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1. Absolute values

The p-adic absolute value |·|p on Q is defined as follows: if a ∈ Q, a 6= 0 then

write a = pmb/c where b, c are integers not divisible by p and put |a|p = p−m;

further, put |0|p = 0.

Example. Let a = −2−7385−3. Then |a|2 = 27, |a|3 = 3−8, |a|5 = 53, |a|p = 1

for p > 7.

We give some properties:

|ab|p = |a|p|b|p for a, b ∈ Q;

|a+ b|p 6 max(|a|p, |b|p) for a, b ∈ Q (ultrametric inequality).

Notice that the last property implies that

|a+ b|p = max(|a|p, |b|p) if |a|p 6= |b|p.

It is common to write the ordinary absolute value |a| = max(a,−a) on Q
as |a|∞, to call ∞ the ‘infinite prime’ and to define MQ := {∞} ∪ {primes}.
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Then we have the important product formula:∏
p∈MQ

|a|p = 1 for a ∈ Q, a 6= 0.

Absolute values on fields. We define more generally absolute values on

fields. Let K be any field. An absolute value on K is a function | · | : K → R>0

with the following properties:

|ab| = |a| · |b| for a, b ∈ K;

|a+ b| 6 |a|+ |b| for a, b ∈ K (triangle inequality);

|a| = 0⇐⇒ a = 0.

Note that these properties imply that |1| = 1. The absolute value | · | is called

non-trivial if there is a ∈ K with |a| 6= {0, 1}.

The absolute value | · | is called non-archimedean if the triangle inequality

can be replaced by the stronger ultrametric inequality

|a+ b| 6 max(|a|, |b|) for a, b ∈ K .

An absolute value not satisfying the ultrametric inequality is called archimedean.

If K is a field with absolute value | · | and L an extension of K, then an

extension or continuation of |·| to L is an absolute value on L whose restriction

to K is | · |.

Examples.

1) The ordinary absolute value | · | on Q is archimedean, while the p-adic

absolute values are all non-archimedean.

2) Let K be any field, and K(t) the field of rational functions of K. For a

polynomial f ∈ K[t] define |f | = 0 if f = 0 and |f | = edeg f if f 6= 0. Further,

for a rational function f/g with f, g ∈ K[t] define |f/g| = |f |/|g|. Verify that

this defines a non-archimedean absolute value on K(t).

Two absolute values | · |1, | · |2 on K are called equivalent if there is α > 0

such that |x|2 = |x|α1 for all x ∈ K. We state without proof the following

result:

Theorem 1.1 (Ostrowski). Every non-trivial absolute value on Q is equivalent

to either the ordinary absolute value or a p-adic absolute value for some prime

number p.
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Valuations. In algebra and number theory, one quite often deals with val-

uations instead of absolute values. A valuation on a field K is a function

v : K → R ∪ {∞} such that for some constant c > 1, c−v(·) defines a non-

archimedean absolute value on K. That is,

v(x) =∞⇐⇒ x = 0;

v(xy) = v(x) + v(y) for x, y ∈ K;

v(x+ y) > min(v(x), v(y)) for x, y ∈ K.

The valuation is called non-trivial if there is a ∈ K∗ with v(a) 6= 0. The set

v(K∗) is an additive subgroup of R. The valuation v is called discrete if v(K∗)

is a discrete subgroup of R. A normalized discrete valuation is one for which

v(K∗) = Z.

2. Completions

An absolute value preserving isomorphism between two fields K1, K2 with

absolute values | · |1, | · |2, respectively, is an isomorphism ϕ : K1 → K2 such

that |ϕ(x)|2 = |x|1 for x ∈ K1.

Let K be a field, | · | a non-trivial absolute value on K, and {ak}∞k=0 a

sequence in K.

We say that {ak}∞k=0 converges to α with respect to | · | if limk→∞ |ak − α| = 0.

Further, {ak}∞k=0 is called a Cauchy sequence with respect to | · | if

limm,n→∞ |am − an| = 0.

Notice that any convergent sequence is a Cauchy sequence.

We say that K is complete with respect to | · | if every Cauchy sequence

w.r.t. | · | in K converges to a limit in K. For instance, R and C are complete

w.r.t. the ordinary absolute value.

