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Let Ai(L), Ai(L*) denote the successive minima of a lattice L and its reciprocal lattice L*, and 
let [b l , . . . ,  bn] be a basis of L that is reduced in the sense of Korkin and Zolotarev. We prove that 
[4/(/+ 3)]),i(L) 2 _< [bi[ 2 < [(i + 3)/4])~i(L) 2 and Ibil2An_i+l(L*) 2 <_ [(i + 3)/4][(n - i + 4)/417~ 2, 
where "y~ =- min(Tj : 1 < j _< n} and 7j denotes Hermite's constant. As a consequence the 
inequalities 1 < Ai(L)An_i+x(L* ) < n2/6 are obtained for n > 7. Given a basis B of a lattice L in 
R m of rank n and x E R m, we define polynomial time computable quantities A(B) and #(x, B) that 
are lower bounds for A1 (L) and/~(x, L), where/x(x, L) is the Euclidean distance from x to the closest 
vector in L. If in addition B is reciprocal to a Korkin-Zolotarev basis of L*, then AI(L) < 3,~A(B) 

n *2 X and #(x, L) 2 _< ( E i = l  "ri )~( , B) 2- 

1. I n t r o d u c t i o n  

The  p rob lem of select ing from all  bases  for a l a t t i ce  a canonica l  bas is  wi th  
des i rable  p rope r t i e s  is cal led reduct ion theory.  The  classical  ques t ion  mo t iva t i ng  
the  invent ion of r educ t ion  theory  is the  d e t e r m i n a t i o n  of the  m i n i m a  of pos i t ive  
defini te  in tegra l  quad ra t i c  forms. Lagrange  [10] deve loped  a r educ t ion  theory  for 
b ina ry  q u a d r a t i c  forms, and  the  genera l  s t u d y  of the  h igher  d imens iona l  case was 
in i t i a t ed  by  Hermi t e  [6] in 1850 and  Kork in  and  Zolo ta rev  [9] in 1873. Several  
d i s t inc t  no t ions  of r educ t ion  have been  s tud ied ,  inc luding  those  assoc ia ted  to the  
names  Hermi te ,  Kork in -Zolo ta rev ,  Minkowski  and  Venkov; see [19, 20, 22, 23]. 

Recent ly  there  has  been  renewed in teres t  in r educ t ion  t heo ry  ar is ing from the  
p rob lem of des igning c o m p u t a t i o n a l l y  efficient a lgor i thms  for f inding a shor t  vec tor  
in a la t t ice .  Th is  was s t imu la t ed  by  a new m e t h o d  in in teger  p r o g r a m m i n g  [12] 
and by Lovhsz '  l a t t i ce  bas is  r educ t ion  a lgor i thm,  p resen ted  in [11], which has had  
qui te  a few appl ica t ions ,  see [4, 8, 11, 13]. F rom this  c o m p u t a t i o n a l  pe r spec t ive  the  
most  n a t u r a l  of  the  classical  r educ t ion  theor ies  to  consider  is t ha t  of  Kork in  and  
Zolotarev,  because  the  c o m p u t a t i o n a l  p rob lem of f inding a bas is  of a genera l  l a t t i ce  
reduced in t he  sense of  Kork in  and  Zolotarev  is po lynomia l  t ime  equivalent  to  the  
c o m p u t a t i o n a l  p rob lem of  f inding a shor tes t  non-zero vec tor  in a la t t ice .  

Our  ob jec t  in th is  p a p e r  is to  prove inequal i t i es  b o u n d i n g  vectors  in a Kork in-  
Zolo ta rev  reduced  basis  of  a l a t t i ce  L in t e rms  of the  successive m i n i m a  of L and  
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its reciprocal lattice L*. Our results can be viewed as giving various senses in 
which a Korkin-Zolotarev basis of a lattice is nearly orthogonal. Roughly speaking 
our bounds improve on classically known bounds by replacing certain constants  
exponential in the rank n of the lattice involved by constants polynomial in n. In 
particular we obtain for a lattice L of rank n the inequalities 

1 < Ai (L)An- i+I(L*)  <_ In2  for 1 < i < n ,  

valid for n >_ 7. 
We also s tudy certain quantities A(B) and/z(x,  B) tha t  are computable in poly- 

nomial t ime given a basis B of a lattice L in R n and a vector x in Rn, which have 
the properties tha t  A(B) is a lower bound for the length of a shortest non-zero vector 
in L and #(x, B)  is a lower bound for the distance of x to any vector in L. We show 
that  these lower bounds are quite good when the basis B of L is reciprocal to a Ko- 
rkin-Zolotarev basis of the reciprocal lattice L*. These results give some information 
concerning the computat ional  complexity of recognizing short vectors in a lattice. 

2. S ta tement  of  results  

Let m be a positive integer. We denote by / , ) the Euclidean inner product  on 
= 2 for v = (vl, . .  Vm)  E R m  R m and by [ [ the Euclidean norm; so Iv[ ~ ~ m  i v  i . , . 

