5. Geometry of numbers

In this section, we prove the classical finiteness theorems for a number ring \(R \): the Picard group \(\text{Pic}(R) \) is a finite group, and the unit group \(R^* \) is in many cases finitely generated. These are not properties of arbitrary Dedekind domains, and the proofs rely on the special fact that number rings can be embedded in a natural way as lattices in a finite dimensional real vector space. The key ingredient in the proofs is non-algebraic: it is the theorem of Minkowski on the existence of lattice points in symmetric convex bodies given in 5.1.

Let \(V \) be a vector space of finite dimension \(n \) over the field \(\mathbb{R} \) of real numbers, and \(\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R} \) a scalar product, i.e. a positive definite bilinear form on \(V \times V \). The scalar product induces a notion of volume on \(V \), which is also known as the Haar measure on \(V \). For a parallelepiped

\[
B = \{ r_1 x_1 + r_2 x_2 + \ldots + r_n x_n : 0 \leq r_i < 1 \}
\]

spanned by \(x_1, x_2, \ldots, x_n \), the volume is defined by

\[
\text{vol}(B) = |\det(\langle x_i, x_j \rangle)_{i,j=1}^n|^{1/2}.
\]

This definition shows that the ‘unit cube’ spanned by an orthonormal basis for \(V \) has volume 1, and that the image of this cube under a linear map \(T \) has volume \(|\det(T)| \). If the vectors \(x_i \) are written with respect to an orthonormal basis for \(V \) as \(x_i = (x_{ij})_{j=1}^n \), then we have

\[
|\det(\langle x_i, x_j \rangle)_{i,j=1}^n|^{1/2} = |\det(M \cdot M^t)|^{1/2} = |\det(M)|
\]

for \(M = (x_{ij})_{i,j=1}^n \).

The volume function on parallelepipeds can be uniquely extended to a measure on \(V \). Under the identification \(V \cong \mathbb{R}^n \) via an orthonormal basis for \(V \), this is the Lebesgue measure on \(\mathbb{R}^n \). We usually summarize these properties by saying that \(V \) is an \(n \)-dimensional Euclidean space.

A lattice in \(V \) is a subgroup of \(V \) of the form

\[
L = \mathbb{Z} \cdot x_1 + \mathbb{Z} \cdot x_2 + \ldots + \mathbb{Z} \cdot x_k,
\]

with \(x_1, x_2, \ldots, x_k \in V \) linearly independent. The integer \(k \) is the rank of \(L \). It cannot exceed \(n = \dim V \), and we say that \(L \) is complete or has maximal rank if it is equal to \(n \). For a complete lattice \(L \subset V \), the co-volume \(\text{vol}(V/L) \) of \(L \) is defined as the volume of the parallelepiped \(F \) spanned by a basis of \(L \). Such a parallelepiped is a fundamental domain for \(L \) as every \(x \in V \) has a unique representation \(x = f + l \) with \(f \in F \) and \(l \in L \). In fact, \(\text{vol}(V/L) \) is the volume of \(V/L \) under the induced Haar measure on the factor group \(V/L \).

A subset \(X \subset V \) is said to be symmetric if it satisfies \(-X = \{ -x : x \in X \} = X \).

5.1. Minkowski’s theorem. Let \(L \) be a complete lattice in an \(n \)-dimensional Euclidean space \(V \) and \(X \subset V \) a bounded, convex, symmetric subset satisfying

\[
\text{vol}(X) > 2^n \cdot \text{vol}(V/L).
\]

Then \(X \) contains a non-zero lattice point. If \(X \) is closed, the same is true under the weaker assumption \(\text{vol}(X) \geq 2^n \cdot \text{vol}(V/L) \).
Proof. By assumption, the set \(\frac{1}{2}X = \{ \frac{1}{2}x : x \in X \} \) has volume \(\text{vol}(\frac{1}{2}X) = 2^{-n}\text{vol}(X) > \text{vol}(V/L) \). This implies that the map \(\frac{1}{2}X \to V/L \) cannot be injective, so there are distinct points \(x_1, x_2 \in X \) with \(\frac{1}{2}x_1 - \frac{1}{2}x_2 = \omega \in L \). As \(X \) is symmetric, \(-x_2 \) is contained in \(X \). By convexity, we find that the convex combination \(\omega \) of \(x_1 \) and \(-x_2 \) is in \(X \cap L \).

