AimsThe course aims at familiarising students with statistical techniques with applications to astronomical research. ContentsThe course will present fundamental notions in statistics and specific statistical techniques with applications to astronomical research. The topics covered are the basics of probability theory, point estimation, confidence intervals, hypothesis testing, regression, and others. Methods will be illustrated using the statistical software package R. LiteratureAll of Statistics by Larry Wasserman (used copies are sometimes available on Amazon and elsewhere on the web; electronic version is available through the university library, and Springer sells the MyCopy Softcover Edition at a cheaper price than hard copies) and handouts. A partial use of Julian J. Faraway, Practical Regression and Anova in R, will also be made. The book can be downloaded here. Another book we will use is Christian Ritz and Jens Carl Streibig, Nonlinear Regression with R (electronic version is available through the university library, and Springer sells the MyCopy Softcover Edition at a cheaper price than hard copies). Finally, S. Andreon and B. Weaver, Bayesian Methods for the Physical Sciences, will be used for some examples (electronic version is available through the university library, and Springer sells the MyCopy Softcover Edition at a cheaper price than hard copies). RGet R installed on your computer. A short guide to R in Dutch is available here. A number of manuals in English can be found here. Since the R interface is rather basic, you might also consider installing RStudio, a free and open source integrated development environment for R (runs under Windows, Mac, or Linux). Handy tools included in R, that enable embedding the R code within LaTeX documents to generate a pdf file with analyses, graphics and the results of computations, are Sweave and knitr. They are fully supported by RStudio: a few basic directions for their use from within RStudio can be consulted here.
PeopleLectures by Shota Gugushvili, exercise classes by Dong Yan. Office hourNo fixed office hour, but you are welcome drop by (Snellius building 226). Send an email beforehand. Schedule
Location
Homework assignmentsThe homework assignments will be made available for download in due time. ExamThere will be a written exam (open book).
The exam is on topics covered in the class. For a passing grade one needs to know basic notions from probability and statistics and how to apply them to solve various exercises. Memorising specific formulae is not required, provided one is able to locate them in the textbook. Old exams can be found here, but note that at that time a different textbook was used. For an old exam from 2015 see here. GradingThe final grade is a weighted sum of the grade for homework assignments (30%) and the grade for the written exam (70%). The written exam can be retaken. Grades for the homework assignments remain valid for the retake. Useful links
(Check back regularly. Last updated: 15 May 2017)
Back to the main page. |