By mimicking the construction of R from Q, one can show that every field K

with an absolute value can be extended to an essentially unique field K̃, such

that K̃ is complete and every element of K̃ is the limit of a Cauchy sequence

from K.

Theorem 2.1. Let K be a field with absolute value | · |. There is an up to

absolute value preserving isomorphism unique extension field K̃ of K, called

the completion of K, having the following properties:
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(i) | · | can be continued to an absolute value on K̃, also denoted | · |, such that

K̃ is complete w.r.t. | · |;
(ii) K is dense in K̃, i.e., every element of K̃ is the limit of a sequence from

K.

Proof. We give a sketch. Cauchy sequences, limits, etc. are all with respect

to | · |.

The set of Cauchy sequences in K with respect to |·| is closed under termwise

addition and multiplication {an}+ {bn} := {an + bn}, {an} · {bn} := {an · bn}.
With these operations they form a ring, which we denote by R. It is not

difficult to verify that the sequences {an} such that an → 0 with respect to | · |
form a maximal ideal in R, which we denote byM. Thus, the quotient R/M
is a field, which is our completion K̃.

We define the absolute value |α| of α ∈ K̃ by choosing a representative

{an} of α, and putting |α| := limn→∞ |an|, where now the limit is with respect

to the ordinary absolute value on R. It is not difficult to verify that this is

well-defined, that is, the limit exists and is independent of the choice of the

representative {an}.

We may view K as a subfield of K̃ by identifying a ∈ K with the element

of K̃ represented by the constant Cauchy sequence {a}. In this manner, the

absolute value on K̃ constructed above extends that of K, and moreover, every

element of K̃ is a limit of a sequence from K. So K is dense in K̃. One shows

that K̃ is complete, that is, any Cauchy sequence {an} in K̃ has a limit in K̃,

by taking very good approximations bn ∈ K of an and then taking the limit of

the bn.

Finally, if K ′ is another complete field with absolute value extending that

on K such that K is dense in K ′ one obtains an isomorphism from K̃ to K ′

as follows: Take α ∈ K̃. Choose a sequence {ak} in K converging to α; this is

necessarily a Cauchy sequence. Then map α to the limit of {ak} in K ′. 2

Corollary 2.2. Assume that | · | is a non-archimedean absolute value on K.

Then the extension of | · | to K̃ is also non-archimedean.

Proof. Let a, b ∈ K̃. Choose sequences {ak}, {bk} in K that converge to

a, b, respectively. Then taking the limit of |ak + bk| 6 max(|ak|, |bk|) gives

|a+ b| 6 max(|a|, |b|). 2
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Ostrowski proved that any field complete with respect to an archimedean

absolute value is isomorphic to R or C. As a consequence, any field that can

be endowed with an archimedean absolute value is isomorphic to a subfield

of C. On the other hand, there is a much larger variety of fields with a non-

archimedean absolute value.

It is possible to define notions such as convergence, continuity, differentia-

bility, etc. for complete fields with a non-archimedean absolute value similarly

as for R or C, and this leads to non-archimedean analysis. One of the striking

features of non-archimedean analysis is the following very easy criterion for

convergence of series.

Lemma 2.3. Let K be a field complete w.r.t. a non-archimedean absolute

value | · |. Let {ak}∞k=0 be a sequence in K. Then
∑∞

k=0 ak converges in K if

and only if limk→∞ ak = 0.

Proof. Suppose that α :=
∑∞

k=0 ak converges. Then

an =
n∑
k=0

ak −
n−1∑
k=0

ak → α− α = 0.

Conversely, suppose that ak → 0 as k →∞. Let αn :=
∑n

k=0 ak. Then for any

integers m,n with 0 < m < n we have

|αn − αm| = |
n∑

k=m+1

ak| 6 max(|am+1|, . . . , |an|)→ 0 as m,n→∞ .

So the partial sums αn form a Cauchy sequence, hence must converge to a

limit in K. 2

Corollary 2.4. Let K be a field complete w.r.t. a non-archimedean absolute

value | · |. Then the sequence {ak}∞k=0 converges in K if and only if

lim
k→∞

(ak − ak−1) = 0.

