Seminaire Delange-Pisot-Poitou (Theorie des Nombres) 1980-81

ON A QUESTION OF COLLIOT-THELENE

H. W. Lenstra, Jr. University of Amsterdam

The contents of this note are taken from a letter that I wrote several years ago in response to the following question of J.-L. Colliot-Thelene: given a number field K, does there exists a finitely generated subgroup $W \subset K^*$ that is dense in $(K \otimes_{\mathbb{Q}} \mathbb{R})^*$? (Cf. J. reine angew. Math. 320 (1980), p. 171.) I answered this question affirmatively for the case that K is abelian over \mathbb{Q} . J.-L. Brylinski proved the same result independently using Baker's theorem. My own proof, reproduced below, is purely algebraic, and it works in fact for a slightly larger class of number fields. Subsequently M. Waldschmidt dealt with the case of an arbitrary number field, as an application of a new result in transcendence theory; see Invent. math. 63 (1981), pp. 99 and 110-111; his lecture in this volume (13 Oct. 1980), Cor. 4.3; and the lecture by J.-J. Sansuc (23 Feb. 1981), §4. The present note is published at the request of Waldschmidt.

Theorem. Let K/\mathbb{Q} be finite abelian. Then there is a finitely generated subgroup $W \subset K^*$ which is dense in $(K \otimes_{\mathbb{Q}} \mathbb{R})^*$.

<u>Lemma.</u> Let G be a finite abelian group, M a free $\mathbb{R}[G]$ -module of rank one, and E, F sub- $\mathbb{Z}[G]$ -modules of M such that

- (a) E is a lattice in M;
- (b) E \subset F, and F/E contains a sub- $\mathbb{Z}[G]$ -module isomorphic to $\mathbb{Z}[G]$.

Then F is dense in M.

Proof of the Lemma. Let $\widehat{\mathbb{M}}$ be the Pontryagin dual of \mathbb{M} and $(\ ,\): \mathbb{M} \times \widehat{\mathbb{M}} + \mathbb{R}/\mathbb{Z}$ the inner product. Let \mathbb{G} act on $\widehat{\mathbb{M}}$ by $(\sigma x, \sigma y) = (x, y)$ $(x \in \mathbb{M}, y \in \widehat{\mathbb{M}}, \sigma \in \mathbb{G})$, then $\widehat{\mathbb{M}}$ is also free of rank one over $\mathbb{R}[\mathbb{G}]$. Put $\mathbb{E}^{\frac{1}{2}} = \{y \in \widehat{\mathbb{M}}: \ \forall x \in \mathbb{E}: (x, y) = 0\}$. This is a \mathbb{G} -stable lattice in $\widehat{\mathbb{M}}$. From $\mathbb{E}^{\frac{1}{2}} \otimes_{\mathbb{Z}} \mathbb{R}^{\frac{n}{2}} \mathbb{R}[\mathbb{G}]$ (as $\mathbb{R}[\mathbb{G}]$ -modules) and a known theorem (Bourbaki, Groupes et algèbres de Lie, Ch. V, annexe) we see that $\mathbb{E}^{\frac{1}{2}} \otimes_{\mathbb{Z}} \mathbb{Q} \cong_{\mathbb{Q}[\mathbb{G}]} \mathbb{Q}[\mathbb{G}]$, so $\mathbb{E}^{\frac{1}{2}}$ is $\mathbb{Z}[\mathbb{G}]$ -isomorphic to a left ideal of $\mathbb{Z}[\mathbb{G}]$. Now let $\mathbb{F}^{\frac{1}{2}} = \{y \in \widehat{\mathbb{M}}: \ \forall x \in \mathbb{F}: (x,y) = 0\}$. This is the dual of \mathbb{M}/\mathbb{F} , where \mathbb{F} is the closure of \mathbb{F} in \mathbb{M} , so $\mathbb{F}^{\frac{1}{2}} = \mathbb{Q}$ implies $\mathbb{F} = \mathbb{M}$, as required. Suppose that $\mathbb{F}^{\frac{1}{2}} \neq \mathbb{Q}$. Clearly, $\mathbb{F}^{\frac{1}{2}}$ is a $\mathbb{Z}[\mathbb{G}]$ -submodule of $\mathbb{E}^{\frac{1}{2}}$, so from the existence of an embedding $\mathbb{E}^{\frac{1}{2}} \subset \mathbb{Z}[\mathbb{G}]$ and the fact that \mathbb{G} is abelian (only used here) we see that $\mathbb{F}^{\frac{1}{2}} \subset \mathbb{F}^{\frac{1}{2}}$ for some non-zero element $\mathbb{F} = \mathbb{Q}$ $\mathbb{Q} \subset \mathbb{Z}[\mathbb{G}]$. Let $\mathbb{F} = \mathbb{Q} \subset \mathbb{Z}[\mathbb{G}]$ Then for all $\mathbb{Z} \in \mathbb{F}$, $\mathbb{Z} \in \mathbb{Z}[\mathbb{Z}]$ we have $\mathbb{Z} \subset \mathbb{Z}[\mathbb{Z}]$. Let $\mathbb{Z} \subset \mathbb{Z}[\mathbb{Z}]$ be $\mathbb{Z} \subset \mathbb{Z}[\mathbb{Z}]$. Then lemma. This proves the lemma.