Under the weaker assumption volume \(\text{vol}(X) \geq 2^n\text{vol}(V/L) \), each of the sets \(X_k = (1 + 1/k)X \) with \(k \in \mathbb{Z}_{\geq 1} \) contains a non-zero lattice point \(\omega_k \in L \). As all \(\omega_k \) are contained in the bounded set \(2X \), there are only finitely many different possibilities for \(\omega_k \). It follows that there is a lattice element \(\omega \in \cap_k X_k \), and for closed \(X \) we have \(\cap_k X_k = X \). □

Let \(K \) be a number field of degree \(n \). Then \(K \) is an \(n \)-dimensional \(\mathbb{Q} \)-vector space, and by base extension we can map \(K \) into the complex vector space

\[
K_C = K \otimes_{\mathbb{Q}} \mathbb{C} \cong \prod_{\sigma : K \to \mathbb{C}} \mathbb{C} = \mathbb{C}^n
\]

by the canonical map \(\Phi_K : x \mapsto (\sigma(x))_\sigma \). Note that \(\Phi_K \) is a ring homomorphism, and that the norm and trace on the free \(\mathbb{C} \)-algebra \(K_C \) extend the norm and the trace of the field extension \(K/\mathbb{Q} \). The image \(\Phi_K[K] \) of \(K \) under the embedding lies in the \(\mathbb{R} \)-algebra

\[
K_R = \{ (z_\sigma)_\sigma \in K_C : z_\sigma = \overline{z_\sigma} \}
\]

consisting of the elements of \(K_C \) invariant under the involution \(F : (z_\sigma)_\sigma \mapsto (\overline{z_\sigma})_\sigma \). Here \(\overline{\sigma} \) denotes the embedding of \(K \) in \(\mathbb{C} \) that is obtained by composition of \(\sigma \) with complex conjugation.

On \(K_C \cong \mathbb{C}^n \), we have the standard hermitian scalar product \(\langle \cdot, \cdot \rangle \). It satisfies \(\langle Fz_1, Fz_2 \rangle = \langle z_1, z_2 \rangle \), so its restriction to \(K_R \) is a real scalar product that equips \(K_R \) with a Euclidean structure. In particular, we have a canonical volume function on \(K_R \). It naturally leads us to the following fundamental observation.

5.2. Lemma. Let \(R \) be an order in a number field \(K \). Then \(\Phi_K[R] \) is a lattice of co-volume \(|\Delta(R)|^{1/2} \) in \(K_R \).

Proof. Choose a \(\mathbb{Z} \)-basis \(\{x_1, x_2, \ldots, x_n\} \) for \(R \). Then \(\Phi_K[R] \) is spanned by the vectors \((\sigma x_i)_\sigma \in K_R \), and using the matrix \(X = (\sigma_i(x_j))_{i,j=1}^n \) from the proof of 4.6, we see that the co-volume of \(\Phi_K[R] \) equals

\[
|\det(\langle (\sigma x_i)_\sigma, (\sigma x_j)_\sigma \rangle)_{i,j=1}^n|^{1/2} = |\det(X^t \cdot \overline{X})|^{1/2} = |\Delta(R)|^{1/2}.
\]

If \(I \subset R \) is a non-zero ideal of norm \(N(I) = [R : I] \in \mathbb{Z} \), then 5.2 implies that \(\Phi_K[I] \) is a lattice of co-volume \(N(I) \cdot |\Delta(R)|^{1/2} \) in \(K_R \). To this lattice in \(K_R \) we will apply Minkowski’s theorem 5.1, which states that every sufficiently large symmetric box in \(K_R \) contains a non-zero element of \(\Phi_K[I] \).

In order to compute volumes in \(K_R \), we have a closer look at its Euclidean structure. Denote the real embeddings of \(K \) in \(\mathbb{C} \) by \(\sigma_1, \sigma_2, \ldots, \sigma_r \) and the pairs of complex embeddings of \(K \) by \(\sigma_{r+1}, \overline{\sigma_{r+1}}, \sigma_{r+2}, \overline{\sigma_{r+2}}, \ldots, \sigma_{r+s}, \overline{\sigma_{r+s}} \). Then we have \(r + 2s = n = [K : \mathbb{Q}] \), and an isomorphism of \(\mathbb{R} \)-algebras

\[
K_R \to \mathbb{R}^r \times \mathbb{C}^s
\]

\[
(z_\sigma) \mapsto (z_{\sigma_1})_{i=1}^{r+s}
\]