A lattice is a discrete additive subgroup L of R m. Its rank is the dimension of the 
R_subspace V ( L )  that  it spans. Each lattice L of rank n has a basis, i. e. a sequence 
[ b l , . . . ,  bn] of n elements of L that  generate L as an abelian group. We define the 
determinant  d(L)  of L by choosing any basis ~ 1 , . . . ,  bn] of L and setting 

d(L)  = det[(bi ,b  -\11/2 
3 / J l < _ i , j < n  " 

This does not depend on the choice of the basis. The i- th successive m i n i m u m  Ai(L) 
of a lattice L (with respect to the Euclidean norm) is the smallest real number  r such 
tha t  there are i vectors in L of length at most r that  are R_linearly independent. 

The lattice L* reciprocal to L (also called the lattice polar or dual to L) is defined 
a s  

L* = {w �9 V ( L ) :  (w,v) �9 Z for all v �9 L}. 

We have L** = L and d(L*) = d(L)  -1.  For each basis B = [b l , . . .  ,bn] of a lattice 
L there is a unique basis B* = Ibm,. . . ,  b*] of L* such that  

1 i f i + j = n + l ,  
(bi, b~) = 0 otherwise. 

We call this the basis of L* reciprocal to B .  Note that  we numbered the elements of 
B* in reverse order to what is customary. 

Hermite 's  constant 7n is defined by 

% = sup{Al (L)2d(L)  -2/'~ : L is a lattice of rank n}. 

I ts  value is known exactly for n < 8, see [2, Appendix]. Minkowski's convex body 
theorem implies that  7,~ -< 47r-iF( 1 + n /2 )  2/'~ (see [2, IX.7]), which yields 7n _< 2n/3  
for all n _> 2. I t  is known that  

n 5 
2-~e (1 + o(1)) _< ~/n -< (1 + o(1)) as n --* oo, 
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see [18], and the upper bound has been further improved to (1 + o(1)) �9 0.872n/(Tre) 
by Kabatyanski~ and Levenshte~n, see [3, Ch. 9]. It has never been proved that  7n 
is an increasing function of n, though this is very likely true. For convenience we 
define 

(1) 7~ = max{7/:  1 < i < n} 

to obtain a non-decreasing function of n. We have ~ n <  2n/3 for all n > 2. 
Given a basis B = [b l , . . . ,  bn] of a lattice L in R ,we define the Gram-Schmidt 

orthogonalization B? = [b~,...,btn] of B by the Gram-Schmidt orthogonalization 
process: let b~ = bl, and define b~ recursively for 2 < i < n by 

i--1 

where 

b~ = bi - E I~i,jb~ ' 
j=l 

bjt) for l < j < i < n .  
#i'J = (b~,b~) 

Thus we have the Gram-Schmidt decomposition 

i--1 

(2) h,  : + for 1 < i < 
j=l 

It follows that  d(L) = rln=l Ib[I. It is not difficult to prove that  the Gram-Schmidt 

orthogonalization B*f = [b~t , . . . ,b  *t] of the reciprocal basis B* of L* is expressed 
in Bt  by 

*t = b t / b  t~ for l < i < n .  (3) bn-i+l i i 

We say that  a basis [b l , . . . ,  bn] is reduced in the sense of Korkin and Zolotarev, 
or that  it is a Korkin-Zolotarev basis, if it satisfies the following recursive set of 
conditions: 
(4) bl is a shortest non-zero vector of L in the Euclidean norm; 
(5) I~i,lI ~ 1/2 for 2 < i < n; 
(6) if L (n-l) denotes the orthogonal projection of L on the orthogonal comple- 

ment (Rbl) • of Rbl, then the projections bi - #i,lbl of b2, . . . ,  bn yield a 
Korkin-Zolotarev basis [b2 - #2,1bl, . . . ,  bn - #n,lbl] of L (n-l). 

The above definition is equivalent to the definition of Korkin and Zolotarev [9]. An 
equivalent non-recursive definition can be given as follows. 

Let B = [b~,. . . ,bn] be a basis for a lattice L in R m. For i E {1 , . . . , n} ,  denote 
by ~ri:R m --, (Rbt + . . .  + Rbi_l) i the orthogonal projection on the orthogonal 
complement of Rbl + . . .  + Rbi_~. Write L (n-i+D = 7ri(L); this is a lattice of rank 
n - i +  1 with basis [ r i (b i ) , . . . ,  lri(bn)]. In terms of the Gram-Schmidt decomposition 

we have ~ri(bj) = b~ + }-'~-~ #j,kbtk, in particular 7ri(bi) = b~. Unwinding the 



336 J. C. LAGARIAS, H. W. LENSTRA, JR., C. P. SCHNORR 

definition just given, we see tha t  B is a Korkin-Zolotarev basis if and only if the 
following two conditions are satisfied: 

(7) b~ is a shortest non-zero vector of L (n-i+1) in the Euclidean norm, for 
l < : i < n ;  

(8) I#i,jl -< 1/2 for 1 _< j < i <_ n. 
It  is known tha t  the domain of all Korkin-Zolotarev bases of lattices of rank n 
in the space of all bases of lattices of rank n in R n can be specified by a finite 
set of inequalities that  are quadratic in the entries bij of the n x n basis matr ix  
B = [ b l , . . . ,  bn]. These inequalities have been determined explicitly for n < 8, see 
[17]. 