Proof. Apply Lemma 2.3 to the series
∑∞

k=0 bk where b0 := a0 and bk :=

ak − ak−1 for k > 1. 2

Lemma 2.5. Let again K be a field complete w.r.t. a non-archimedean ab-

solute value | · |. Then every series
∑∞

k=0 ak convergent in K w.r.t. | · | is

unconditionally convergent, i.e., neither the convergence, nor the value of the

series, are affected if the terms ak are rearranged.
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Proof. Let σ be a bijection from Z>0 to Z>0. We have to prove that∑∞
k=0 aσ(k) =

∑∞
k=0 ak, or equivalently, that SM → 0 as M → ∞, where

SM :=
∑M

k=0 ak −
∑M

k=0 aσ(k).

Let ε > 0. There is N such that |ak| < ε for all k > N . Choose Nε such that

{σ(0), . . . , σ(Nε)} contains {0, . . . , N}. Then for every M > Nε, SM contains

only terms ak with k > N and aσ(k) with σ(k) > N . Hence each term in SM
has absolute value < ε and therefore, by the ultrametric inequality, |SM | < ε.

This proves our lemma. 2

For interchanging two infinite summations we have the following criterion:

Lemma 2.6. Let K be a field complete w.r.t. a non-archimedean absolute

value |·|. Let {amn}∞m,n=0 be a double sequence such that limmax(m,n)→∞ amn = 0.

Then both the expressions

∞∑
m=0

(
∞∑
n=0

amn

)
,

∞∑
n=0

(
∞∑
m=0

amn

)
converge and are equal.

Proof. Exercise. 2

3. P-adic numbers and p-adic integers

In everything that follows, p is a prime number. The completion of Q with

respect to | · |p is called the field of p-adic numbers, notation Qp.

The continuation of | · |p to Qp is also denoted by | · |p. This is a non-

archimedean absolute value. Convergence, limits, Cauchy sequences and the

like will all be with respect to | · |p.

Lemma 3.1. The value set of | · |p on Qp is {0} ∪ {pm : m ∈ Z}.

Proof. Let x ∈ Qp, x 6= 0. Choose a sequence {xk} in Q converging to x. For

k sufficiently large we have xk 6= 0 and thus, |xk|p = pmk for some mk ∈ Z.

Clearly, |x|p = limk→∞ p
mk = pm for some m ∈ Z. 2

The ring of p-adic integers is defined by

Zp := {x ∈ Qp : |x|p 6 1}.
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This is indeed a ring, since for any two x, y ∈ Zp we have |x−y|p 6 max(|x|p, |y|p) 6
1, and |xy|p 6 1. Hence x− y ∈ Zp and xy ∈ Zp.

The group of units, i.e., invertible elements of Zp is equal to

Z∗p = {x ∈ Qp : |x|p = 1}.

Notice that Zp contains Z, but also all numbers in Q with p-adic absolute

value 6 1, these are the rational numbers of the form a/b with a, b ∈ Z and

b not divisible by p. Further, the group Z∗p contains all rational numbers with

p-adic absolute value 1, these are the numbers of the form a/b with a, b ∈ Z
and p - ab.

For x, y ∈ Qp and m ∈ Z we write x ≡ y (mod pm) if (x−y)/pm ∈ Zp. Thus,

x ≡ y (mod pm)⇐⇒ |x− y|p 6 p−m.

For p-adic numbers, “very small” means “divisible by a high power of p”, and

two p-adic numbers x and y are p-adically close if and only if x− y is divisible

by a high power of p.

The above definition applies also to rational numbers of the form a/b with

a, b ∈ Z and p - b since these are contained in Zp. It is not difficult to show

that if a1, a2, b1, b2 are integers with p - b1b2 and m is a positive integer, then

a1 ≡ a2 (mod pm), b1 ≡ b2 (mod pm) =⇒ a1
b1
≡ a2
b2

(mod pm).

Lemma 3.2. For every α ∈ Zp and every positive integer m there is a unique

am ∈ Z such that

α ≡ am (mod pm), 0 6 am < pm.

Hence Z is dense in Zp.

