v}, w_{xx})\| \leq \|\overline{v}\|_{L^\infty(\Omega)} \|w\|^{3/2} \|w_{xx}\|^{1/2} \]
\[\leq \frac{3}{4} \|\overline{v}\|^{1/3}_{L^\infty(\Omega)} \|w\|^2 + \frac{1}{4} \|w_{xx}\|^2, \tag{4.8} \]
where we have applied Young’s inequality
\[ab \leq \frac{1}{p} a^p + \frac{1}{q} b^q, \quad \frac{1}{p} + \frac{1}{q} = 1, \quad a \geq 0, \ b \geq 0, \]
with \(p = \frac{4}{7}, \ q = 4, \ a = \|\nabla\|_{L^\infty(\Omega)}\|w\|^{3/2}\) and \(b = \|w_{xx}\|^{1/2}\). From (4.2) we know that
\[
\|\nabla\|_{L^\infty(\Omega)}^{4/3} \leq (c_0c_1)^{2/3} \ell^6 \mu/9,
\]
and thus, (4.8) can be written as
\[
|\langle \nabla, wvw \rangle| \leq C_2 \ell^{6\mu/9} \|w\|^2 + \frac{1}{4} \|w_{xx}\|^2, \quad \text{where} \quad C_2 = \frac{3}{4}(c_0c_1)^{2/3}.
\]
When we use (2.10) and (4.9) in (4.7) we obtain the estimate
\[
\frac{1}{2} \frac{d}{dt}\|w\|^2 + \frac{1}{4} (1 - 2\kappa s) \|w_{xx}\|^2 \leq \frac{1}{2} \left(1 + \kappa s + \frac{2\kappa}{s} + 2\kappa s \ell^{6\mu/9} \right) \|w\|^2.
\]
Choosing \(s = 1/(4\kappa) \), this inequality becomes
\[
\frac{d}{dt}\|w\|^2 + \frac{1}{4} \|w_{xx}\|^2 \leq \left\{ \frac{5}{4} + 8\kappa^2 + 2\kappa s \ell^{6\mu/9} \right\} \|w\|^2.
\]
Since \(\kappa \) is bounded we conclude that there exists a constant \(C_3 > 0 \), which does not depend on \(\ell \), such that
\[
\frac{d}{dt}\|w\|^2 + \frac{1}{4} \|w_{xx}\|^2 \leq 2C_3 \ell^{6\mu/9} \|w\|^2.
\]
This yields the estimate
\[
\|w(t)\| \leq e^{C_3 \ell^{6\mu/9} t} \|w(0)\|,
\]
so that the Lipschitz constant \(\mathcal{L} \) is given by
\[
\mathcal{L}(T) = e^{C_3 \ell^{6\mu/9} T}.
\]
Thus we have shown that \(S(t) \) is Lipschitz continuous for every \(t > 0 \) and so satisfies condition (A) for every \(t > 0 \).

Next we turn to condition (B) and show that for some \(t_* \) the operator \(S(t_*) \) possesses the squeezing property. We introduce some notation and write
\[
Av = v_{xxx}, \quad D(A) = \mathcal{H}^4(\Omega), \quad (4.13)
\]
where we recall that \(\mathcal{H}^4(\Omega) = \{ w \in \mathcal{H}^2(\Omega) : w_{xx} \in \mathcal{H}^2(\Omega) \} \). It is readily verified that \(A \) is a positive self-adjoint linear operator. Since the injection \(D(A) \subset H \) is compact, \(A^{-1} \) can be considered as a self-adjoint compact operator on \(H \), and we can use the spectral theory of self-adjoint compact operators in a Hilbert space (see [13], p. 56).

We are now allowed to define the powers \(A^s \) of \(A \) for \(s \in \mathbb{R} \). Setting
\[
V = D(A^{1/2}) = \mathcal{H}^2(\Omega), \quad (4.14)
\]
it is clear that \(V \) is compactly imbedded in \(H \). For the rest of this section we write
\[
\|v\|_H = \|v\|_{L^2(\Omega)} = \|v\| \quad \text{and} \quad \|v\|_V = \|A^{1/2}v\|_H = \|v_{xx}\|_H = \|v\|_{\mathcal{H}^2(\Omega)}. \quad (4.15)
\]
There exists a complete set of eigenvalues \(\{\zeta_n\}_{n=1}^\infty \) in \(H \) corresponding to the positive eigenvalues \(\{\sigma_n\}_{n=1}^\infty \) of \(A \), that is
\[
A\zeta_n = \sigma_n\zeta_n \quad \text{for all} \ n \in \mathbb{N} \quad \text{and} \quad \sigma_n = \left(\frac{n\pi}{\ell} \right)^4. \quad (4.16)
\]
We write \(H_n = \text{span} \{\zeta_1, \zeta_2, \ldots, \zeta_n\} \), denote by \(P_n \) the orthogonal projection of \(H \) onto \(H_n \), and set \(Q_n = I - P_n \). Plainly, \(Q_n \) is the orthogonal projection of \(H \) onto the orthogonal complement of \(H_n \).
Lemma 4.2. There exists a time t_* such that the operator $S_*=S(t_*)$ satisfies the squeezing property.