We call a basis B of a lattice L a reciprocal Korkin-Zolotarev basis if its reciprocal 
basis B* is a Korkin-Zolotarev basis of L*. 

In Section 3 of this paper  we prove the following two theorems, which relate the 
length of vectors in any Korkin-Zolotarev basis of L to the successive minima of L 
and L*. 

Theorem 2.1. If  [ b l , . . . ,  bn] is a Korkin-Zolotarev basis of a lattice L, then 

43Ai(L)2 < [bi12 < i--+4-3Ai(L)2 for l < i < n. 
i +  - - 

The upper  bound in this theorem is essentially due to Mahler [14], cf. [2, V.4]. We 
will give examples to show that  the inequalities in Theorem 2.1 cannot be much 
improved. 

Theorem 2.2. If [ b l , . . . , b n ]  is a Korkin-Zolotarev basis of a lattice L, then 

ibil2An_i+l(L,)2 < i + 3  n - i §  ,2 - 4 4 "~/n f o r l < i < n ,  

where ~[* is as in (1). 

Note that  the upper  bound is O(n4). 
As consequences of these results we obtain the following two theorems, which 

are also proved in Section 3. 

Theorem 2.3. I ]  [bl . . . .  , bn] is a Korkin-Zolotarev basis of a lattice L, then 

I I  Ib l 2 < H i + 3 d(L)2" 
_ - - ~ /  

i=1 /=1 

n n i Note that  7n 1-Ii=i( + 3)/4 < n2n/(4re2+ o(1)) n for n --* cx). This theorem provides 
an upper  bound for the orthogonality defect (1-I~=x Ibil)/d(L) of a Korkin-Zolotarev 
basis. Hermite 's  inequality asserts that  any basis has orthogonality defect at least 1, 
with equality if and only if the basis is orthogonal. 

Theorem 2.4. The successive minima of a lattice L of rank n and its reciprocal lattice 
L* satisfy 

I<Ai(L)2An_i+x(L*) 2 < i + 3  n - i + 4  ,2 
- - 4 4 " 7n 
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Jot I < ~ < n, with ~* as in (1). 

The lower bound is classical, see [2, VIII.5, Theorem VII. From Theorem 2.4 we see 
that 

1 <_ Ai(L)An_i+I(L* ) <_ 6n 2 for n >_ 7, 1 < i < n. 

Previously known upper bounds were exponential in n, see [2, VIII.5, Theorem VII. 
A limit on the amount of improvement possible in Theorems 2.2 and 2.4 is 

imposed by a result of Conway and Thompson, see [16, Ch. II, Theorem 9.5], which 
asserts that  there exist lattices Ln of rank n with Ln = L~ for which 

2 , 2  ( n ) 2  (9) A,(Ln) A,(Ln) > . - ~  (1 + o(1)) as n ~ oo. 

In Section 4 we prove lower bounds for the Gram-Schmidt orthogonalizations of 
Korkin-Zolotarev bases and reciprocal Korkin-Zolotarev bases. These include 

Ib~l _ "y;tAl(n) 
for a reciprocal Korkin-Zolotarev basis and 

Ib~l >_ n -<t+'~ At(L) 

for a Korkin-Zolotarev basis, see Proposition 4.1 and 4.2. It is an interesting open 
problem whether or not a bound of the form Ibtnl > nO(1)AI(L) holds for all Korkin- 
Zolotarev bases. 

The covering radius #(L) is the smallest number r such that all vectors x E V(L) 
are at distance at most r from a lattice vector. In Section 5 we prove the following 
bounds for the covering radius. 

Theorem 2.5. The covering radius #(L) of a lattice L of rank n satisfies 

1 1 n 
<- #(L)2A~(L*) 2 <_ -~ ~-~7 .2, 

i=l 

with ~* as in (1). 

The lower bound is well known [2, XI.3]. From the upper bound it follows that 

p(L)AI(L*) < ~n 3/~ 

for all n _> 1. The Conway-Thompson result (9) together with the obvious bound 
#(L) > At(L)/2 imply that there exist lattices Ln of rank n with Ln = L* and 

#(Ln)AI(L~) >_ 4-~e (1 + o(1)) as n --~ oc. 

In Section 6 we obtain bounds for )h(L) and for the quantity #(x ,L)  that  
measures the distance from a vector x to the closest vector in tl~e latticl~ L. Given a 
basis B of a lattice L, with Gram-Schmidt orthogonalization [b] . . . .  , bin], we define 

A(B) = min{Ib~l : 1 < i < n}. 

This quantity gives rise to the following bounds for At (L). 
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Theorem 2.6. For any basis B of a lattice L we have 

AI(/ )  _> A(B). 