Proof. There is a rational number a/b (with coprime a, b ∈ Z) such that

|α− (a/b)|p 6 p−m since Q is dense in Qp. At most one of a, b is divisible by p

and it cannot be b since |a/b|p 6 1. Hence there is an integer am with bam ≡ a

(mod pm) and 0 6 am < pm. Thus, α ≡ a/b ≡ am (mod pm). This shows the

existence of am. It is unique, since any residue class mod pm contains only one

integer from {0, . . . , pm − 1}. 2

We prove some algebraic properties of the ring Zp.
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Theorem 3.3. (i) The non-zero ideals of Zp are pmZp (m = 0, 1, 2, . . .). In

particular, pZp is the only maximal ideal of Zp.
(ii) Zp/pmZp ∼= Z/pmZ. In particular, Zp/pZp ∼= Fp.

Proof. (i). let I be a non-zero ideal of Zp and choose α ∈ I for which |α|p is

maximal. Let |α|p = p−m. Then p−mα ∈ Z∗p, hence pm ∈ I. Further, for β ∈ I
we have |βp−m|p 6 1, hence β ∈ pmZp. So I ⊂ pmZp. This implies I = pmZp.

(ii). The homomorphism Z/pmZ → Zp/pmZp: residue class of a mod pmZ
7→ residue class of a mod pmZp is injective since pmZp ∩ Z = pmZ. It is also

surjective in view of Lemma 3.2. So it is an isomorphism. 2

We now show that every element of Zp has a “Taylor series expansion,” and

every element of Qp a “Laurent series expansion” where instead of powers of

a variable X one takes powers of p.

Theorem 3.4. (i) Every element of Zp can be expressed uniquely as
∑∞

k=0 bkp
k

with bk ∈ {0, . . . , p− 1} for k > 0 and conversely, every such series belongs to

Zp.
(ii) Every element of Qp can be expressed uniquely as

∑∞
k=−k0 bkp

k with k0 ∈ Z
and bk ∈ {0, . . . , p− 1} for k > −k0 and conversely, every such series belongs

to Qp.

Proof. (i). First observe that by Lemma 2.3, a series
∑∞

k=0 bkp
k with bk ∈

{0, . . . , p−1} converges in Qp. Further, it belongs to Zp, since |
∑∞

k=0 bkp
k|p 6

maxk>0 |bkpk|p 6 1.

Let α ∈ Zp and let {am}∞m=1 be the sequence from Lemma 3.2. Write these

integers in their p-adic expansion. Since am+1 ≡ am (mod pm) for m > 1, we

have a1 = b0, a2 = b0+b1p, a3 = b0+b1p+b2p
2, . . . ,am = b0+b1p+· · ·+bm−1pm−1

where b0, b1, . . . ∈ {0, . . . , p− 1}. It follows that

α = lim
m→∞

m∑
k=0

bkp
k =

∞∑
k=0

bkp
k

This expansion is unique since the integers am are uniquely determined.

(ii). As above, any series
∑∞

k=−k0 bkp
k with bk ∈ {0, . . . , p − 1} converges

in Qp. Let α ∈ Qp with α 6= 0. Suppose that |α|p = pk0 . Then β := pk0α has

|β|p = 1, so it belongs to Zp. Now multiply the p-adic expansion of β with

p−k0 . 2
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Corollary 3.5. Zp is uncountable.

Proof. Apply Cantor’s diagonal method. 2

We use the following notation:

α = 0. b0b1 . . . (p) if α =
∑∞

k=0 bkp
k,

α = b−k0 · · · b−1 . b0b1 . . . (p) if α =
∑∞

k=−k0 bkp
k with k0 < 0.

We can describe various of the definitions given above in terms of p-adic ex-

pansions. For instance, for α ∈ Qp we have |α|p = p−m where α =
∑∞

k=m bkp
k

with bk ∈ {0, . . . , p − 1} for k > m and bm 6= 0. next, if α =
∑∞

k=0 akp
k,

β =
∑∞

k=0 bkp
k ∈ Zp with ak, bk ∈ {0, . . . , p− 1}, then

α ≡ β (mod pm)⇐⇒ ak = bk for k < m.

