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The contents of this note are taken from a letter that I wrote
several years ago in response to the following question of J.-L.Colliot-
ThéTene: given a number field K, does there exists a finitely
generated subgroup W e k" that is dense in (K g R)*? (Cf. J. reine
angew. Math. 320 (1980), p. 171.) I answered this question affirma-
tively for the case that K is abelian over Q. J.-L. Brylinski
proved the same result independently using Baker's theorem. My own
proof, reproduced below, is purely algebraic, and it works in fact for
a slightly Tlarger class of number fields. Subsequently M. Waldschmidt
dealt with the case of an arbitrary number field, as an application of
a new result in transcendence theory; see Invent. math. 63 (1981),
pp. 99 and 110-111; his lecture in this volume (13 Oct. 1980), Cor. 4.3;
and the Tecture by J.-J. Sansuc (23 Feb. 1981), §4. The present note
is published at the request of Waldschmidt.

Theorem. Let K/Q@ be finite abelian. Then there is a finitely gener-
*
ated subgroup W e K which is dense in (K ) ]R)*.

Lemma. Let G be a finite abelian group, M a free RI[Gl-module of
rank one, and E, F sub-Z[Gl-modules of M such that
(a) E s a lattice in M;
(b) Ee F, and F/E contains a sub-Z[Gl-module isomorphic to
ZIG].
Then F is dense in M,
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Proof of the Lemma. Let M be the Pontryagin dual of M and
(, ): Mx M- R/Z the inner product. Let G act on i by

\

(ox,0y) = (x,y) {xeM, ye ﬁ, o e G), then M is also free of rank
one over RIG]. Put £*= {y e M: ¥x e E: (x,y) = 0}. This is a G-
stable lattice in M. From E"@ZZ RT RIG] (as RI[Gl-modules) and a
known theorem (Bourbaki, Groupes et algebres de Lie, Ch. V, annexe) we
see that E- 8y q = a6l 9lG), so % §s ZzI[G)-isomorphic to a left
ideal of ZI[Gl. Now let F¥= {y e : ¥ x € F: (x,y) = 0}. This is
the dual of M/F, where F is the closure of F in M, so F =0
implies F = M, as required. Suppose that FJ'# 0. Clearly, s a
7Z(G]-submodule of E* so from the existence of an embedding it < z05]
and the fact that G s abelian (only used here) we see that rere Ft

for some non-zero element r = myo € ZIGl. Let v =7 mgo'l . Then
o

for all x e F, y ¢ EY we have (Fx,y) = (x,ry) € (x,F% = 0. By
duality, this means that rF & E, contradicting assumption (b) of the

lemma. This proves the lemma.

Remark. It is clear from the proof that the condition that G is
abelian can be replaced by the condition that every left ideal of Q{GI
is a two-sided; or, equivalently, that @[G] is isomorphic, as a ring,
to a product of division rings. We classify such groups at the end of
this note. For groups & not satisfying this condition the Temma is

wrong.

Proof of the Theorem. First assume that K s imaginary. There is a

surjective G-homomorphism (G = Gal(K/Q))

*
K 8y R Y (K QQ]R)

LK.
derived from the isomorphism K 2 R = CZ[K'Q](as R-algebras) and the

*
exponential map € - € ., We apply the lemma to

M=K EQ R,
E={xeM JneZ: V(x) = 2"+ (a unit in K*)},
F=EF<{x eM: Y(x) e K*, and every prime ideal occurring in

(V(x)) Ties over p}
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where p 1is a fixed odd prime splitting completely in K/Q. The con-
ditions of the lemma are easy consequences of the Dirichlet unit
theorem and the finiteness of the class number. Also, F is finitely
generated. By the lemma, F is dense in M so WUIF] s a finitely
generated subgroup of K* which is dense in (K EQ R)*, as required.

Next let K be real. This case can be dealt with by a similar
argument, the main difference being that ¢ is not onto but has a
cokernel (Z/ZZ)[K:Q]; this group is finite, and the result follows
easily.

Alternatively, the case of real K can be dealt with by reducing
it to the imaginary case: if W& K(i)* is dense in (K(1) ) R)*,
then NK(i)/K[w]c; K* s dense in a subgroup of finite index in
(K N R)*.