We first give an auxiliary result:

Proposition 4.3. Suppose that for some $n \geq 1$,
\begin{equation}
\|Q_n(z)\| > \|P_n(z)\| \quad \text{for} \quad z \in \mathcal{H}^4(\Omega).
\end{equation}
Then
\begin{equation}
\frac{\|z\|^2}{\|z\|_H^2} = \frac{\|z\|^2}{\|z\|_H^2} > \frac{1}{2} \sigma_{n+1}.
\end{equation}

Proof. From the choice of the orthogonal projections P_n and Q_n it follows that $P_n z$ is orthogonal to $Q_n z$ with respect to the inner products both in H and V. Hence,
\begin{equation}
\frac{\|z\|^2}{\|z\|_H^2} = \|P_n(z) + Q_n(z)\|^2 = \|P_n(z)\|^2 + \|Q_n(z)\|^2 \geq \frac{1}{2} \|Q_n(z)\|^2,
\end{equation}
where we have used the fact that $\|Q_n(z)\| > \|P_n(z)\|$. Now we can go back to the operator A to obtain
\begin{equation}
\|Q_n(z)\|^2 = \|A^{1/2}(Q_n(z))\|^2 \geq (A(Q_n(z)), Q_n(z))_H \geq \sigma_{n+1} \|Q_n(z)\|^2,
\end{equation}
where the last inequality follows from the fact that σ_{n+1} is the smallest eigenvalue of A over $Q_n H$.

Remark. Suppose that (4.17) is satisfied for $n = N_0$ at some t_*. Then, putting
\begin{equation}
z = w_* \overset{\text{def}}{=} w(t_*) = S(t_*)v_1 - S(t_*)v_2,
\end{equation}
it follows that
\begin{equation}
\frac{\|w_*\|^2}{\|w_*\|_H^2} > \frac{1}{2} \sigma_{N_0+1}.
\end{equation}

We have to show that (4.19) implies that
\begin{equation}
\|w_*\| \leq \delta \|v_1 - v_2\| \quad \text{for some} \quad \delta \in (0, \frac{1}{8}).
\end{equation}
To achieve this, we observe that $w = v_1 - v_2$ satisfies
\begin{equation}
w_t + Aw - Rv_1 + Rv_2 = 0,
\end{equation}
where A is the linear operator introduced in (4.13) and R denotes the right hand side of equation (2.3), namely
\begin{equation}
Rv = L(v) - vv_x.
\end{equation}
We introduce the functions
\begin{equation}
\xi(t) = \frac{w(t)}{\|w(t)\|} \quad \text{and} \quad \eta(t) = \frac{\|w_{xx}(t)\|^2}{\|w(t)\|^2} = \frac{\|w(t)\|^2_{H^2(\Omega)}}{\|w(t)\|^2} = \frac{\|w(t)\|^2}{\|w(t)\|_H^2}.
\end{equation}
Note that $\xi : \mathbb{R}^+ \to H$ and $\eta : \mathbb{R}^+ \to \mathbb{R}^+$. Thus,
\begin{equation}
\|\xi_{xx}(t)\|^2 = \eta(t) \quad \text{and} \quad \eta(t_*) > \frac{1}{2} \sigma_{N_0+1}.
\end{equation}
We can now write (4.10) as
\begin{equation}
\frac{d}{dt}\|w\|^2 + \left\{ \frac{1}{4} \eta(t) - K \right\}\|w\|^2 \leq 0,
\end{equation}
\begin{equation}
\frac{d}{dt}\|w\|^2 + \left\{ \frac{1}{4} \eta(t) - K \right\}\|w\|^2 \leq 0.
\end{equation}
where $K = 2C_3 t_0^{16\mu/9}$. Hence, by Gronwall’s Lemma

$$\|w(t)\|^2 \leq \exp\left(-\frac{1}{4} \int_0^t \eta(\tau) d\tau + Kt\right)\|w(0)\|^2.$$ \hspace{1cm} (4.25)

Therefore, putting $t = t_*$ and writing $w(t_*) = w_*$ we obtain

$$\|S_* v_1 - S_* v_2\| = \|w_*\| \leq \delta(t_*)\|v_{10} - v_{20}\|.$$ \hspace{1cm} (4.26)

in which

$$\delta_* = \delta(t_*) = \exp\left(-\frac{1}{8} \int_0^{t_*} \eta(\tau) d\tau + \frac{1}{2} K t_*\right).$$ \hspace{1cm} (4.27)

At this point we only know – from (4.23) – that $\eta(t_*) > \frac{1}{2}\sigma_{N_0+1}$ and by (4.16) that $\sigma_{N_0+1} \to \infty$ as $N_0 \to \infty$. In the following proposition we obtain a lower bound for $\eta(t)$ which will be used to show that if $t < t_*$, then $\eta(t) \to \infty$ as $N_0 \to \infty$.

Proposition 4.4. For any given $T > 0$, and any positive constant β, the function $\eta(t)$ has the following lower bound:

$$\eta(t) \geq \eta(T)e^{-8(\beta+1)(T-t)} - \frac{K_0}{8(\beta + 1)} \text{ for } 0 < t \leq T.$$ \hspace{1cm} (4.28)

Here $K_0 \leq C(\beta)t_0^{16\mu/3}$ and $C(\beta) = O(\beta^{-1})$ as $\beta \to 0^+$.