I f  B is a reciprocal Korkin-Zolotarev basis of a lattice L of rank n, then we have 

At(L) <_ ~ A ( B ) ,  
where ~/n is as in (1). 

Next we consider #(x, L). Let B be a basis of a lattice L, with Gram-Schmidt 

orthogonalization [b~,...,btn]. Let x E Rm, and write x -- x I + x u with x I E V(L)  
and x tj E V(L)  • It is not difficult to see that  there exists a unique b E L such that 

x I - b = ~'~jn=l vjb~ for certain real numbers vj with - 1 / 2  < vj < 1/2. Using this 
representation, we define 

n 
1 t W o - = x ' - h ,  wi -- ~b i +  ~ vjb~ for l < i < n ,  

j=i+l 
1/2 

#(x',  B) = min{lwil : 0 _< i _< n}, it(x, B)  = ( # ( x ' , B )  2 + Ix"l 2) 

This quantity gives rise so the following bounds for it(x, L). 

Theorem 2.7. For any basis B of a lattice L in Rm of rank n and any x E Rm we 
have 

It(x, L) > It(x, B). 
I f  in addition B is a reciprocal Korkin-Zolotarev basis of L, then we have 

n 

j = l  
with -~ as in (1). 
In Section 7 we use Theorems 2.6 and 2.7 to bound the non-deterministic computa- 
tional complexity of finding a provably short, or provably close, vector in a lattice. 

In Section 8 we extend the bounds from Sections 3 and 5 to arbitrary symmetric 
convex distance functions, i. e. functions F: R n -~ R satisfying 

F(x)  _> 0, with equality if and only if x = 0, 

F ( a x )  = Ic~lF(x), F (x  + y) _< F(x)  + F(y)  

for all x, y E Rn and a E R. Such a function is determined by its unit ball 
f~ = { x  : F(x)  g 1}, which is a compact symmetric convex set containing 0 in 
its interior. The reciprocal distance function F* is defined by 

F*(x) = s u p { ( x , y ) / F ( y ) :  y E Rn, y 7 ~ 0}. 

The unit ball 12" of F* is given by 

f~* = {x:  [(x,y)l < 1 for all y �9 a t .  

For a lattice L C Rn we define the i-th successive minimum hi(L; f~) of L with respect 
to 12 to be the smallest real number r such that  rl2 contains i points of L that  are 
R-linearly independent. For background on the above notions we refer to [2, 5]. 
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Theorem 2.8. Let f~ be the unit ball of a symmetric convex distance function in R n 
and f~* the unit ball of its reciprocal distance function. Let L be a lattice of rank n 
in Rn, and let Ai(L; [2) denote the i-th successive minimum of L with respect to Q. 
Then we have 

i + 3  ,~ 
Ai(L; a)2~,l(L*; a*) 2 <: n-  ~ "Tn 

and 
i + 3  n - i + 4  ,2 

1 _< ~ ( L ;  ~ )~ ._~+I(L*;  W)  ~ _< n .  - ~  ~ �9 % 
for 1 < i < n, with 7* as in (1). 

The last upper bound is a sharpening of the M. Riesz-K. Mahler theorem [15, 5, Ch. 
2, sec. 14.2, Theorem 5, cf. 2, VIII.5], which gives n! 4 as the upper bound. 

If fl and L are as in the previous theorem, we write g(L; fl) for the covering 
radius of L with respect to Q. Our final result is the following. 

Theorem 2.9. With Q and L as in Theorem 2.8 we have 

n 

#(L; i2)2A,(L*; [2*) 2 < 1 ~ .,2 - ~ n z . . , %  , 

i=l 

where "7~ is as in (1). 

3. K o r k i n - Z o l o t a r e v  b a s e s  a n d  s u c c e s s i v e  m i n i m a  

Proof of Theorem 2.1. There are i linearly independent vectors of length at most 
Ai(L) in L, and under the projection L --* L (n-i+1) at least one of them maps to a 
non-zero vector. Therefore we have AI(L (n-i+1)) < Ai(L). Combining this with (7) 

we find that  [b~[ _< Ai(L). Using (2) and (8) we obtain 

1 i--1 1 i-1 i + 3Ai(L)e " ibil ~ < ibilt 2 + ~ ~-~ [b~l~ _< Ai(L)2 + ~ E A j ( L ) ~  < 
4 j=1 j=1 

This proves the right side of the inequality in Theorem 2.1. To prove the left side, 
we first note that  for j < i we have 

Ib~l 2 = Al(L(n- j+l))  2 <_ I79(bi)12 _< Ibil 2, 

since 7rj(bi) is a non-zero element of L (n-j+1). Hence for j < i we have 

Therefore we have 

1 [btk[~ < j + 3  [bj[ 2 < [b [ 2 + ~ - 4 [bi[2" 
k=l 

i + 3  2 
Ai(L)  ~ _< m ~ { I b j l 2  : 1 < j _< i }  __ - -T - I b i l  . 

