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Abstract

In the work of Edixhoven, Couveignes et al. (see [5] and [4]) on computing two-dimensional Galois
representations associated to modular forms over finite fields, part of the output of the algorithm
is a certain polynomial with rational coefficients that is approximated numerically. Arakelov’s
intersection theory on arithmetic surfaces is applied to modular curves in order to bound the
heights of the coefficients of this polynomial. I will explain the connection between Arakelov
theory and heights, indicate what quantities need to be estimated, and give methods for doing this
that lead to explicit height bounds.

1. Motivation

The motivaton for the work I am presenting is the computation of Galois representations attached
to modular forms over finite fields, and of coefficients of modular forms. S. J. Edixhoven and
J.-M. Couveignes have developed (in collaboration with several others) an algorithm for this; see
[5] and [4]. So far it has only been worked out for modular forms of level 1; in my thesis [in
preparation] I intend to give a generalisation to arbitrary levels.

We begin by explaining what the Galois representation attached to a modular form is. Let n
and w be positive integers, and let let f be a (classical) modular form of weight w for Γ1(n), with
q-expansion

f = a0 + a1q + a2q
2 + · · · .

Assume that f is an eigenform for all the Hecke operators of level n. In this case we may assume
that a1 = 1, and then we have

Tmf = amf for all m ≥ 1

and
〈d〉f = ε(d)f for all d ∈ (Z/mZ)×

for some character
ε: (Z/nZ)× → C×.

Theorem 1.1. Let Ef be the number field generated by the am, let λ be a finite place of Ef ,
let l be the residue characteristic of λ, and let Ef,λ be the completion of Ef at λ. There exists a
continuous representation

ρf,λ: Gal(Q/Q)→ GL2(Ef,λ)

which is unramified at all primes p - nl and with the property that for every such p the characteristic
polynomial of a Frobenius element at p equals x2 − apx+ ε(p)pw−1. If we require ρf,λ to be semi-
simple, it is unique up to isomorphism.

If f is an Eisenstein series, then ρf,λ is reducible and straightforward to write down. The
situation is much more complicated when ρf,λ is irreducible. In this case the representations were
constructed by Eichler, Shimura and Igusa for w = 2, by Deligne for w > 2, and by Deligne and
Serre for w = 1. The construction uses étale cohomology (or Tate modules in the case w = 2).

From the l-adic representations ρf,λ, we can construct reduced representations as follows. For
a suitable choice of basis, the image of ρf,λ lies has coefficients in the ring of integers of Ef,λ. We
can then reduce the representation modulo λ to obtain a representation

ρ̄f,λ: Gal(Q/Q)→ GL2(kf,λ).

Here kf,λ denotes the residue field of Ef at λ. (If ρ̄f,λ is reducible, it depends on the choice of basis
above, but it becomes unique up to isomorphism if we require in addition that ρ̄f,λ be semi-simple.)

Remark . Serre’s conjecture—proved recently by Khare and Wintenberger—says that in fact every
continuous, odd, irreducible representation over a finite field arises from a modular form.
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We assume that ρ̄f,λ is irreducible. Furthermore, we may assume without much loss of gener-
ality that

2 ≤ w ≤ l + 1,

since it is known that all modular representations over finite fields are twists (by some character)
of representations coming from modular forms satisfying this inequality. Let Kf,λ be the fixed field
of the kernel of ρ̄f,λ; then the question is how to find Kf,λ and the (injective) homomorphism

Gal(Kf,λ/Q)→ GL2(kf,λ)

such that ρ̄f,λ factors as

Gal(Q/Q)→ Gal(Kf,λ/Q)→ GL2(kf,λ).

One key ingredient for our strategy to compute ρ̄f,λ is the following theorem, which follows from
work of Mazur, Ribet, Gross, and others.

Theorem 1.2. Write

n′ =
{
n if w = 2;
nl if 3 ≤ w ≤ l + 1.

Let J1(n′) denote the Jacobian of the modular curve X1(n′) over Q, and let T1(n′) denote the
subring of End J1(n′) generated by the Hecke operators Tm for m ≥ 1 and 〈d〉 for d ∈ (Z/n′Z)×.
There exists a surjective ring homomorphism

T1(n′)→ kf,λ

Tm 7→ am

〈d〉 7→
{
ε(d) if w = 2;
ε(d mod n)(d mod l)w−2 if 3 ≤ w ≤ l + 1.

