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Lattice Differential Equations

Lattice differential equations (LDEs) are ODEs indexed on a spatial lattice, e.g.

iu]'(t) = oz(uj_l(t) — ZUj(t) + Uj_|_1(t)> + f(Uj(t)), j e /.

dt
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Picking a = h~2 > 1. LDE can be seen as discretization with distance h of PDE

Opu(t, ) = Oppu(t, ) + f(u(t,z)), r € R.

u(z)

e Many physical models have a discrete spatial structure — LDEs.

e No need for o to be large; some models even have o < 0.

e Main theme: qualitative differences between PDEs and LDEs.



Signal Propagation through Nerves

Nerve fibres carry signals over large distances (meter range).

Signal propagation
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e Fiber has myeline coating with periodic gaps called nodes of Ranvier .
e Fast propagation in coated regions, but signal loses strength rapidly (mm-range)
e Slow propagation in gaps, but signal chemically reinforced.



Signal Propagation: The Model

One is interested in the potential U; at the node sites.
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Signals appear to "hop” from one node to the next [Lillie, 1925].
lgnoring recovery, one arrives at the LDE [Keener and Sneyd, 1998]

LU () = Upma(t) + Uj—a(t) = 205(t) + g(U(t);a),  jEZ.
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Signal Propagation: PDE

In continuum limit: Nagumo LDE becomes Nagumo PDE

O = Oppu + u(a — u)(u —1).

Starting step [Fife, MclLeod]: travelling waves.

Travelling wave u(z,t) = ¢(x + ct) satisfies:

cd' (&) = ¢"(&)+ o(€)(a—(8))(p(€) —1).

Interested in pulse solutions connecting 0 to 1, i.e.

lim ¢(¢6) =0,  lim ¢(¢)=1.
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Signal Propagation: PDE

Recall travelling wave ODE

e (€) = ¢"() + ¢(&)(a— (&) (¢(8) — 1).
limg 4100 9(§) = 1.




Signal Propagation: LDE

Recall the Nagumo LDE

LU () = HUjpa(t) + Uj—1(t) — 2U;(8)] + g(Us(t);a),  j € Z.

Travelling wave profile U;(t) = ¢(j + ct) must satisfy:

c¢'(€) = o+ 1)+ —1) —20(8)] + g(¢(8); a)
lime— oo (&) = L.

e Notice that wave speed c enters in singular fashion.
e When ¢ # 0, this is a functional differential equation of mixed type (MFDE).

e When ¢ = 0, this is a difference equation.



Discrete Nagumo LDE - Propagation failure

Travelling waves for the discrete Nagumo LDE connecting 0 — 1.
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Propagation

Typical wave speed c versus a plot for discrete reaction-diffusion systems:
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In principle, can have a, = 5 or a, <
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In case a, < % then we say that LDE suffers from propagation failure.

Propagation failure widely studied; pioneed by [Keener].



Signal Propagation: Comparison

PDE
Ou = Oppu + g(u, a)
Travelling wave u = ¢(x + ct) satisfies:

cd'(§) = ¢"(§) +9(o(&);a)

Travelling waves connecting 0 to 1:
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LDE
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Travelling wave U; = ¢(j + ct) satisfies:

c'(§) = o(€+1)+o(§—1)—2¢()

+9(0(8);a)
Travelling waves connecting 0 to 1:

‘e

a

1
2

a4

1

Propagation failure if a, < 5.

10



Propagation failure

Consider travelling wave MFDE with saw-tooth nonlinearity

c¢'(§) = 2l +1) +6(€ = 1) = 20(8)] + g(6(8); a)
lime 400 @(§) = 1.
g(u; a)
Thm. [Cahn, Mallet-Paret, Van Vleck]:
Propagation failure for all h > 0 (1999).
0 a 1 v

Linear analysis with Fourier series.
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Propagation failure

Consider travelling wave MFDE with near-saw-tooth nonlinearity

e (€) = HoE+1)+ (€ — 1) —26(6)] + g(p(€); a)
limg 400 #(§) = 1.

g(u;a)

Thm. [Mallet-Paret|: Propagation failure
when g sufficiently close to saw-tooth. 0 a 1
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Propagation failure

Consider travelling wave MFDE with generic bistable nonlinearity

e (€) = HoE+1)+ (€ — 1) —26(6)] + g(p(€); a)
limg 400 #(§) = 1.

Thm. [Hoffman, Mallet-Paret]: Generic
condition on g guarantees propagation
failure.

Unknown if cubic satisfies this condition
for all h > 0.
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Propagation failure

Consider travelling wave MFDE with zig-zag bistable nonlinearity

e (€) = HoE+1)+ (€ — 1) —26(6)] + g(p(€); a)
limg 400 #(§) = 1.

Thm. [Elmer]: There exist countably

many h for which there is no propagation
failure.
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Propagation Failure

Recall travelling wave MFDE:

c¢'(€) = HOE+1) + ¢ —1) = 26(6)] + geun (¢(£); a)
limg 100 @(§) = 1.

When ¢ = 0, can restrict to £ € 7Z: recurrence relation!

With p; = ¢(j) and 7; = ¢(j + 1), we find

Pj+1 T
riv1 = —pj+2r; —hPr(r; —a)(1—rp).

Saddles (0,0) and (1,1).
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Propagation Failure

Pj+1 = T
ris1 = —pj+2r;—a”lri(r; —a)(l—r;).
For a = 3, site-centered (orange) and bond-centered (black) solutions. Generically:
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Propagation Failure

Pj+1 Tj
riv1 = —pj+2r;—a”lr(r; —a)(l—ry).