This proves Theorem 2.1. 
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R e m a r k  3.1. We give a few examples  to show tha t  the  bounds  in T h e o r e m  2.1 cannot  
be  improved by more  than  a cons tant  factor. By  el,  . . . ,  en we denote  the s t anda rd  
o r thonorma l  basis of ff n. 

Firs t  let 1 _< i < n. Let  L be the  lat t ice in [tn t ha t  is spanned  by B = [bl, �9 .. ,bn],  

e -s-V' i - le j /2 .  We have b~ for all j ,  and  using where  b j  = ej  for j # i and  bi = i -  z_~j=l = ej 
the  first inequali ty in Theo rem 2.6 one easily deduces t ha t  Aj(L) = 1 for 1 _< j _< n - I ,  
and t ha t  B is a Kork in-Zolo ta rev  basis for L. From Ibil 2 = ( i + 3 ) / 4  = (i+3))~(L)2/4 
we see t ha t  the  uppe r  bound  in T h e o r e m  2.1 is sha rp  whenever  i < n. 

One can show tha t  for i = n > 1 the uppe r  bound  in T h e o r e m  2.1 is not  
sharp.  We show tha t  it is sharp  up to a factor  3 + o(1), for n --* oe. Let  n > 1, 
and  let L be the  la t t ice  in Hn t h a t  is spanned  by  b l , . . .  ,bn, where b j  = ej  for 

j < n and  bn = v~en/2  + ~_.ju=-i ej/2. I t  is easy to cheek tha t  [ b l , . . . ,  bn] is a 
Kork in-Zolo ta rev  basis for L, and tha t  An(L) 2 = rain{3, (n + 2)/4} _< 3. Therefore  
Ib,~l 2 = (n + 2 ) / 4  >_ (n + 2)A,~(L)~/12, which establ ishes our claim. A more  
compl ica ted  example  can be cons t ruc ted  in which Ib~l 2 = (n + O(1))An(L)2/4. 

Next  we eonsider the lower bound  in Theo rem 2.1. For i = 1 we clearly 
have equality. Let  1 < i _< n, and let L be the  lat t ice in ff n t ha t  is spanned  by 

i --2 �9 �9 
B = [ b l , . . . , b n ] ,  where  b j  = ej  for j < i - 1, b i -1  = e i -1  + E j = I ( ( J / ( $  - 1)))ej, 
b i = e i and b j  = nej for j > i, where (()} denotes  the  dis tance to the neares t  integer. 
One easily proves t h a t  B is a Kork in-Zolo ta rev  basis for L, t ha t  Aj(L) = 1 for j < i 
and  Aj(L) = n for j > i, and  t ha t  

i - -2  

Ai(L) 2 min{m~ + E (//J_~ml ) )2  = : m E Z ,  r a r  
j=o 

The  inside sum depends  only on gcd(m,  i - 1), so the  min imum is assumed when 
m is a divisor of i - 1. By  means  of a s t ra ight forward  c o m p u t a t i o n  this leads to 
Ai(L) 2 ___ ( i + 1 0 ) / 1 2  = (i+10)1bil2/12. This  proves t ha t  the  lower bound  in T h e o r e m  
2.1 cannot  be  improved  by more  t han  a factor  of  3. 

P r o o f  of  T h e o r e m  2.3. This  follows immedia te ly  f rom T h e o r e m  2.1 and  Minkowski ' s  

t heo rem tha t  1"I~=1 Ai(L) _< "y~/2d(L), see [2, VIII .2].  l 

P ropos i t ion  3.2. Let [ b l , . . . ,  bn] be a Korkin-Zolotarev basis of a lattice L, and let 
L* be its reciprocal lattice. Then we have 

i + 3  .2 
Ibd2Al(L*)2 <- 4 ~'~ 

for 1 < i < n, where "7* is as in (1). 

Proof .  I t  is easy to  see t h a t  L (n-j+1)* is a subla t t ice  of  L*, so we have AI(L*) _< 
AI(L (n-j+1)*) for each j .  Combin ing  this wi th  

, t., A1 (L(n-i+l))2 1 ~ AI(L(n- j+I ) )2  1 
,bj? = + (lO) Ib~l ~ _< Ib[I ~ + 

j=l j=l 
we obta in  
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1 i -1  
[bi [2~1 (L*)2 _~ ,~1 (L(n-i+l) )2)~1 (L (n-i+ 1),)2 ..~ 4 E ~1 ( L(n-j+ 1))2~1 (L(n-j+l),)2. 

j=l 

For any lattice M of rank k we have by definition of Hermite's constant 

AI(M)2AI(M*) 2 <- ~k " d(M)  2/k " Tk " d(M*) 2/k = 7~, 

where we use that d(M*) = d (M)  -1. So we find that  
i-1 

[bi[2A~(n,)2 < 2 1 ~--~%-j+1 -< - - - ~ %  �9 - 7 n - i + i + ~  2 i + 3  *2 

j=l 
This proves Proposition 3.2. | 

Proposition 3.3. For any lattice L of rank n with reciprocal lattice L* we have 

Ai(L)2AI(L,) 2 < i + 33,, ~ 
- 4 

for 1 < i < n, where "r* is as in (1). 