For p-adic numbers given in their p-adic expansions, one has the same addition

with carry algorithm as for real numbers given in their decimal expansions,

except that for p-adic numbers one has to work from left to right instead of

right to left. Likewise, one has subtraction and multiplication algorithms for

p-adic numbers which are precisely the same as for real numbers apart from

that one has to work from left to right instead of right to left.

We describe an algorithm to compute the digits of the p-adic expansion of

α ∈ Zp. Let

α =
∞∑
k=0

bkp
k = 0 . b0b1b2 . . . (p)

with bk ∈ {0, . . . , p− 1}. Define

αk :=
∞∑
m=k

bmp
m−k = 0 . bkbk+1bk+2 . . . (p)

Then the p-adic integers αk and digits bk can be computed inductively as

follows:

α0 := α;

For k = 0, 1, . . . , determine bk such that αk ≡ bk (mod p) and bk ∈ {0, . . . , p−
1}, and compute αk+1 := (αk − bk)/p.

Theorem 3.6. Let α =
∑∞

k=−k0 bkp
k with bk ∈ {0, . . . , p − 1} for k > −k0.

Then

α ∈ Q⇐⇒ {bk}∞k=−k0 is ultimately periodic.
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Proof. ⇐= Exercise.

=⇒ Without loss of generality, we assume that α ∈ Zp (if α ∈ Qp with

|α|p = pk0 , say, then we proceed further with β := pk0α which is in Zp).

Suppose that α = A/B with A,B ∈ Z, gcd(A,B) = 1. Then p does not

divide B (otherwise |α|p > 1). Let C := max(|A|, |B|). Let {αk}∞k=0 be

the sequence defined above. Notice that αk determines uniquely the numbers

bk, bk+1, . . ..

Claim. αk = Ak/B with Ak ∈ Z, |Ak| 6 C.

This is proved by induction on k. For k = 0 the claim is obviously true.

Suppose the claim is true for k = m where m > 0. Then

αm+1 =
αm − bm

p
=

(Am − bmB)/p

B
.

Since αm ≡ bm (mod p) we have that Am− bmB is divisible by p. So Am+1 :=

(Am − bmB)/p ∈ Z. Further,

|Am+1| 6
C + (p− 1)B

p
6 C.

This proves our claim.

Now since the integers Ak all belong to {−C, . . . , C}, there must be indices

l < m with Al = Am, that is, αl = αm. But then, bk+m−l = bk for all k > l,

proving that {bk}∞k=0 is ultimately periodic. 2

Example. We determine the 3-adic expansion of − 2
135

= −2
5
· 3−3. We start

with the 3-adic expansion of −2
5
. Notice that a

5
≡ 2a (mod 3) for a ∈ Z.

k 0 1 2 3 4

αk −2
5
−4

5
−3

5
−1

5
−2

5

bk 2 1 0 1 2

It follows that the sequence of 3-adic digits {bk}∞k=0 of −2
5

is periodic with

period 2, 1, 0, 1 and that

−2

5
= 2× 30 + 1× 31 + 0× 32 + 1× 33 + 2× 34 + 1× 35 + 0× 36 + 1× 37 + · · ·

= 0 .2101 2101 . . . (3).

Hence

− 2

135
= 210 . 1210 1210 . . . (3).
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Conversely, we can recover the rational number from its expansion. Check

that if |x|p < 1 then 1 + x+ x2 + · · · = 1/(1− x). Thus,

210 . 1210 1210 . . . (3)

= 2× 3−3 + 1× 3−2 + 0× 3−1 +

+
(
1× 30 + 2× 31 + 1× 32 + 0× 33

) (
1 + 34 + 38 + · · ·

)
=

5

27
+

16

1− 34
= − 2

135
.

4. The p-adic topology

The ball with center a ∈ Qp and radius r in the value set {0}∪{pm : m ∈ Z}
of |·|p is defined by B(a, r) := {x ∈ Qp : |x−a|p 6 r}. Notice that if b ∈ B(a, r)

then |b − a|p 6 r. So by the ultrametric inequality, for x ∈ B(a, r) we have

|x − b|p 6 max(|x − a|p, |a − b|p) 6 r, i.e. x ∈ B(b, r). So B(a, r) ⊆ B(b, r).

