LINEAR ALGEBRA AND IMAGE PROCESSING
 MID-TERM EXAM - MARCH 2014

Time: 1 hour 30 minutes

Fill in your name and student number on all papers you hand in. In this examination you are only allowed to use a pen and examination paper.
In total there are 5 question, and each question is worth the same number of points. In all questions, justify your answer fully and show all your work.

Good luck!

Question 1: Consider the following system of 4 linear equations in 4 variables.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =1 \\
x_{1}+2 x_{3}+x_{4} & =3 \\
x_{2}+2 x_{3}+3 x_{4} & =4 \\
x_{1}+x_{3} & =1
\end{aligned}
$$

a) Write the general solution of the system in parametric vector form

$$
\underline{p}+t \underline{u} \quad(t \in \mathbb{R}) .
$$

b) In this case the parametric vector form of the general solution is not unique (this is not unusual). Find vectors $\underline{q}=\left(0, q_{2}, q_{3}, q_{4}\right) \in \mathbb{R}^{4}$ and $\underline{v}=\left(2, v_{2}, v_{3}, v_{4}\right) \in \mathbb{R}^{4}$ such that the general solution of the linear system above is given in parametric vector form by

$$
\underline{q}+s \underline{v} \quad(s \in \mathbb{R}) .
$$

Question 2: Consider the 3×3 matrices

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 2 \\
1 & 2 & 3
\end{array}\right), \quad B=\left(\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 1 & 0 \\
5 & 5 & 4
\end{array}\right) .
$$

a) Is A invertible? If so, find the inverse of A.
b) Is B invertible? If so, find the inverse of B.
c) Is the product B^{1000} invertible?
[Hint: you do not need to compute the matrix B^{1000}.]
d) Is the product $A B^{1000}$ invertible?
[Hint: you do not need to compute the matrix $A B^{1000}$.]

Question 3: Consider the following network:

a) Write down a linear system describing the flow in the network.
b) Put the augmented matrix of the linear system from (a) in row reduced echelon form.
c) Can you find a solution where all the flows are positive?

Question 4: For each of the following 5 statements, say whether the statement is true or false. Justify your answer (either by an example if the statement is false, or a brief proof if it is true).
a) If A, B and C are $n \times n$ matrices with A not the zero matrix, and such that $A B=A C$, then $B=C$.
b) The function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ sending (x, y) to $(x+y, x+1)$ is linear.
c) If every column of the augmented matrix of a linear system contains a pivot, then the system is inconsistent.
d) If every row of the augmented matrix of a linear system contains a pivot, then the system is inconsistent.
e) If the function $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ is onto (surjective) and $S: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is onto, then the composite $S T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ is onto.

Question 5: Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 x_{1}-x_{2} \\
x_{1}-x_{3} \\
x_{1}+2 x_{2}+x_{3}
\end{array}\right)
$$

a) Write down the standard matrix of T.
b) Is T onto (surjective)?
c) Is T 1-to-1 (injective)?
d) Write down the standard matrix for the composite transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ sending x to $T(T(x))$.