Proof. This follows from Proposition 3.2, since Ai(L) 2 < max{Ibjl 2 : 1 < j _< i}. 
For i = 1 the bound in Proposition 3.3 is sharp up-to a multiplicat]'ve constant, 

by (9). 

Proof of Theorem 2.2. We have An-i+I(L*) ~ An-i+l(L (n-j+D*) whenever j < i, 
since L (n-j+D* is a sublattice of L*. Combining this with (10) we obtain 

[bi[2An_i+l(L*) 2 ~_ Al(L(n-i+l))2An_i+l(L(n-i+l)*) 2 

1 ~  . 
-F "~ ,~l(L(n-j+l))2,~n_i+l(L(n-J+D*)2. 

j=l 

Applying Proposition 3.3 to each L (n-j+1) we find that 

[bi[2An_i+l(L,)2 < n - i + 4 ,2 1 i-1 4 . , T n _ i + l + _ ~ E  n - i + 4  .2 - 4 )'n-j+l 
j=l 

n - - i + 4  i + 3  .2 
< 4 - - ] -  . %  " 

This proves Theorem 2.2. | 

Proof of Theorem 2.4. The lower bound is well known, see [2, VIII.5, Theorem VI]. 
We prove the upper bound. Interchanging L and L*, if necessary, we may assume 
that i < ( n +  1)/2. Choosing a Korkin-Zolotarev basis [b l , . . . ,  bn] of L and applying 
Theorem 2.2 we obtain 

Ai(L)2An_i+I(L*) 2 <_ max{[bj[ 2 : 1 <_ j <_ i} .  An_i+I(L*) 2 

<_ max{[bj[2An_j+l(L*)2 :1 <_ j < i} 

< m a x {  j + 3  n - j + 4  .2 } 
- 4 4 ~n : l < _ j < i  

i + 3  n - i + 4  ,2 
= - T -  - - - ~ - -  "v~ " 
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This proves Theorem 2.4. 

4. B o u n d s  for G r a m - S c h m i d t  o r t h o g o n a l i z a t i o n s  

Proposition 4.1. Let B be a reciprocal Korkin-Zolotarev basis of a lattice L, with 
Gram-Schmidt orthogonalization Bf = ~)~,...,hfn]. Then we have 

~lb~l _> ~I(L) 
f o r l  < i < n .  

Proof. By (3) and (4) we have 

Ibt~1-1 = IbTtl = IbTI = )q( i*)  < -/ln/2d(i*)x/n = "ll/2d(L) -1In. 

Multiplying this by ),l(L) _< ~/1/2d(L)x/n we obtain the desired inequality for i = n. 
For general i we consider the sublattice L i with basis Bi = Ibm,... ,hi]. It is easy 
to see that  B i is a reciprocal Korkin-Zolotarev basis for Li. Hence the result just 

proved implies that  3,ilb~l > )q(Li).  This is at least Az(L) because Li C L. This 
proves Proposition 4.1. II 

Proposition 4.2. Let B = [b l , . . . ,  bn] be a Korkin-Zolotarev basis of a lattice L, with 

Gram-Schmidt orthogonalization [b~,...,bfn]. Then we have 

i~+'O~ilb!12 > AI(L) 2 

�9 2+log i I" 2 Ib~l _> Ib~l ~ 
f o r l  < i < n .  

Proof. By (7) we have 

t 2 
Ib,~-j+ll 

and therefore 

J 

= -< = ( I I  ' '  
k=l 

t 2 _< ~/CJ-~) (1sj~ bt 12 ] ~/cJ-~) Ibn-j+~l ,~-k+~ ) 
k=l  

for 1 < j < n. By a straightforward induction on i this yields 

i 

_ -r~/(k-~) Ibt~l 2 < ) 
k = 2  

for 1 < i < n. Using that "Yk < 2k/3 for k > 2 one readily derives that  

t ~ i~+]O, ilb~l 2. I b ~ _ i + ~ l -  
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W i t h  i = n we ob ta in  the  case i = n of the  first inequali ty of Propos i t ion  4.2. For 
general  i one applies  the  same result  to  Li and  uses t h a t  AI(Li)  >_ )h(L) .  Fur ther  
we have 

n 
ib,~_i+l I < 1 il+logi) n2+lognlbfnl2, 

i=2 i=2 
which is the  case i = n of  the  last  inequal i ty  of  Propos i t ion  4.2. For general  i one 
argues  as before. This  proves Propos i t ion  4.2. | 

5. Bounds for the covering radius 

P r o o f  of  T h e o r e m  2.5. The  easy  lower bound  p ( L )  > An(L) /2  (see [2, XI.3]) 
combined  wi th  .kn(L)AI(L*) > 1 implies t ha t  #(L),kl(L*) )_ 1/2, which proves the  
left inequal i ty  in T h e o r e m  2.5. 