Similarly one proves B(b, r) ⊆ B(a, r). Hence B(a, r) = B(b, r). In other

words, any point in a ball can be taken as center of the ball.

We define the p-adic topology on Qp as follows. A subset U of Qp is called

open if for every a ∈ U there is m > 0 such that B(a, p−m) ⊂ U . It is easy to

see that this topology is Hausdorff: if a, b are distinct elements of Qp, and m

is an integer with p−m < |a− b|p, then the balls B(a, p−m) and B(b, p−m) are

disjoint.

But apart from this, the p-adic topology has some strange properties.

Theorem 4.1. Let a ∈ Qp, m ∈ Z. Then B(a, p−m) is both open and compact

in the p-adic topology.

Proof. The ball B(a, p−m) is open since for every b ∈ B(a, p−m) we have

B(b, p−m) = B(a, p−m).

To prove the compactness we modify the proof of the Heine-Borel theorem

stating that every closed bounded set in R is compact. Assume that B0 :=

B(a, p−m) is not compact. Then there is an infinite open cover {Uα}α∈A of

B0 no finite subcollection of which covers B0. Take x ∈ B(a, pm). Then

|(x − a)/pm|p 6 1. Hence there is b ∈ {0, . . . , p − 1} such that x−a
pm
≡ b (mod

p). But then, x ∈ B(a + bpm, p−m−1). So B(a, pm) = ∪p−1b=0B(a + bpm, p−m−1)

is the union of p balls of radius p−m−1. It follows that there is a ball B1 ⊂
B(a, p−m) of radius p−m−1 which can not be covered by finitely many sets from
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{Uα}α∈A. By continuing this argument we find an infinite sequence of balls

B0 ⊃ B1 ⊃ B2 ⊃ · · · , where Bi has radius p−m−i, such that Bi can not be

covered by finitely many sets from {Uα}α∈A.

We show that the intersection of the balls Bi is non-empty. For i > 0, choose

xi ∈ Bi. Thus, Bi = B(xi, p
−m−i). Then {xi}i>0 is a Cauchy sequence since

|xi − xj|p 6 p−m−min(i,j) → 0 as i, j → ∞. Hence this sequence has a limit x∗

in Qp. Now we have |xi − x∗|p = limj→∞ |xi − xj|p 6 p−m−i, hence x∗ ∈ Bi,

and so Bi = B(x∗, p−m−i) for i > 0.

The point x∗ belongs to one of the sets, U , say, of {Uα}α∈A. Since U is

open, for i sufficiently large the ball Bi must be contained in U . This gives a

contradiction. 2

Corollary 4.2. Every non-empty open subset of Qp is disconnected.

Proof. Let U be an open non-empty subset of Qp. Take a ∈ U . Then B :=

B(a, p−m) ⊂ U for some m ∈ Z. By increasing m we can arrange that B is

strictly smaller than U . Now B is open and also U \ B is open since B is

compact. Hence U is the union of two non-empty disjoint open sets. 2

5. P-adic power series

We consider power series

f(x) =
∞∑
k=0

ak(x− x0)k

where x0 ∈ Qp and ak ∈ Qp for all k. By Lemma 2.3, we have

(5.1) f(x) converges on B(x0, p
−m)⇐⇒ lim

k→∞
|ak|pp−mk = 0.

In particular, f(x) =
∑∞

k=0 akx
k converges on Zp = B(0, 1) if and only if

limk→∞ |ak|p = 0. Consider the set of power series converging on Zp,

O :=

{
∞∑
k=0

akx
k : ak ∈ Zp for k > 0, lim

k→∞
|ak|p = 0

}
.

Then O is a ring under addition and multiplication of power series. Notice

that O contains Zp[x].

Given power series f =
∑∞

k=0 akx
k, g =

∑∞
k=0 bkx

k ∈ O and a non-negative

integer m, we write f ≡ g (mod pm) if ak ≡ bk (mod pm) for all k > 0.
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In this section, we prove the following result.