Two branches coincide and annihilate at a = a,.

W' 0,0 ) L)

(0,0)
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Propagation Failure

Discretizations of cubic may also involve multiple lattice sites:

d 1

1
2Ui = 3lUj-1 + Uja = 2U5) + 5U; (Ujn + Uj—1 = 20)(1 = U).

Explicit solutions available:

U;(t) = % + %tanh (arcsinh(i\/i h)(j + ct)), cla) = arc(slin—h (25\)@ 5
po(€) AC
§ a
> >
“=3

No propagation failure; smooth wave profile.
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Propagation Failure - Discrete map

Smooth standing wave profile at a = % gives:
(1,1)

(0,0)

Site centered and bond centered solutions now connected by continuous branch of
standing waves.

Q: What happens to manifolds when a # %?
Do intersections disappear (no prop failure) or survive (prop failure)?
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Lattice point of view

Let us write LDE as:

d
SU() = FU(1)5 o),

with U(t) € £°° and F : £>° x [0,1] — £°.
Travelling waves U,(t) = ¢(j + ct) satisfy some MFDE

ed/(§) = G($(€ = 1),6(6), 8§ +1): ).

e Assumption: We have

Ipc-1G > 0,
Ope+n¥ > 0.

e Assumption: The  function
G(¢, ¢, ¢; a) is bistable. In special
case a = % It Is symmetric.
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Lattice point of view

Recall LDE as:

and travelling wave MFDE

e6/(§) = G((€ = 1),6(6), 66+ 1) a)

1 .
Suppose at a = 5 we have a smooth solution p(§) to

0=9(p(€—1.p(&).p(§ +1): a), §ER,

Then for every ¥ € R, we have equilibrium solution p(?) € ¢*° to our LDE:

1 .
Fes5) =0, P} = p(¥ + ).
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Invariant Manifold

Recall p® € £ with p\”) = p(d + j).

Notice that

P = T+

where 7 : (> — {*° is right-shift operator (Tu); = u;_;.

Combining these equilibria gives
a smooth manifold

1

M(a = 5) = {pw)}ﬁem-

After dividing out 7, we get a
ring!
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Invariant Manifold - Scenario #1

Based on spectral stability of equilibria p(*) [Chow, Mallet-Paret, Shen, 1998] and
comparison principles can prove:

Prop: The manifold M(a = %) is normally hyperbolic.

Possible scenario #1 for persistence of M(a) with a # %:

No equilibria survive; M(a) is orbit of travelling wave. No Propagation Failure.
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Invariant Manifold - Scenario #2

Based on spectral stability of equilibria p(®) [Chow, Mallet-Paret, Shen, 1998] and
comparison principles can prove:

Prop: The manifold M(a = %) is normally hyperbolic.

Possible scenario #2 for persistence of M(a) with a # 1

One or more equilibria survive. Propagation Failure*.

*Certain terms and conditions apply...
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Dynamics near M

Angular coordinate # measures position along M(a). Dynamics given by

in which W(6) given by
9 9) (¥ 1
— qu )8ag(p§ )17p§ )7p§-|_)17 a = 5)
JEZ
Here ¢(?) is adjoint eigenvector; i.e. solves L(V)*¢(?) = 0 with

N %,
(L(ﬁ) w)j = a¢(g_ )g( ( 7p§_|_)17p§—|—)272)w3+1

(9) , (V)
+8¢(5)g(pj 1 P; ’pj+1’2)w3

(@) (9) .1

+0g(e1)G (057, S0 03 5 S w1

Known: q( ) > 0 for all 7 € Z and ¥ € R. So 0,G < 0 guarantees no prop failure.
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Propagation Failure

Thm. [H., Sandstede, Pelinovsky| No prop failure for LDE

gl = uj—1t Uiy — 2u 4 (u; —a) (’%‘—1(1 — Ujy1) +ujpa(l - Uj—l))
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Propagation Failure

Thm. [H., Sandstede, Pelinovsky| No prop failure for LDE

d _ . . . L . . . .
Gl = Uj—1+uip1 — 2uy + (u; — a) (uj—l(l Uj1) + ujpa(l uy—l))
5 1\ -
—Z(a — 5) sin(2mu;).
1_
- —=s—a=0.025
A~~~ —e—a=0.125 0.3
3 —a—a=0.20
r —v—a=0275 & ]
| —e—a=0.35 ~— |
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O_
0.0
0.0 0.25 05
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Here 0,G may have both signs, but (numerically) ¥ (#) < 0 for all 6.
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Propagation Failure

Thm. [H., Sandstede, Pelinovsky| Do have prop failure for LDE

d _
gt = i1t uipn = 2uy +Au(1 =) (w0 + i - 2a)
1\ .- 6 , 8
—5(a — 3) sin(2mu;) (5 + u).
1.0‘ ﬁ
- y—/_h 0.51
- | —=—a=0275 3]
— —e—2a=0.3195 ]
Al —a— g =0.32 \U/ |
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0.0 0]
S 025 1 05
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Numerically computed: ¥(§ =0) <0 < ¥(0 = 3).
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Discussion

Recall PDE u; = ugz, + g(u; a).

e Active interest in multi-lattice-site discretizations of g that admit continuous

branch of stationary solutions [Barashenkov, Oxtoby, Pelinovsky, Dmitriev,
Kevrekidis, Yoshikawal].

e One generally expects size of propagation failure interval to be exponentially
small in h.

e For higher dimensional problems, indications are that using 'small enough’
h > 0 to reduce influence of propagation failure can hurt numerical
performance [Beyn, Speight].
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