We prove  the  right inequal i ty  in T h e o r e m  2.5 by induct ion on n, the  case n = 1 
being obvious.  Let  n > 1, let bl  e L sat isfy Ibll = AI(L),  and  denote  by L '  the  
project ion of L on ( R b l ) •  Wc first prove tha t  

(11) p(L) 2 < ~AI(L) 2 + #(L') 2. 

Let x E V(L). By definit ion of # (L ' ) ,  there  exists b '  e L such t ha t  the  project ion 
x I of x - b I on (Rbl )  • has length a t  mos t  #(Lt) .  If  we wri te  x - b I = x I + x ft, t hen  
x"  E Rbl ,  so we can find b ~ E Zbl  such t ha t  Ix II - b"  I < Ibl l /2  = AI(L) /2 .  Then  
b = b I + b I' is an  element  of  L sat isfying 

1 
Ix - bl ~ = I x ' +  x"  - b"l  2 = Ix'l s + Ix" - b ' l  2 < # ( n ' )  2 + ~AI (L) : ,  

which proves (11). 
Since L I* is a subla t t ice  of  L* we have ,kl(L*) _< AI(LI*). Hence (11), Propos i t ion  

3.3 and  the  induct ion hypothes is  imply  t ha t  

#(L)2AI(L*)  2 < ~,k~(L)2),,(L*) ~ + /z (L ' )2AI(L*)  ~ 

< "/r~ 2 + #(L')2,k,(L'*) 2 < "~ 
i=l 

as required. This  proves Theo rem 2.5. | 

6. Lower bounds for shortest  vector problems and closest vector problems 

P r o o f  of  T h e o r e m  2.6. Let  B = [ b l , . . .  ,bn],  and  let b = ~ j n  1 mjbj be a non-zero 

e lement  of L, wi th  ra j  E Z. Let  i be  max ima l  wi th  mi ~ O. Then  b - m i b  f.~ lies in 

the  s u b s p a ~ e  z~= l l  Rbj .  Since this subspace  is o r thogonal  to b~, we find t ha t  

Ibl > Imib~l > Ih~l >_ ~(B). 
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This proves the first assertion of Theorem 2.6. 
Next assume tha t  B is a reciprocal Korkin-Zolotarev basis. Then  by 4.1 we have 

)q(L)  ~ min{vilb1[ : 1 < i < n} _< ~/*s 

as required. This proves Theorem 2.6. 

P r o o f  o f  T h e o r e m  2.7. Let B = [ b l , . . . , b n ] ,  and let x E Rm. As in Section 2, we 
consider the  unique representat ion 

n 

j = l  

w i t h x  p E V(L), b E L, vj E R, - 1 / 2 _ <  vj < 1/2, x IpE V(L) J-. Let v E L .  To 
prove the first inequali ty in Theorem 2.7 it suffices to show tha t  Ix' - v I ~ [wil for 
some i, 0 < i < n, where the wi are as in Section 2. 

If  v = b then x r - v -- wo, and we can take i = 0. Suppose tha t  v • b, and write 

b - v = E~=l rajbj with mj E Z, mi # O. Then 

i n n 

j= l  j= l  j=i+1 

for some y in the subspace spanned by bl,  . . . ,  bi-1-  This subspace is or thogonal  to 

each of  b~, . . . , "  btn, so 

n 

I x ' -  v[ ~ >_ (mi + vi)elb~l 2 + Z Ivjb~ 12 >- Iwil: '  
j = i + l  

where we use tha t  Imi + vii ~_ 1/2. This proves the  first inequality of  Theorem 2.7. 
Next suppose tha t  B is a reciprocal Korkin-Zolotarev basis, let x E Rm, and let 

the nota t ion  be as above. To prove the second inequality of  Theorem 2.7, it suffices 
to  prove tha t  for each i E {0, 1 , . . . ,  n} there exists v E L such tha t  

n 

< 
j = l  

For i--O one can take v - - b ,  so let i > 0 .  Let Li be the lattice spanned by bl ,  . . . ,  bi, 
and let z be the element of V(Li) defined by 

i n 

j=l j=i+l 

Let v / E L i  be such tha t  Iz - vll _< #(Li). Then  the element v = b + v I of L satisfies 

n 

- ' - - - - ( ' - , ' ) §  Z 
j=i+l 
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and therefore 

By Theorem 2.5 we have 

n 

I x ' -  v12 < #(Li)2 + E Ivjb~ 12" 
j=i+l 

i 
1 {~-~ . ~  

#(Li) 2 <_ ~\L.,~j  ]AI((Li)*) -2. 
j = l  

From the fact that  B* is a Korkin-Zolotarev basis for L* it follows easily that  a 
Korkin-Zolotarev basis for (Li)* is given by the orthogonal projections of b~_i+l, 

b~ on V(Li). The first of these projections is b *t �9 and its length is AI((L~)*). 
�9 . , ~ r~--$_t.1 ~ 

ib ? -1 Putt ing everything together we obtain By (3) this implies that  A~((Li)*) = i. �9 

i n 

§ E Ix'-v]  <_ 
3=1 j = i + l  

n ?t n 

+ E : 
j = l  j = i + l  j=l 

as required. This proves Theorem 2.7. 

