In Exercises $1-4$, find the equation $y=\beta_{0}+\beta_{1} x$ of the leastsquares line that best fits the given data points.

1. $(0,1),(1,1),(2,2),(3,2)$
2. $(1,0),(2,1),(4,2),(5,3)$
3. Let X be the design matrix used to find the least-squares line to fit data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. Use a theorem in Section 6.5 to show that the normal equations have a unique solution if and only if the data include at least two data points with different x-coordinates.
4. A certain experiment produces the data $(1,1.8),(2,2.7)$, $(3,3.4),(4,3.8),(5,3.9)$. Describe the model that produces a least-squares fit of these points by a function of the form
$y=\beta_{1} x+\beta_{2} x^{2}$
Such a function might arise, for example, as the revenue from the sale of x units of a product, when the amount offered for sale affects the price to be set for the product.
Write a matrix equation $\mathrm{A} v=\mathrm{b}$ such that the least-squares solution $\mathrm{v}=$ [beta_1, lbeta_2] gives the best-fitting function $\mathrm{y}=$ Vbeta_1 $\mathrm{x}+$ Vbeta_ $2 \mathrm{x}^{\wedge} 2$.
