1)
$$det\left(\begin{pmatrix} 3 & 2 \\ 3 & 8 \end{pmatrix} = 2\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = det\left(\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}\right) = 0$$

so is an ergenvalue.

2) let
$$\left(\begin{pmatrix} -1 & 4 \\ 6 & 9 \end{pmatrix} + 3\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) =$$
 let $\left(\begin{pmatrix} 2 & 4 \\ 6 & 12 \end{pmatrix}\right) = 24 - 24 = 0$ $= 24 - 24 = 0$

so is an ergenvalue.

is so is an eigenvector, with eigenvalue - Z.

$$|q| = 1: \quad \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} - 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix} \xrightarrow{\text{R-Red}} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

basis W, has basis {[0]}

$$\lambda = 3: \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & -2 \end{bmatrix} \xrightarrow{Rled} \begin{bmatrix} 1 & -17 \\ 0 & 0 \end{bmatrix},$$

Wz has bas is {[1]}.

17) let
$$\begin{pmatrix} -\lambda & 0 & 0 \\ 0 & 3-\lambda & 4 \\ 0 & 0 & -2-\lambda \end{pmatrix} = (-\lambda) \left[(3-\lambda)(-2-\lambda) \right] = -\lambda \left(\lambda + 2(\lambda - 3) \right)$$

eigenvalus $g = 0, -2, 3$.

21a) False, z could = Q.
6)	True, Andirvertible (=> let A=0
•	€) let(A-oIn)=0
c)	True, by definition
d)	True, just check abether Az is a scalar multiple A =
e)	False (it doesn't help).
24)	eg $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
2 ()	Say Az=1× some x = 0. Then A-A>c=A-1/x x 1/4/5c
	1 1 1 1
	≥ \\ \A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	So Ax=Xx
26)	Soy A has a non-zero e-value & w. e-vector v.
	Then 12
	Then $0 = A^2 Y = A(AY) = A(AY) = \lambda(AY) = \lambda^2 Y, \text{ acousticely}$
	which is impossible.
27) re-valued A (>> det(A-NIn) = 0,
	but det (A-\In)= det ((A-\In)) = det (A'-\In),
	So det(A-\lambda In)= o (=> det(A-\lambda In)=0
	(=>) in an e-value of A.
Sanda a	