7. Computational complexity of lattice problems 

The following are two basic computational problems concerning lattices. 
Finding shortest vector: given n and a basis B = [b l , . . .  ,ha] of a sublattice L 

of In, find a shortest non-zero vector in L. 
Finding closest vector: given n, a basis B = [bl, bn] of a sublattiee L of In 

and x E In ,  find a vector b E i that  minimizes Ix - bill 
It is not difficult to see that  the first problem is polynomial time equivalent to 

the problem of finding a Korkin-Zolotarev basis of an arbitrary integer lattice L. It 
is suspected to be NP-hard, but this has never been proved. Van Erode Boas [24] 
showed that  the second problem is NP-hard. 

The fastest algorithms known for the above two problems are due to R. Kannan 
[8], and require the exponential time O(ngnH6), where H is the length of the input 
of the problem with the usual encoding in binary. 

Several polynomial time algorithms are known for solving weaker versions of 
these problems. Lov~z '  lattice basis reduction algorithm [11] runs in time O(n6H a) 
and is guaranteed to find a short non-zero lattice vector b satisfying 

Ibl _ 2n-lA,(L) 2. 

Bahai [1] observed that  this algorithm can also be used to find, for given x, a close 
lattice vector b satisfying 

Ix - bl 2 < 2'~#(x, L)h  
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Schnorr [21] has given a hierarchy of polynomial time lattice basis reduction algo- 
rithms, showing that for any positive ~ there exists a polynomial time algorithm that  
produces a non-zero lattice vector b satisfying 

Ibl: _< (1 + a)nAI(L)2. 

It is of great interest to find practical polynomial time algorithms that  determine a 
non-zero vector b �9 L that is certified to satisfy 

Ibl ~ _< f(n))h (L) 2 

with f ( n )  as small as possible. 

Even if a shortest, or closest, lattice vector h �9 L has been found, it is not clear 
how to prove that  it is indeed the shortest, or closest, lattice vector. No polynomial 
length proofs ("certificates") are known to exist for statements of the form "b is a 
shortest non-zero vector in L" or "b is a closest vector in L to x". In this context 
the results of Section 6 imply that  there is at least a polynomial length proof that b 
is quite short, or quite close to x, respectively. 

Theorem 7.1. There exists a non-deterministic polynomial time algorithm that given 
a basis B of an integer lattice L C Zn o f r a n k n  produces a vectorb  in L and a proof 
that 

[b[ < n2)h(L) 2. 

Furthermore, there exists a non-deterministic polynomial time algorithm that when 
given in addition an element x �9 Z n produces a vector b in L and a proof that 

[X -- b l  2 ~ n 3 / l ( x ,  L )  2. 

Proof. We give only a sketch of the proof, leaving the details to the reader. 

The first algorithm consists of non-deterministically guessing an element b E L 
satisfying Ihl 2 -- AI(L) 2 as well as a Korkin-Zolotarev basis B* -- Ibm,...,  bn] of L*. 
If we guess right, then by the second inequality of Theorem 2.6 we have 

Ibl 2 _< n2)~(B) ~, 

where B is the basis of L reciprocal to B*. We can now verify this inequality directly, 
since A(B) 2 is easy to compute. If in addition we check that  B is indeed a basis of 
L, then the first inequality of Theorem 2.6 implies that  Ibl 2 _< n2)~l(L) 2, as required. 

For the second algorithm one proceeds in a similar manner, replacing Theorem 
2.6 by 2.7. 

This proves Theorem 7.1. I 



KORKIN-ZOLOTAREV BASES 347 

8. S y m m e t r i c  c o n v e x  d i s t a n c e  funct ions  

Proof  of Theorem 2.8. For the last lower bound, see [2, VIII.5, Theorem 6]. If 
12 is the standard unit sphere in Rn, then the upper bounds in Proposition 3.3 
and Theorem 2.4 are sharper by a factor of n than the upper bounds in Theorem 
2.8. Applying a linear transformation we see that these sharper bounds are also 
valid if ~t is an ellipsoid. In the general case we use the theorem of John [7, 5, 
Ch. 1, sec. 1.6], which asserts that  for any G there exists an ellipsoid E centered 
at 0 such that E C 12 C x/-~E. Then Ai(L;i2) < Ai(L;E)  for all i and L, by 
the definition of successive minima. Also ( v ~ ) - I E  * = (vfnE)* C G* C E*, so 
Ai(L; G*) < vf~.Ai(L; E*). Hence the upper bounds in Theorem 2.8 are implied by 
the sharper bounds that  are valid for ellipsoids. This proves Theorem 2.8. | 

Proof  of Theorem 2.9. This follows from Theorem 2.5 by the same argument as in 
the previous proof. | 
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