Theorem 5.1 (Strassman). Let f(x) =
∑∞

k=0 akx
k ∈ O be a power series of

which not all coefficients are 0. Let k0 be the index such that

|ak|p 6 |ak0 |p for k 6 k0, |ak|p < |ak0|p for k > k0.

Then f(x) has at most k0 zeros in O.

By dividing f by ak0 , we see that there is no loss of generality to assume

that

(5.2) ak0 = 1, ak ∈ Zp for k 6 k0, ak ∈ pZp for k > k0.

We need some lemmas.

Lemma 5.2. Let R be a ring and g a monic polynomial in R[x]. Then for

every polynomial f ∈ R[x] there exist q, r ∈ R[x] such that

f = qg + r, r = 0 or deg r < deg g.

Proof. This is the usual division with remainder algorithm for polynomials.

Since g is monic, it holds for polynomials with coefficients in an arbitrary ring

R. 2

Lemma 5.3. Suppose that f satisfies (5.2). Then there are a monic polyno-

mial g ∈ Zp[x] of degree k0, and h ∈ O, such that

(5.3) f = g · h, h ≡ 1 (mod p).

Proof. We prove by induction on m that for m > 0 there are polynomials

gm, hm such that

(5.4)

{
f ≡ gmhm (mod pm+1), gm is monic, deg gm = k0, hm ≡ 1 (mod p),

gm ≡ gm−1 (mod pm), hm ≡ hm−1 (mod pm),

where g−1 = h−1 := 0. Suppose we have constructed such polynomials. Let

0 6 k 6 k0. Then the coefficients of Xk in g0, g1, . . . , form a Cauchy sequence,

and thus, they converge to a limit in Zp. As a consequence, the polynomials

gm converge to a monic polynomial g ∈ Zp[x] of degree k0. Likewise, for

every k > 0, the coefficients of Xk in hm form a Cauchy sequence and thus

converge to a limit in Zp. We note that the degrees of the polynomials hm may

increase to ∞. As a consequence, the polynomials hm converge to a power

series h ∈ O. We have h ≡ 1 (mod p) since hm ≡ 1 (mod p) for all m. The



14 MASTER COURSE DIOPHANTINE EQUATIONS, SPRING 2011

coefficients of f − gmhm converge to the coefficients of f − gh and on the other

hand to 0. Hence f = g · h.

We now come to the construction of the polynomials gm, hm. Note that (5.4)

holds for m = 0 with g0 :=
∑k0

k=0 akx
k, h0 = 1. Assume that (5.4) holds for

some m > 0. We have to construct gm+1, hm+1 such that (5.4) holds for m+ 1

instead of m.

We truncate f after an index k1 such that |ak|p 6 p−m−2 for k > k1, that

is, we take f1 :=
∑k1

k=0 akx
k. Then f ≡ f1 (mod pm+2), and thus, f1 ≡

gmhm (mod pm+1). This implies that there is a polynomial a ∈ Zp[x] such

that

f1 = gmhm + pm+1a.

By Lemma 5.2, there are polynomials q, r ∈ Zp[X] such that

a = qgm + r, with r = 0 or deg r < deg gm.

Now take

gm+1 := gm + pm+1r, hm+1 := hm + pm+1q.

Then we have the following congruences modulo pm+2:

f − gm+1hm+1 ≡ f1 − (gm + pm+1r)(hm + pm+1q)

≡ gmhm + pm+1a− gmhm − pm+1(qgm + rhm)− p2m+2qr

≡ pm+1(a− qgm − rhm)

≡ pm+1(a− qgm − r − r(hm − 1))

≡ 0 (mod pm+2).

Hence gm+1, hm+1 satisfy (5.4) with m + 1 instead of m. This completes our

induction step, and the proof of our lemma. 2

Proof of Theorem 5.1. Take g, h as in Lemma 5.3. Clearly, for x ∈ Zp we

have h(x) ≡ 1 (mod p), hence h(x) 6= 0. Therefore, the zeros of f in Zp are

those of g. So f has at most deg g = k0 zeros in Zp. 2

6. Algebraic extensions of Qp

The completion R of Q with respect to the ordinary absolute value has only

one non-trivial algebraic extension, namely C. Further, the ordinary absolute

value | · | on R has precisely one extension to C, given by |α| := |α · α|1/2 =

|NC/R(α)|1/2 for α ∈ C.