We let mf,λ denote the kernel of this homomorphism; this is a maximal ideal of the Hecke
algebra T1(n′). We define a closed subscheme J1(n′)[mf,λ], finite over Spec Q, as the intersection
of the kernels of the elements of mf,λ. Note that kf,λ acts on J1(n′)[mf,λ].

Theorem 1.3. The kf,λ[Gal(Q/Q)]-module J1(n′)[mf,λ](Q) is, up to semi-simplification, a direct
sum of copies of ρ̄f,λ.

Remark . In the vast majority of cases, J1(n′)[mf,λ](Q) is in fact isomorphic to ρ̄f,λ. We will
assume for simplicity that this is the case.

The question is now how to give an explicit description of ρ̄f,λ, or equivalently of the finite
kf,λ-vector space scheme J1(n′)[mf,λ] over Q. The strategy is as follows. We abbreviate

X = X1(n′), J = J1(n′), g = genus(X) = dim(J), m = mf,λ.

Fix a point O ∈ X(Q) (for example a rational cusp) and consider the surjective morphism

SymgX → J

D 7→ [D − gO].

This map is an isomorphism above a dense open subset of J , and we assume—again for simplicity—
that it is an isomorphism above J [m]. Then J [m] is isomorphic via the above map to a closed
subscheme D of SymgX. In other words, every point x ∈ J [m](Q) corresponds to a unique
divisor Dx of degree g on X × Spec Q such that

x = [Dx − gO].

We choose a function
ψ:X → P1

Q
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such that the map
ψ∗: SymgX → Symg P1

Q
∼−→ Pg

Q

is a closed immersion on D; the last isomorphism comes from the symmetrisation map

Σg: (P1)g → Pg

given by the elementary symmetric functions. Furthermore, we choose a rational map

γ: Pg
Q → P1

Q

that is well defined and a closed immersion on the image of D in Pg
Q. We have now constructed a

closed immersion
Ψ: J [m]→ P1

Q.

Let FΨ ∈ Q[u, v] be the homogeneous polynomial (defined up to multiplication by an element
of Q×) whose zero locus V is the image of Ψ. The idea is now to approximate FΨ to sufficient
precision, and to reconstruct FΨ from this approximation.

Remark . There are various ways to obtain such an approximation of FΨ. J. G. Bosman [1] has done
computations using computations on the complex modular curve X1(n′)(C). Using algorithms
for computing in Jacobians of curves over finite fields invented by K. Khuri-Makdisi [8], J.-M.
Couveignes [3] and myself [2], FΨ can also be computed modulo many small prime numbers.

Remark . Of course, to describe J [m] as a kf,λ-vector space scheme, we need some extra structure.
Let A denote the affine coordinate ring of V . Then the extra structure consists of a Q-algebra
homomorphism

m#:A→ A⊗Q A

describing addition, as well as Q-algebra endomorphisms

α#:A→ A

for all α ∈ kf,λ, describing scalar multiplication. It is possible to compute this extra structure
together with A, but we will not describe this.

To be able to reconstruct FΨ from an approximation, we need a bound on the height h(FΨ)
of FΨ. This is simply the maximum of the absolute values of the coefficients of FΨ when these
coefficients are chosen to be coprime integers.
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2. First estimates

We first apply some preliminary estimates for the height of FΨ. For this it is useful to talk about
heights in slightly greater generality.

Let r be a non-negative integer and let x = (x0 : x1 : . . . : xr) be a point of Pr(Q). The height
of x is defined as follows. If K is a number field over which x is defined, then

hPr (x) =
1

[K : Q]

∑
v

log max{|x0|v, . . . , |xr|v},

where v runs over all places of K and |t|v is the corresponding absolute value, normalised such
that multiplication by t on the local field Kv scales the Haar measure by a factor |t|v.

We use the following results without proof; they follow from basic considerations about valu-
ations.

Lemma 2.1. Let Σr: (P1)r → Pr be the symmetrisation map. Then for all p1, . . . , pr in Pr(Q),
have

hPr (Σr(p1, . . . , pr)) ≤ r log 2 +
r∑
i=1

hP1(pi).

Lemma 2.2. Let γ: Pr 99K Ps be a rational map given by a non-zero (s + 1) × (r + 1)-matrix
over Q. Let h(γ) be the height of this matrix, viewed as an element of Prs+r+s(Q). Then for any
p ∈ Pr(Q) such that γ is defined at p,

hPs(γ(p)) ≤ log r + h(γ) + hPr (p).

For every x ∈ J [m](Q) we decompose the corresponding divisor Dx as

Dx = Px,1 + · · ·+ Px,g with Px,i ∈ X(Q).