Proof. We start by differentiating equation (4.22):

$$\frac{1}{2} \frac{d}{dt} \eta(t) = \frac{1}{\|w\|^2}\{(w_t, Aw) - (w_t, w)\eta(t)\}$$

$$= \frac{1}{\|w\|}(w_t, (A - \eta)\xi)$$

$$= \frac{1}{\|w\|}(-Aw + (Rv_1 - Rv_2), (A - \eta)\xi).$$ \hspace{1cm} (4.29)

We assert that

$$\frac{1}{\|w\|}(Aw, (A - \eta)\xi) = \|(A - \eta)\xi\|^2.$$ \hspace{1cm} (4.30)

To prove this identity, note that

$$(\eta\xi, (A - \eta)\xi) = \eta(\xi, A\xi) - \eta^2\|\xi\|^2 = \eta\|\xi\|^2_{\|w\|_1} - \eta^2 = \eta\|\xi\|^2_{\|w\|_1} - \eta^2 = 0,$$

by the definition of η. Hence,

$$\|(A - \eta)\xi\|^2 = ((A - \eta)\xi, (A - \eta)\xi) = (A\xi, (A - \eta)\xi) = \frac{1}{\|w\|}(Aw, (A - \eta)\xi),$$

from which (4.30) follows. Combining (4.29) and (4.30) we obtain

$$\frac{1}{2} \frac{d}{dt} \eta(t) + \|(A - \eta)\xi\|^2 = \frac{1}{\|w\|_1}(Rv_1 - Rv_2, (A - \eta)\xi)$$

$$\leq \frac{\|Rv_1 - Rv_2\|}{\|w\|_1}\|(A - \eta)\xi\|$$

$$\leq \frac{1}{2}\|(A - \eta)\xi\|^2 + \frac{1}{2}\frac{\|Rv_1 - Rv_2\|^2}{\|w\|^2}.$$ \hspace{1cm} (4.31)
From the definition of R, we obtain
\[
\frac{Rv_1 - Rv_2}{\|w\|} = \frac{-v_1v_2 + v_2v_2}{\|w\|} + Lw = -(\pi_\xi)_x + L\xi. \tag{4.32}
\]

Therefore, dropping the nonnegative term $\|(A - \eta)\xi\|^2$ on the left-hand side of (4.31), and using (4.32), it follows that
\[
\frac{d}{dt}\eta(t) \leq \|- (\pi_\xi)_x + L\xi\|^2 = \| - (\pi_\xi) - (\pi_\xi)_x + L\xi\|^2 \leq 2\|\pi_\xi + (\pi_\xi)_x\|^2 + 2\|L\xi\|^2 \\
\leq 4\|\pi_\xi\|^2 + 4\|\pi_\xi_x\|^2 + 2\|L\xi\|^2. \tag{4.33}
\]

We first evaluate
\[
\|\pi_\xi\|^2 + \|\pi_\xi_x\|^2 \leq \|\pi_\xi\|^2 \|\xi\|_{L^\infty(\Omega)} + \|\pi_\xi\|_{L^\infty(\Omega)} \|\xi_x\|^2 \\
\leq \rho_1^2 \|\xi\|^2 \|\xi_x\| + \|\pi_\xi\| \|\xi\| \|\xi_x\| \\
\leq \rho_1^2 \|\xi\|^2 \|\xi_x\|^2 + \rho_0^2 \rho_1 \eta(t)^{\frac{1}{2}} \\
\leq \rho_1^2 \eta(t)^{\frac{1}{2}} + \rho_0 \rho_1 \eta(t)^{\frac{1}{2}}, \tag{4.34}
\]
where we have used the Sobolev inequality (4.3) and the bounds for v and ξ. By (2.11), we also have
\[
\|L\xi\|^2 \leq 2\|\xi_x\|^2 + 2\{(2\kappa + \alpha\ell)\|\xi_x\| + 2\alpha\|\xi\|\}^2 \\
\leq 2\|\xi_x\|^2 + 4(2\kappa + \alpha\ell)^2\|\xi_x\|^2 + 16\alpha^2\|\xi\|^2 \\
\leq 2\{1 + \lambda(2\kappa + \alpha\ell)^2\} \eta(t) + 2\left\{8\alpha^2 + \frac{1}{\lambda}(2\kappa + \alpha\ell)^2\right\} \|\xi\|^2,
\]
where we have used the inequality
\[
\|\xi\|^2 \leq \frac{\lambda}{2} \|\xi_x\|^2 + \frac{1}{2\lambda} \|\xi\|^2,
\]
in which λ is an arbitrary positive number. Setting $\lambda = 1/(2\kappa + \alpha\ell)^2$, and remembering that $\|\xi\| = 1$, we conclude that
\[
\|L\xi\|^2 \leq 4\eta(t) + 2\{(2\kappa + \alpha\ell)^4 + 8\alpha^2\}. \tag{4.35}
\]