Remark. It is clear from the proof that the condition that G is abelian can be replaced by the condition that every left ideal of Q[G] is a two-sided; or, equivalently, that Q[G] is isomorphic, as a ring, to a product of division rings. We classify such groups at the end of this note. For groups G not satisfying this condition the lemma is wrong.

<u>Proof of the Theorem.</u> First assume that K is imaginary. There is a surjective G-homomorphism $(G = Gal(K/\mathbb{Q}))$

$$K \otimes_{\mathbf{0}} \mathbb{R}^{\frac{1}{2}} (K \otimes_{\mathbf{0}} \mathbb{R})^{*}$$

derived from the isomorphism $K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathfrak{C}^{\frac{1}{2}[K:\mathbb{Q}]}$ (as \mathbb{R} -algebras) and the exponential map $\mathfrak{C} \to \mathfrak{C}^*$. We apply the lemma to

E =
$$\{x \in M: \exists n \in \mathbb{Z}: \psi(x) = 2^n \cdot (a \text{ unit in } K^*)\}$$
,

 $F = E \cdot \{x \in M: \psi(x) \in K^*, \text{ and every prime ideal occurring in } (\psi(x))^{s} \text{ lies over } p\}$

where p is a fixed odd prime splitting completely in K/Q. The conditions of the lemma are easy consequences of the Dirichlet unit theorem and the finiteness of the class number. Also, F is finitely generated. By the lemma, F is dense in M so $\psi[F]$ is a finitely generated subgroup of K which is dense in $(K *_{\text{N}} \mathbb{R})^*$, as required.

Next let K be real. This case can be dealt with by a similar argument, the main difference being that ψ is not onto but has a cokernel $\cong (\mathbb{Z}/2\mathbb{Z})^{[K:\mathbb{Q}]}$; this group is finite, and the result follows easily.

Alternatively, the case of real K can be dealt with by reducing it to the imaginary case: if $W \subset K(i)^*$ is dense in $(K(i) \otimes_{\mathbb{Q}} R)^*$, then $N_{K(i)/K}[W] \subset K^*$ is dense in a subgroup of finite index in $(K \otimes_{\mathbb{Q}} R)^*$.

Generally, this argument proves: if an algebraic number field K has a finitely generated subgroup $W \subseteq K^*$ which is dense in $(K \otimes_{\mathbb{Q}} \mathbb{R})^*$, then the same statement is true for every subfield of K.

Conversely, the case of imaginary K can be reduced to the case of real K, by an argument which yields in fact the following more general result:

<u>Observation</u>. Let K be a totally imaginary quadratic extension of a totally real number field K^+ , and suppose that there exists a finitely generated subgroup $W^+ \subset (K^+)^*$ which is dense in $(K^+ \otimes_{\mathbb{Q}} \mathbb{R})^*$. Then there exists a finitely generated subgroup $W \subset K^*$ which is dense in $(K \otimes_{\mathbb{Q}} \mathbb{R})^*$.

The proof depends on the following reformulation.

Reformulation. Let K/\mathbb{Q} be finite. Equivalent are:

- (a) some finitely generated subgroup $W \subset K^*$ is dense in $(K \otimes_{\mathbf{n}} \mathbb{R})^*$;
- (b) every continuous character χ : $(K *_{\mathbb{Q}} \mathbb{R})^* \to \mathbb{C}^*$ mapping K^* to the roots of unity has finite order;
- (c) every Hecke character of K which, as a function on ideals, assumes only roots of unity as its values, is of finite order.
- Here (b) \iff (c) is straightforward; (a) \implies (b): if χ [K*] \subset {roots of unity} then χ |W is of finite order, so also χ |W = (K $\otimes_{\mathbf{0}}$ \mathbb{R})*; (b) \implies (a), finally, is an exercise in topological algebra

which is left to the reader; it relies on the classification of closed subgroups of finite dimensional real vector spaces.