Generally, this argument proves: if an algebraic number field K
has a finitely generated subgroup W c K" which is dense in (K 8 R)t
then the same statement is true for every subfield of K.

Conversely, the case of imaginary K can be reduced to the case
of real K, by an argument which yields in fact the following more

general result:

Observation. Let K be a totally imaginary quadratic extension of a
totally real number field K+, and suppose that there exists a finitely
generated subgroup w+<:(K+)* which is dense in (K+ D) R)*. Then
there exists a finitely generated subgroup W& K* which is dense in

(K ® R)*.

Q

The proof depends on the following reformulation.

Reformulation. Let K/@ be finite. Equivalent are:

(a) some finitely generated subgroup W& K* is dense in
. *
(K E(Q R) ;

* *
(b) every continuous character x: (K 8q R)* - € mapping K
to the roots of unity has finite order;

(c) every Hecke character of K which, as a function on ideals,
assumes only roots of unity as its values, is of finite order.

Here (b) & (c) is straightforward; (a) = (b): if X[K*] c
{roots of unity} then y|W is of finite order, so also ¥|W =

(K 84 R)*; (b) = (a), finally, is an exercise in topological algebra
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which is left to the reader; it relies on the classification of closed
subgroups of finite dimensionai real vector spaces.

' %
A character y: (K EQ R)* > ¢ can uniquely be written as

C
ox| v n_ elZ, c_ et

n.

x(x) = 1 (ox/]ox|) @~

o
for x e (K 8@ R)*Q where o ranges over a set of orbit representa-
tives of the set of R-algebra homomorphisms K 54 R >~ & under the
action of complex conjugation. If K ds totally imaginary quadratic
over K+, with K+ totally real, then the set of o's for K can be
identified with the set of o's for K'.

To prove the observation, assume that x(x) 1is a root of unity
for all x e K*. We wish to prove that yx 1is of finite order.
Assuming the result for K+, we know that xl(K+ B R)* has finite
order; since ox/]ox| = +1 for all x e (K o R)* and all ¢, this
implies that all ¢, are 0. Now all roots of unity x(x) =

n *
M (ox/lox|) 9, for x e K, have squares belonging to the normal closure
(o}
of K over &, and therefore have bounded order. This proves the

observation,

Theorem. Let G be a finite group. Then every left ideal of Q[G]
is two-sided & G is abelian or G £ A @ Cg ® Q with Q the quater-
nion group of order 8; 62 cyclic of order 2; t e Z 505 and A
abelian of odd exponent e, such that the order of 2 mod e (multi-
plicatively) is odd.

Proof, If H &G 1is a subgroup, then the left ideal generated by

y o is two-sided if and only if H s normal in G. All subgroups
Sfi G are normal iff G 1is abelian or G = A ® C; ® Q with Q, C2’ t
as above and A abelian of odd order (Huppert, Endliche Gruppen I,
Ch. III, Satz 7.12). For abelian groups the theorem is clear. So let
G =B6Q, B abelian. Then Q[G] = Q[B] 2y 0[Q], where Q[B] is a
product of cyclotomic fields Q(cf), f dividing exp(B), each
repeated a number of times, and Q[Q] = @ x @ x @ x @ x MQ, M@ =
(-1,-1)/0). So @[G] is a direct product of fields Q(cf) and alge-
bras ((-1,-1)/8(c¢)), flexp(B), and each ideal of Q[G] is two-sided
if and only if none of the rings ((-1,-1y@<gf)) is a 2x2-matrix
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ring, ror f|exp(B), If f <2 this condition is of course satisfied.
For T > 2, the field (zp) {-1,-0/0z )
is a 2x2-mairix ring iff ((ul,«l)/Q(CF)m) is a 2x2-matrix ring for
every nrime ;x lying over 2. The invariant of ((ul,ui)/Q(zr);) in
the Brauer group Br(Q (cf):.) 2 Q/77 equals EQ(CF)": (in * (1/2) mod 7Z,
and we conclude: ((-1;~1)/®(cf)) is a 2x2-matrix ring for some

is totally compiex, so

i ( irt L[Q,{z 9,1 s even. Tthe theorem i i
||e>fp\8) i LQZ\,GXD{B)) 9,1 is even. .? theorem now 7ol lows
2asily. (Acknowledgements to R. W. van derWaall for the reference to
Huppert.)