Thus, it follows that
\[
\|L\xi\|^2 \leq 4\eta(t) + C_4\ell^4, \tag{4.36}
\]
where C_4 does not depend on ℓ. Substituting (4.34) and (4.36) into (4.33), we arrive at the differential inequality
\[
\frac{d}{dt}\eta(t) \leq 8\eta(t) + 4\rho_0^2 \eta(t)^{1/4} + 4\rho_0 \rho_1 \eta(t)^{1/2} + 2C_4\ell^4. \tag{4.37}
\]

Using Young’s inequality to estimate the two fractional powers of η in (4.37), we obtain after an elementary computation that
\[
\frac{d}{dt}\eta(t) \leq 8(\beta + 1)\eta(t) + K_0, \tag{4.38}
\]
where
\[
K_0 = \frac{3}{(4\beta)^{1/3}} \rho_1^{8/3} + \frac{1}{\beta} \rho_0^2 \rho_1^2 + 2C_4\ell^4,
\]
and β is an arbitrary positive constant. Substituting the bounds for ρ_0 and ρ_1 from (4.2), we find that
\[
K_0 \leq C(\beta)\ell^{16\mu/3}, \tag{4.39}
\]
in which \(C(\beta) = O(\beta^{-1}) \) as \(\beta \to 0^+ \). By Gronwall’s Lemma, we obtain
\[
\eta(T) \leq e^{8(\beta+1)(T-t)} \left\{ \eta(t) + \frac{K_0}{8(\beta+1)} \right\} \quad \text{for} \quad 0 \leq t \leq T.
\]
From the above inequality, the desired lower bound (4.28) for \(\eta(t) \) follows. This completes the proof of Proposition 4.4.

We now put \(T = t_* \) in (4.28), integrate over \((0, t_*)\) and use the lower bound (4.23) to obtain
\[
\int_0^{t_*} \eta(t) \, dt \geq \frac{1}{16(\beta+1)} \left[(1 - e^{-8(\beta+1)t_*}) \sigma_{N_0+1} - 2K_0t_* \right]. \quad (4.40)
\]
Hence, by (4.27),
\[
\delta_* = \delta(t_*) \leq \exp \left\{ \frac{1}{128(\beta+1)} \left\{ -(1 - e^{-8(\beta+1)t_*}) \sigma_{N_0+1} + 2K_0t_* \right\} + \frac{1}{2}Kt_* \right\}. \quad (4.41)
\]
When we now choose \(\beta \) so that
\[
8(\beta+1)t_* = 1,
\]
then \(1 - e^{-8(\beta+1)t_*} = 1 - e^{-1} > \frac{1}{2} \), and we get
\[
\delta_* \leq \exp \left\{ \frac{1}{32} \sigma_{N_0+1}t_* + \frac{1}{8}K_0t_*^2 + \frac{1}{2}Kt_* \right\}. \quad (4.42)
\]
Let us take
\[
t_* = \ell^{-8\mu/3}.
\]
Since we assume that \(\ell > 2\pi \) it follows that \(t_* < (2\pi)^{-8\mu/3} \). According to (4.41) we have \(\beta^{-1} = \frac{8\ell}{1-8\mu} \), so that we conclude that \(\beta^{-1} < 1 \). Thus, by (4.39), we obtain
\[
K_0 \leq C_5\ell^{16\mu/3},
\]
where the constant \(C_5 \) does not depend on \(\ell \). Using also the fact that \(K = 2C_3\ell^{16\mu/9} \) in which \(C_3 \) does not depend on \(\ell \), the inequality (4.42) becomes
\[
\delta_* \leq \exp \left\{ -\frac{\pi^2(N_0 + 1)^4}{32\ell^{4+(8\mu/3)}} + C_6 \right\}, \quad (4.43)
\]
where \(C_6 \) does not depend on \(\ell \). Hence, if \(N_0 \) is the smallest natural number such that
\[
N_0 + 1 \geq C_7\ell^{1+(2\mu/3)} \quad (4.44)
\]
where
\[
C_7 = \frac{2}{\pi} (2(\ln 8 + C_6))^{1/4}, \quad (4.45)
\]
then \(\delta_* \leq \frac{1}{8} \). This completes the proof of Lemma 4.2.

Theorem 4.5. The flow \(\{ S(t) : t \geq 0 \} \) on \(H \) that is determined by Problem (1.3) admits an exponential fractal attractor \(M \) in \(Y \) whose fractal dimension is estimated by
\[
d_F(M) \leq C_0\ell^{1+(2\mu/3)}, \quad (4.46)
\]
where \(C_0 \) is a constant that only depends on the absolute constants \(c_0 \) and \(c_1 \) introduced in Theorem 1.3. Moreover, there exist positive constants \(C \) and \(K \) such that for any \(t \geq 0 \)
\[
\text{dist}_{L^2(Y)}(S(t)B, M) \leq Ce^{-K\ell^{\mu/3}t}. \quad (4.47)
\]
Proof. We have proved in Lemma 4.1 that the map $F(t, x) = S(t)x$ is Lipschitz continuous from $[0, T] \times Y$ into Y and in Lemma 4.2 we have shown that there exists a time $t_\ast > 0$ such that $S_\ast = S(t_\ast) : Y \to Y$ possesses the squeezing property.