Then a computation using the above two lemmata gives the inequality

h(FΨ) ≤
∑

x∈J[m](Q)

g∑
i=1

hP1(ψ(Px,i))

+ #J [m](Q) ·
(
(g + 1) log 2 + log g + h(γ)

)
.

(2.1)

The next step is to study hP1(ψ(Px,i)) using Arakelov theory.
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3. Basics of Arakelov theory

We start with some analytic definitions. Let X be a Riemann surface of genus g ≥ 1, and let
(α1, . . . , αg) be an orthonormal basis of Ω1(X) with respect to the inner product

〈α, β〉 =
i

2

∫
X

α ∧ β̄.

The canonical (1, 1)-form on X is defined as

µX =
i

2g

g∑
j=1

αj ∧ ᾱj .

The canonical Green function of X is the unique smooth function grX outside the diagonal on X×X
such that

1
πi
∂∂̄ grX( , y) = µX − δy

and ∫
X

grX( , y)µX = 0

for every y ∈ X.
Let K be a number field, and let ZK be its ring of integers. We write Kfin and Kinf for the

sets of finite and infinite places of K. For every v ∈ Kinf the completion Kv (which is isomorphic
to R or C) we choose an algebraic closure K̄v; we do not need to choose an isomorphism K̄v

∼= C.

Definition. An arithmetic surface over ZK is a projective flat scheme XZK
whose geometric fibres

are semi-stable curves and whose generic fibre XK is smooth.

Remark . We have adopted the definition of Moret-Bailly [9]; it implies that XZK
is normal. (Falt-

ings has the stronger requirement that XZK
be regular.) This definition has the advantage that is

stable under any base change of the form Spec ZL → Spec ZK , where L is a finite extension of K.
The assumption that the geometric fibres are semi-stable is to ensure that the relative dualising
sheaf ΩX/ZK

exists and is a line bundle.

For each f ∈ Kinf , we define Xv to be the Riemann surface XK(K̄v). A metrised line bundle
on X is a line bundle L together with a Hermitean metric ‖ ‖v on the line bundle Lv on the
Riemann surface Xv for each v ∈ Kinf .

Now assume that the fibres of XZK
are of genus g ≥ 1. Then for each v ∈ Kinf we have the

canonical (1, 1)-form µXv
on Xv and the canonical Green function grXv

on fXv × fXv; these are
independent of an identification of K̄v with C. A metrised line bundle L is admissible if ‖ ‖v is
smooth for each v and for some (hence any) local generating section s we have

1
πi
∂∂̄ log ‖s‖v = (degL)µXv

.

Given L, there is a one-dimensional family of admissible metrics on each of the Lv. Furthermore,
if D is a Cartier divisor on XZK

, there is a natural admissible metric on the line bundle OX(D),
given by

log ‖1‖v(x) =
∑
P∈Xv

nP grXv
(x, P )

for x outside the support of Dv =
∑
P∈Xv

nPP . Finally, the dualising sheaf ΩX/ZK
, which is a line

bundle since XZK
is semi-stable, has a canonical admissible metric.

Let PicXZK
denote the group of isomorphism classes of admissible line bundles on XZK

. Then
we have a symmetric bilinear intersection pairing

PicXZK
× PicXZK

→ R

(L,M) 7→ (L .M).
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If D and E are Cartier divisors without common components, we have

(OX(D) . OX(E)) =
∑
v∈Kfin

log #k(v) · (OX(D) . OX(E))v

+
∑

v∈Kinf

[Kv : R](OX(D) . OX(E))v,

where (OX(D) . OX(E))v is the sum of the usual local intersection numbers at points above v if
v is finite, and

(OX(D) . OX(E))v = −
∑

P,Q∈Xv

mPnQ grXv
(P,Q)

if v is an infinite place and

Dv =
∑
P∈Xv

mPP, Ev =
∑
Q∈Xv

nQQ.

4. Applying Arakelov theory
We return to estimating the height of the polynomial FΨ, starting from (2.1). Let K be a number
field such that all the points Px,i are K-rational and such that X has a semi-stable model XZK

over Spec ZK . We extend each Px,i to a section

Px,i: Spec ZK → XZK
.

After blowing up XZK
if necessary, the morphism ψ:X → P1

Q extends to a morphism

ψ:XZK
→ P1

ZK
.

By composing these morphisms, we extend ψ(Px,i) to a section

ψ(Px,i): Spec ZK → P1
ZK
.