A character $\chi\colon \left(\mathsf{K} \ \mathbf{s_0} \ \mathbb{R}\right)^\star \to \mathbf{C}^\star$ can uniquely be written as

$$\chi(x) = \prod_{\sigma} (\sigma x / |\sigma x|)^{n_{\sigma}} \cdot |\sigma x|^{c_{\sigma}} \qquad n_{\sigma} \in \mathbb{Z}, \quad c_{\sigma} \in \mathbb{C}$$

for $x \in (K \bowtie_{\mathbb{Q}} \mathbb{R})^*$, where σ ranges over a set of orbit representatives of the set of \mathbb{R} -algebra homomorphisms $K \bowtie_{\mathbb{Q}} \mathbb{R} \to \mathbb{C}$ under the action of complex conjugation. If K is totally imaginary quadratic over K^+ , with K^+ totally real, then the set of σ 's for K can be identified with the set of σ 's for K^+ .

To prove the observation, assume that $\chi(x)$ is a root of unity for all $x \in K^*$. We wish to prove that χ is of finite order. Assuming the result for K^+ , we know that $\chi|(K^+ \otimes_{\mathbb{Q}} \mathbb{R})^*$ has finite order; since $\sigma x/|\sigma x| = \pm 1$ for all $x \in (K^+ \otimes_{\mathbb{Q}} \mathbb{R})^*$ and all σ , this implies that all c_σ are 0. Now all roots of unity $\chi(x) = \mathbb{I}(\sigma x/|\sigma x|)^n \sigma$, for $x \in K^*$, have squares belonging to the normal closure of K over \mathbb{Q} , and therefore have bounded order. This proves the observation.

Theorem. Let G be a finite group. Then every left ideal of $\mathbb{Q}[G]$ is two-sided \iff G is abelian or $G \cong A \oplus C_2^t \oplus \mathbb{Q}$ with \mathbb{Q} the quaternion group of order 8; C_2 cyclic of order 2; $t \in \mathbb{Z}_{\geq 0}$; and A abelian of odd exponent e, such that the order of $2 \mod e$ (multiplicatively) is odd.

Proof. If H \mathbf{C} G is a subgroup, then the left ideal generated by $\sum_{\sigma \in H} \sigma$ is two-sided if and only if H is normal in G. All subgroups $\frac{1}{\sigma \in H} \in G$ are normal iff G is abelian or $G \cong A \oplus C_2^t \oplus Q$ with Q, C_2 , the as above and A abelian of odd order (Huppert, Endliche Gruppen I, Ch. III, Satz 7.12). For abelian groups the theorem is clear. So let $G \cong B \oplus Q$, B abelian. Then $\mathbb{Q}[G] = \mathbb{Q}[B] \otimes_{\mathbb{Q}} \mathbb{Q}[Q]$, where $\mathbb{Q}[B]$ is a product of cyclotomic fields $\mathbb{Q}(\zeta_f)$, if dividing $\exp(B)$, each repeated a number of times, and $\mathbb{Q}[Q] \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$, $\mathbb{H}_{\mathbb{Q}} = \mathbb{Q}[G]$. So $\mathbb{Q}[G]$ is a direct product of fields $\mathbb{Q}(\zeta_f)$ and algebras $((-1,-1)/\mathbb{Q}(\zeta_f))$, if $|\exp(B)$, and each ideal of $\mathbb{Q}[G]$ is two-sided if and only if none of the rings $((-1,-1)/\mathbb{Q}(\zeta_f))$ is a $2 \times 2 - \mathrm{matrix}$

ring, for flexp(B). If $f \le 2$ this condition is of course satisfied. For f > 2, the field $\mathfrak{Q}(\zeta_f)$ is totally complex, so $((-1,-1)/\mathfrak{Q}(\zeta_f))$ is a 2×2 -matrix ring iff $((-1,-1)/\mathfrak{Q}(\zeta_f))$ is a 2×2 -matrix ring for every prime lying over 2. The invariant of $((-1,-1)/\mathfrak{Q}(\zeta_f))$ in the Brauer group $\mathrm{Br}(\mathfrak{Q}(\zeta_f)) \cong \mathfrak{Q}/\mathbb{Z}$ equals $[\mathfrak{Q}(\zeta_f)] : \mathfrak{Q}_2 \circ (1/2) \bmod \mathbb{Z}$, and we conclude: $((-1,-1)/\mathfrak{Q}(\zeta_f))$ is a 2×2 -matrix ring for some $f[\exp(B)]$ iff $[\mathfrak{Q}_2(\zeta_{\exp(B)}): \mathfrak{Q}_2]$ is even. The theorem now follows easily. (Acknowledgements to R. W. van der Waall for the reference to Huppert.)