By [4], Theorem 2.1, p. 14, this implies that the map S_\ast admits an exponential fractal attractor $M_\ast \subseteq B$ such that

$$d_F(M_\ast) \leq C_0N_0,$$

where the positive constant C_0 does not depend on ℓ. Thus, in view of (4.43), $N_0 = C_0\ell^{1+(2\mu/3)}$, and it follows that

$$d_F(M_\ast) \leq C_0\ell^{1+(2\mu/3)},$$

(4.48)

where C_0 does not depend on ℓ.

Now we set

$$\mathcal{M} = \cup_{0 \leq t \leq T} S(t)M_\ast.$$

(4.49)

Then, from [4], Theorem 3.1, p. 32, it follows that \mathcal{M} is an exponential fractal attractor for the semigroup $\{S(t) : t \geq 0\}$. Note that \mathcal{M} is the image of $[0, t_\ast] \times M_\ast$ under F, which is Lipschitz continuous. Since Lipschitz functions preserve fractal dimension,

$$d_F(\mathcal{M}) \leq d_F(M_\ast) + 1 \leq 2C_0\ell^2.$$

(4.50)

Moreover, by [4], equation (5.1.40), p. 44 we have

$$\text{dist}_{L^2(\Omega)}(S(t)B, \mathcal{M}) \leq C_1\ell^{t_\ast}[(\delta_\ast)^{1/2}]^t.$$

(4.51)

By (4.11) we have

$$L(t_\ast) = \text{Lip}_B(S(t_\ast)) \leq e^{C_2\ell^{t_\ast}t_\ast} \leq e^{C_3}.$$

Also using the fact that $\delta_\ast < \frac{1}{8}$, we deduce from (4.49) that

$$\text{dist}_{L^2(\Omega)}(S(t)B, \mathcal{M}) \leq C_1\ell^{t_\ast}[(\delta_\ast)^{1/2}]^t \leq e^{-K\ell^{t_\ast}t},$$

where C is a constant which does not depend on ℓ. \hfill \Box

Appendix A. In this Appendix we prove Lemma 3.2 which is similar to Proposition 2.1 of [3], but adapted to the type of boundary conditions we have in Problem (1.4). We recall that $X = H \cup \mathcal{H}^2(\Omega)$ and

$$(u, v)_{\phi} := (u_{xx}, v_{xx}) - (u_x, v_x) + \omega(u, \phi), \quad u, v \in \mathcal{Q}, \ \omega > 0$$

(3.1)

where $\phi \in L^2(\Omega)$.

Lemma 3.2. For every $\ell > 2\pi$ there exists a function $\phi \in X$ such that for any $\omega \in [\frac{1}{4}, 1]$ and any function $w \in X$ the following inequality holds:

$$(w, w)_{\phi} \geq \frac{1}{4} \|w_{xx}\|^2 + \frac{1}{4} \|w\|^2.$$

(3.2)

The function ϕ can be chosen so that

$$(\phi, \phi)_{\omega} \leq C_4\ell^{\mu+1}$$

(3.3)

and

$$|\phi| \leq C_2\ell^\mu \quad \text{and} \quad \|\phi_x\| \leq C_3\ell^{\mu-1},$$

(3.4)

where $\mu = \frac{11}{12}$ and C_1, C_2 and C_3 are positive constants.

Proof. Since $\phi \in L^2(\Omega)$ is odd, we can write it as

$$\phi(x) = -2 \sum_{n=1}^{\infty} \frac{\ell}{n\pi} \psi_n \sin \left(\frac{n\pi x}{\ell}\right).$$

(A.1)
Note that $\phi(\pm \ell) = 0$. We want to choose the coefficients ψ_n such that the inequalities (3.2) – (3.4) hold.

For a natural number M, to be chosen later, we define

$$\psi_n = \begin{cases}
4, & \text{when } 1 \leq |n| \leq 2M \\
4f\left(\frac{|n|}{2M} - 1\right), & \text{when } 2M \leq |n|,
\end{cases}$$

(A.2)

where f is a non-increasing C^1 function with the properties

$$f(0) = 1, \quad f'(0) = 0, \quad f \geq 0 \text{ on } \mathbb{R}^+$$

$$\sup |f'| < 1, \quad \int_0^\infty (1 + k^{2\alpha}) |f(k)|^2 dk < \infty, \quad (A.3)$$

$$n^\alpha f(n) \to 0 \text{ as } n \to \infty,$$

where $\alpha > 2$. It is readily seen that

$$n^\alpha \psi_n \to 0 \text{ as } n \to \infty,$$

and that there exist positive constants K_1 and K_2 such that

$$\sum_{n=1}^\infty \psi_n^2 \leq K_1 M \quad \text{and} \quad \sum_{n=1}^\infty n^2 \psi_n^2 \leq K_2 M^3.$$

Since $\alpha > 2$, the series

$$\sum_{n=1}^\infty \frac{1}{n^\alpha} \cos\left(\frac{n\pi x}{\ell}\right)$$

is uniformly convergent in Ω. Hence, because $\psi_n \leq C n^{-\alpha}$ for some constant $C > 0$, this implies that

$$2 \sum_{n=1}^\infty \psi_n \cos\left(\frac{n\pi x}{\ell}\right) \text{ converges uniformly on } \Omega. \quad (A.4)$$