We endow the line bundle OP1(∞) on P1
ZK

with the metric defined by

log ‖1‖OP1 (∞)(z) = − log max{1, |z|}.
Then it follows from the definition of local intersection numbers (at the finite and infinite places
of K) that

hP1(ψ(Px,i)) =
1

[K : Q]
(OP1(∞) . ψ(Px,i)).

Now we apply the projection formula; here we have to be careful since the pull-back of the given
metric on OP1(∞) differs from the canonical admissible metric on OP1(ψ−1∞). After compensat-
ing for this, we obtain

hP1(ψ(Px,i)) =
1

[K : Q]

(
(OX(Px,i) . OX(ψ−1∞)) +

∑
v∈Kinf

[Kv : R]φv((Px,i)v)
)
, (4.1)

where φv is the real-valued function on Xv defined by

φv(x) = −i
∫

y∈Xv

|ψ(y)|=1

grXv
(x, y)d logψ(y) +

∫
y∈Xv

log max{1, |ψ(y)|}µXv
(y);

this can be estimated (independently of x) by

φv(x) ≤ (degψ) sup
Xv×Xv

grXv
+
∫
y∈Xv

log max{1, |ψ(y)|}µXv
(y).

Remark . Equivalently, we have

φv(x) =
∫
y∈Xv

grXv
(x, y)ψ∗µP1(y) +

∫
y∈Xv

log max{1, |ψ(y)|}µXv (y),

where µP1 is the current on P1(C) given by

µP1(χ) =
∫ 1

α=0

χ(exp(it))dt.

The function − log{1, |z|} on P1(C) is a Green function for this current.
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Combining (4.1), (2.1) and the estimate for φv, we get

h(FΨ) ≤ 1
[K : Q]

(OX(D) . OX(ψ−1∞)) + #J [m](Q)×(
(g + 1) log 2 + log g + h(γ) + g(degψ) sup

X×X
grX + g

∫
X

log max{1, |ψ|}µX

)
,

where
X = X1(n′)(C)

and where D is the divisor defined by

D =
∑

x∈#J[m](Q)

Dx.

5. Sketch of what remains to be done
We take ψ of the form

ψ = f12/∆,

where f12 is some cusp form of weight 12 and ∆ is the usual discriminant modular form. Let us
pretend that X1(n′) has a smooth model XZ over Spec Z (even though we know that this is not
the case). Then we can have

h(FΨ) ≤ (OX(D) . OX(ψ−1∞)) + #J [m](Q)×(
(g + 1) log 2 + log g + h(γ) + g(degψ) sup

X×X
grX + g

∫
X

log max{1, |ψ|}µX

)
,

where the intersection number is now taken on the (imaginary) smooth model of X1(n′) over Spec Z.
We assume in addition that we do not have to blow up XZ in order to make ψ well defined. Then
ψ−1∞ is an effective linear combination of cusps.

Using a lot of Arakelov theory (the adjunction formula, Faltings’s arithmetic Riemann–Roch
theorem, the Faltings–Hriljac formula relating intersection numbers to Néron–Tate heights) one
can then derive the estimate

(OX(D) . OX(ψ−1∞)) ≤ #J [m](Q)(degψ)
(

3πg(g − 1) sup
X×X

grX + g sup
〈α,α〉=1

sup
X
‖α‖ΩX

−hFaltings(X) +
g(g − 1)

2
(O . ΩX/Z)

)
.

Here hFaltings(X) is the Faltings height of X, defined by

hFaltings(X) = deg det Rπ(X,OX),

where π:X → Spec Z is the structure morphism. By an unpublished result of Bost, there is a
constant B such that the Faltings height of any curve of genus g over a number field is at least
−Bg.

Again, all of the above is under the assumption that the map from SymgX to JQ is injective
above J [m]. If this is not the case, we need in addition Zhang’s bound for the Néron–Tate height
below which there exist infinitely many algebraic points. Furthermore, we still have to take into
account the fact that X1(n′) is not smooth over Spec Z and that we may need to blow up X1(n′)
in order to make ψ well defined. One also has to show that γ can be taken such that h(γ) is small,
and that ψ can be taken such that

∫
X

log max{1, |ψ|}µX is small.
In the end, everything is reduced to estimating the following quantities related to X1(n′):

(1) the canonical Green function;
(2) suprema of cusp forms of weight two;
(3) integrals of the form

∫
X

log max{1, |ψ|}µX, where ψ is of the form f12/∆ with f12 a cusp form
of weight 12.

I am currently working on estimates that are as explicit as possible, using the spectral theory for
the Laplace operator on X1(n′)(C). In part, this work builds on ideas of Jorgenson and Kramer;
see [6] and [7].
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