Supplement to my solution of the three doors problem

Richard Gill ${ }^{*}$

April 21, 2009

In the three doors problem we have the choice of the quiz-Team (if you like, the True door), the choice of the Player, and the choice of Quizmaster. I will denote these by T, P, Q. The player must choose between keeping with his own door and switching to the Other closed door, which I will denote O. These variables take values in the set $\{1,2,3\}$. I'll assume that T and P are statistically independent. We know that $Q \neq T$ and that (P, Q, O) is a permutation of $\{1,2,3\}$.

One may be interested in $\operatorname{Pr}(O=T)$, or one may be interested in $\operatorname{Pr}(O=T \mid P=1, Q=2)$: these are the unconditional and the conditional probabilities (in a particular situation) that a player ought to switch doors.

I consider the game built up in three stages, namely the determination of T, P, Q in turn by the quizteam, the player and the quizmaster. I consider the joint probability law of the triple as correspondingly built up from $\operatorname{law}(T)$, $\operatorname{law}(P \mid T)$, and law $(Q \mid T, P)$. By assumption, for the second component we have $\operatorname{law}(P \mid T)=\operatorname{law}(P)$.

Concerning the unconditional probability, one sees immediately that

$$
\operatorname{Pr}(O=T)=1-\operatorname{Pr}(P \neq T)=\frac{2}{3}
$$

if either $P \sim$ Unif or $Q \sim$ Unif.
Regarding the conditional probability, we have

$$
\begin{gathered}
\operatorname{Pr}(O=T \mid P=1, Q=2)=\operatorname{Pr}(T=3 \mid P=1, Q=2)=\frac{\operatorname{Pr}(T=3, P=1, Q=2)}{\operatorname{Pr}(P=1, Q=2)} \\
=\frac{\operatorname{Pr}(T=3) \operatorname{Pr}(P=1) \operatorname{Pr}(Q=2 \mid T=3, P=1)}{\operatorname{Pr}(T=3) \operatorname{Pr}(P=1) \operatorname{Pr}(Q=2 \mid T=3, P=1)+\operatorname{Pr}(T=1) \operatorname{Pr}(P=1) \operatorname{Pr}(Q=2 \mid T=1, P=1)} \\
=\frac{1}{1+\operatorname{Pr}(Q=2 \mid T=1, P=1)}
\end{gathered}
$$

where the last step results from first canceling out $\operatorname{Pr}(P=1)$, then using $\operatorname{Pr}(T=1)=\operatorname{Pr}(T=3)$ and canceling, and finally using $\operatorname{Pr}(Q=2 \mid T=3, P=1)=1$.

Since $\operatorname{Pr}(Q=2 \mid T=1, P=1)$ is at most 1 and at least $0, \operatorname{Pr}(O=T \mid P=1, Q=2)$ is at least $\frac{1}{2}$ and at most 1.

Conclusions. As long at $T \sim$ Unif is never hurts to switch and it does sometimes pay (it certainly pays on average). As long as $P \sim$ Unif it pays on average to switch. Regarding the conditional probability however, we only obtain in this case $\operatorname{Pr}(O=T \mid P=1, Q=2)=\operatorname{Pr}(T=$ $3) /(\operatorname{Pr}(T=3)+\operatorname{Pr}(T=1) \operatorname{Pr}(Q=2 \mid T=1, P=1))$ which can be as low as 0 , namely when $\operatorname{Pr}(T=3)=0$. This is where the game theoretic approach offers consolation. Whatever strategy is chosen by the quizteam and quizmaster, the player who chooses uniformly at random and always switches is guaranteed a win-chance of $2 / 3$, and there is no way to guarantee a better win-chance. Too bad that he then loses when the car happens to be behind door 1 and he chooses door 1 (so that the quizmaster chooses 2 and he switches). It's all part of his game. Of course he always loses if the quizteam never chooses 3 , on those occasions when he chooses 1 and the quizmaster chooses 2.

[^0]
[^0]: *Mathematical Institute, Leiden University; http://www.math.leidenuniv.nl/~gill