It is trivially verified that for $x = 0$ the series of functions

$$2 \sum_{n=1}^\infty \frac{f}{n\pi} \psi_n \sin\left(\frac{n\pi x}{\ell}\right)$$

is convergent. \hspace{1cm} (A.5)

We now apply the criterium of differentiability for series of functions:

If $\{f_n\}$ is a sequence of differentiable functions on a bounded interval I, such that $\sum_{n=1}^\infty f'_n$ converges uniformly on I to a function g, and there exists a point $x_0 \in I$ such that $\sum_{n=1}^\infty f(x_0)$ is convergent, then $\sum_{n=1}^\infty f_n$ converges uniformly on I to a differentiable function f and $f' = g$, i.e.,

$$\left(\sum_{n=1}^\infty f_n\right)' = \sum_{n=1}^\infty f'_n.$$

In view of (A.4) and (A.5), we may apply this criterium to the series of functions $f_n = \frac{f}{n\pi} \psi_n \sin\left(\frac{n\pi x}{\ell}\right)$. We then find that

$$\phi_\ell(x) = -2 \sum_{n=1}^\infty \psi_n \cos\left(\frac{n\pi x}{\ell}\right). \quad (A.6)$$

We will now apply this criterium again, this time to the series given by (A.6); we set $f_n = \psi_n \cos\left(\frac{n\pi x}{\ell}\right)$. To this end we need to show that

$$\sum_{n=1}^\infty \frac{n\pi}{\ell} \psi_n \sin\left(\frac{n\pi x}{\ell}\right) \text{ converges uniformly on } \Omega. \quad (A.7)$$

Because $\alpha - 1 > 1$ the series $\sum_{n=1}^\infty \frac{1}{n^\alpha} \sin\left(\frac{n\pi x}{\ell}\right)$ converges uniformly on Ω, and we can use the previous argument to prove the uniform convergence of the series in (A.7).
Because $\sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent, it follows that $\sum_{n=1}^{\infty} \psi_n$ is convergent. Therefore, for $x = 0$, the series given by (A.6) is convergent. This, together with (A.7) shows that

$$\phi_{xx}(x) = 2 \sum_{n=1}^{\infty} \frac{n\pi}{\ell} \psi_n \sin \left(\frac{n\pi x}{\ell} \right).$$ \hspace{1cm} (A.8)

We are now ready to prove the inequalities (3.2)–(3.4). By (A.3), (A.4) and (A.6), we have

$$\|\phi_x\|^2 = 4 \sum_{n=1}^{\infty} \psi_n^2 \int_{-\ell}^{\ell} \cos^2 \left(\frac{n\pi x}{\ell} \right) \, dx = 4\ell \sum_{n=1}^{\infty} \psi_n^2 \leq 4K_1\ell M.$$ \hspace{1cm} (A.9)

Using (A.8), we can simplify the expression for $(w, \phi)_{\omega^0}$.

By (A.3), (A.7) and (A.8), we have

$$
\|\phi_x\|^2 = 4 \sum_{n=1}^{\infty} \psi_n^2 \left(\frac{n\pi}{\ell} \right)^2 \int_{-\ell}^{\ell} \sin^2 \left(\frac{n\pi x}{\ell} \right) \, dx = 4\ell \sum_{n=1}^{\infty} \psi_n^2 \left(\frac{n\pi}{\ell} \right)^2 \leq 4\pi^2 \frac{\ell}{4} K_2 M^2.
$$

In Lemma A.2 we shall choose $M \leq 4 \left(\frac{\ell}{4} \right)^{7/5} + 1$, so that (3.3) and (3.4) follow. It remains to prove the inequality (3.2). Since w is antisymmetric in the variable x, we can write it as

$$w(x) = 2 \sum_{n=1}^{\infty} w_n \sin \frac{n\pi}{\ell} x.$$ \hspace{1cm} (A.10)

Using (A.6) and (A.9), we can simplify the expression for $(w, w)_{\omega^0}$. We observe that

$$
\frac{1}{2\ell} \int_{-\ell}^{\ell} w^2 \phi_x = \frac{8}{2\ell} \sum_{j=0, k>0, m>0} \left[w_k \psi_m \int_{-\ell}^{\ell} \sin \frac{k\pi}{\ell} x \sin \frac{m\pi}{\ell} x \cos \frac{j\pi}{\ell} x \, dx \right]
$$

$$= \frac{1}{\ell} \sum_{j=0, k>0, m>0} w_k \psi_m \int_{-\ell}^{\ell} \left\{ \cos \left(\frac{(k+m-j)\pi}{\ell} x \right) + \cos \left(\frac{(k+m+j)\pi}{\ell} x \right) - \cos \left(\frac{(k-m-j)\pi}{\ell} x \right) - \cos \left(\frac{(k-m+j)\pi}{\ell} x \right) \right\} \, dx
$$

$$= 2\ell \left\{ \sum_{k>0, m>0} w_k \psi_k \psi_{k-m} - \sum_{k>0, m>0} w_k \psi_k \psi_{k+m} - \sum_{k>0, m>0} w_k \psi_k \psi_{k-m} \right\}
$$

$$= 2 \left\{ \sum_{k>0, m>0} w_k \psi_k \psi_{k+m} + \sum_{m>0} w_m^2 \psi_{2m} - 2 \sum_{k>0, m>0} w_k \psi_k \psi_{k-m} \right\}
$$

$$= 4 \sum_{k>0, m>0} w_k \psi_k \psi_{k+m} + 2 \sum_{m>0} w_m^2 \psi_{2m}.$$ \hspace{1cm} (A.11)

Setting $E_n = \left(\frac{n^2}{\ell^2} \right)^4 - \left(\frac{n^2}{\ell^2} \right)^2$, it follows from (A.10) that

$$
(w, w)_{\omega^0} = \frac{1}{2\ell} \int_{-\ell}^{\ell} w^2 \phi_x - \int_{-\ell}^{\ell} w^2 \phi_x + \omega \int_{-\ell}^{\ell} w^2 \phi_x
$$

$$= 4\ell \sum_{n>0} E_n w_n^2 + 8\omega \sum_{k>0, m>0} w_k \psi_k \psi_{k+m} + 4\ell \omega \sum_{m>0} w_m^2 \psi_{2m}
$$

$$= 4\ell \left\{ (E_n + \omega \psi_n) w_n^2 + 2\omega \sum_{k>0, m>0} w_k \psi_k \psi_{k+m} \right\} = 4\ell B.$$ \hspace{1cm} (A.12)

We introduce the notation

$$\tau_n = \sqrt{\frac{1}{2} \left\{ \left(\frac{n\pi}{\ell} \right)^4 + 1 \right\}}$$

and $W_n = w_n \tau_n$. \hspace{1cm} (A.12)
To prove the inequality (3.2), we claim that with the coefficients ψ_n defined by (A.2), the following inequality holds:

$$B \geq \frac{1}{2} \langle W, W \rangle = \frac{1}{2} \sum_{n>0} W_n^2 \quad \text{for } \omega \in \left[\frac{1}{4}, 1 \right],$$

where B as defined in (A.11).

Accepting this claim for the moment, we conclude from the definition of W that

$$\langle w, w \rangle_{\omega \phi} = 4B \geq 2t \langle W, W \rangle$$

$$= 2t \sum_{n>0} W_n^2 = \ell \sum_{n>0} \left\{ \left(\frac{n\pi}{t} \right)^4 + 1 \right\} w_n^2$$

$$= \frac{1}{4} \|w_{xx}\|^2 + \frac{1}{4} \|w\|^2$$

which completes the proof of the inequality (3.2).

It remains to prove (A.13). We first observe that if $\omega \geq \frac{1}{4}$, and $M > \frac{\ell}{\pi}$, then by (A.2),

$$E_n + \omega \psi_{2n} \geq \frac{1}{2} \left\{ \left(\frac{n\pi}{t} \right)^4 + 1 \right\} \tau_n^2.$$

Note that the condition we impose here on M is consistent with the condition on M we make in Lemma A.2. From the definition of B in (A.11) we conclude that

$$B \geq \sum_{n>0} W_n^2 + 2\omega \sum_{k>m>0} W_k \frac{\psi_{k+m} - \psi_{k-m}}{\tau_k \tau_m} W_m =: \langle W, (\text{Id} + 2\omega \Gamma)W \rangle$$

in which $\Gamma = \{ \Gamma_{km} \}_{k>m>0}$ is an (N,N)-matrix with $N = +\infty$ and $\Gamma_{km} = \frac{\psi_{k+m} - \psi_{k-m}}{\tau_k \tau_m}$.

We now give the definition of a Hilbert–Schmidt [HS for short] operator and define a norm on the space of HS operators—the Hilbert–Schmidt norm.

Definition A.1. A linear bounded operator T mapping a separable Hilbert space H_1 into H_2 is said to be Hilbert–Schmidt if, for some complete orthonormal sequence $\{e_n\}_{n \geq 1}$ in H_1,

$$\sum_{n \geq 1} \langle Te_n, Te_n \rangle < \infty.$$

Lemma A.1. Let T be HS. Then T is a compact operator and

$$\|T\|_{HS} = \sum_{n \geq 1} \langle Te_n, Te_n \rangle,$$

which is independent of the particular orthonormal basis chosen, defines a norm on the (linear) space of HS operators—the Hilbert–Schmidt norm.

Proof. See [1].

To finish the proof of (3.2), we shall show that we can choose the constant M in the definition of the sequence $\{ \psi_n \}$ so that Γ becomes sufficiently small. Specifically, we prove

Lemma A.2. Let M be the smallest integer larger than $4\left(\frac{\ell}{\pi} \right)^{7/5}$. Then

$$\|\Gamma\|_{HS} = \left\{ \sum_{k>m>0} \left| \frac{\psi_{k+m} - \psi_{k-m}}{\tau_k \tau_m} \right|^2 \right\}^{1/2} < \frac{1}{4},$$

where by $\| \cdot \|_{HS}$ we have denoted the the Hilbert–Schmidt norm.

Accepting (A.15), we are ready to complete the proof of (A.13). By (A.14), we have

$$B \geq \langle W, (\text{Id} + 2\omega \Gamma)W \rangle \geq \langle W, W \rangle - 2\omega \|\Gamma\|_{HS} \langle W, W \rangle \geq \frac{1}{2} \langle W, W \rangle,$$

as asserted.
Proof. (of Lemma A.2.) By (A.2), we have for any \(k > m > 0 \)
\[|\psi_{k+m} - \psi_{k-m}| = 0 \text{ if } k + m \leq 2M, \]
and
\[|\psi_{k+m} - \psi_{k-m}| \leq \frac{4m}{M} \text{ for all } k > m. \]
Therefore, the following estimate of the Hilbert-Schmidt norm of \(\Gamma \) holds
\[
\|\Gamma\|_{HS}^2 \leq \frac{16}{M^2} \sum_{m=1}^{M} m^2 \tau_m^{-2} \sum_{k=2M-m+1}^{\infty} \tau_k^{-2} + \frac{16}{M^2} \sum_{m=M+1}^{\infty} m^2 \tau_m^{-2} \sum_{k=m+1}^{\infty} \tau_k^{-2} \\
\leq \frac{16}{M^2} \sum_{m=1}^{M} m^2 \tau_m^{-2} \int_{2M-m}^{\infty} \tau_k^{-2} dk + \frac{16}{M^2} \sum_{m=M+1}^{\infty} m^2 \tau_m^{-2} \int_{m+1}^{\infty} \tau_k^{-2} dk \\
\leq \frac{32}{3} q^{-4} M^{-5} \sum_{m=1}^{M} m^2 \tau_m^{-2} + \frac{32}{3} q^{-4} M^{-2} \sum_{m=M+1}^{\infty} m^{-1} \tau_m^{-2}.
\]
Taking again integrals as upper bounds for the sums, we obtain
\[
\|\Gamma\|_{HS}^2 \leq \frac{64}{3} q^{-6} M^{-5} \int_0^{\infty} (1 + q^4 m^4)^{-\frac{1}{2}} dm + \frac{64}{3} q^{-4} M^{-2} \int_0^{\infty} m^{-1} (1 + q^4 m^4)^{-\frac{1}{2}} dm \\
\leq \frac{128}{3} q^{-7} M^{-5} + \frac{16}{3} q^{-8} M^{-6}.
\]
We take \(M \) the smallest integer larger than \(4q^{-7/5} = 4(\frac{2}{3})^{-7/5} \). Thus,
\[M - 1 \leq 4q^{-7/5} < M. \]
Since we assume that \(\ell > \pi \), we only have to consider the case \(0 < q < 1 \), and we find that
\[\|\Gamma\|_{HS}^2 \leq \frac{11}{256} < \frac{1}{16} \]
and so, (A.15) follows. \(\Box \)

Lemma A.3. Let \(\phi_x \in L^2(\Omega) \). Then the bilinear form given by (3.1) defines a scalar product on \(X \).

Proof. We need to check the following properties: (i) \((u, v)_\omega = (v, u)_\omega \) for all \(u, v \in X \).
(ii) \((\sigma u + \tau v, w)_\omega = \sigma (u, w)_\omega + \tau (v, w)_\omega \) for all \(u, v, w \in X \) and for all \(\sigma, \tau \in \mathbb{R} \).
(iii) \((u, u)_\omega \geq 0 \) for all \(u \in X \) and \((u, u) = 0 \) if and only if \(u = 0 \) in \(X \). Properties (i) and (ii) are trivially satisfied.

Lemma 3.1 implies that
\[
\int_{-\ell}^{\ell} u_{xx}^2 - \int_{-\ell}^{\ell} u_x^2 + \omega \int_{-\ell}^{\ell} u^2 \phi_x \geq \frac{1}{4} \int_{-\ell}^{\ell} u_{xx}^2 + \frac{1}{4} \int_{-\ell}^{\ell} u_x^2 \geq 0. \tag{A.17}
\]
If \(u = 0 \) then \(\int_{-\ell}^{\ell} u_{xx}^2 - \int_{-\ell}^{\ell} u_x^2 + \omega \int_{-\ell}^{\ell} u^2 \phi_x = 0 \). On the other hand, if \(\int_{-\ell}^{\ell} u_{xx}^2 - \int_{-\ell}^{\ell} u_x^2 + \omega \int_{-\ell}^{\ell} u^2 \phi_x = 0 \), it follows from (A.17) that
\[\frac{1}{4} \int_{-\ell}^{\ell} u_{xx}^2 + \frac{1}{4} \int_{-\ell}^{\ell} u_x^2 = 0 \]
so that \(u = 0 \) in \(X \), which completes the proof of Lemma A.3. \(\Box \)
Acknowledgement. It is a pleasure to thank Messoud Efendiev for several stimulating discussions and for pointing out an omission in the Appendix. The authors are grateful for support from the IHES in Bures-sur-Yvette (LAP), from TMR Grant ERBFMRXT-980201 and from a grant of NWO, the Netherlands Foundation for Scientific Research (AIR). Support for GS from the Israel Science Foundation (Grant 67-01) and the US-Israel Science Foundation (Grant 98-00374) is also gratefully acknowledged.

REFERENCES

Received November 2001; revised September 2003.

E-mail address: peletier@math.leidenuniv.nl