P-ADIC NUMBERS 15

In contrast, Qp has finite extensions of arbitrarily large degrees: for instance,

for every positive integer d, Xd−p is irreducible in Qp[X] and thus, Qp has an

algebraic extension of degree d. An interesting fact is, that for every positive

integer d, Qp has up to isomorphism only finitely many extensions of degree

d. We state without proofs some results on the extension of | · |p to finite

extensions of Qp.

Let K be a finite extension of Qp of degree d, say. Completely similarly

as for algebraic number fields, there is α ∈ K such that K = Qp(α). Let

f(X) = Xd + a1X
d−1 + · · · + ad ∈ Qp[X] be the minimal polynomial of α

over Qp. Let α1, . . . , αd be the distinct zeros of f in the algebraic closure Qp

of Qp. These give rise to precisely d distinct Qp-embeddings (i.e., injective

homomorphisms leaving elements of Qp unchanged) of K in Qp, say σ1, . . . , σd
with σi(α) = αi for i = 1, . . . , d.

We define the norm of K over Qp by

NK/Qp(α) =
d∏
i=1

σi(α) for α ∈ K.

We state without proof the following result.

Theorem 6.1. Let K be a finite extension of Qp. Then | · |p can be continued

in precisely one way to K, and K is complete with respect to this continuation.

If we denote this continuation also by | · |p, then we have

|α|p = |NK/Qp(α)|1/[K:Qp]
p for α ∈ K.

One can show that if Qp(α) = K and f(X) = Xd+a1X
d−1+· · ·+ad ∈ Qp[X]

is the minimal polynomial of α over Qp, then

NK/Qp(α) = (−1)dad.

More generally, if Qp(α) 6= K, then the degree d of f divides [K : Qp], and we

have

NK/Qp(α) =
(
(−1)dad

)[K:Qp]/d
.

This yields

(6.1) |α|p = |ad|1/dp .

Given a finite extension K of Qp, we define the ring of p-adic integers of K,

Op,K := {α ∈ K : |α|p 6 1}.
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Then

mp,K := {α ∈ K : |α|p < 1}

is a maximal ideal of Op,K and

Op,K/mp,K

is a field, the residue class field of K.

Let d := [K : Qp]. Then the value group |K∗|p := {|α|p : α ∈ K∗} is

a subgroup of the multiplicative cyclic group generated by p−1/d. So |K∗|p
is generated by p−1/eK for some positive divisor eK of d. We call eK the

ramification index of K.

One can show that Op,K/mp,K is a finite extension of Zp/pZp = Fp. The

degree fK := [Op,K/mp,K : Zp/pZp] is called the residue class degree of K. We

state without proof the following results. Given α ∈ Op,K , we write α for the

corresponding residue class in Op,K/mp,K .

Theorem 6.2. Let K be a finite extension of Qp with ramification index e =

eK and residue class degree f = fK.

(i) [K : Qp] = e · f .

(ii) Let π be an element of Op,K with |π|p = p−1/e, and let ω1, . . . , ωf be

elements of Op,K such that ω1, . . . , ωf form a basis of Op,K/mp,K over Fp =

Zp/pZp. Then Op,K is a free Zp-module with basis

{πiωj : i = 0, . . . , e− 1, j = 1, . . . , f},

i.e., every element of Op,K can be expressed uniquely in the form

e−1∑
i=0

f∑
j=1

xijπ
iωj with xij ∈ Zp.

Examples.

1. Let K = Q3(
√

3) = {a+ b
√

3 : a, b ∈ Q3}, where
√

3 is one of the roots of

X2 − 3. Notice that
√

3 6∈ Q3. For |
√

3|23 = 3−1, hence |
√

3|3 does not belong

to the value set of | · |3 on Q3. In general, we have for a, b ∈ Q3,

|a+ b
√

3|3 = |NQ3(
√
3)/Q3

(a+ b
√

3)|1/23 = |a2 − 3b2|1/23

= max(|a|3, 3−1/2|b|3).
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This implies

O3,K = {a+ b
√

3 : a, b ∈ Z3},
m3,K = {a+ b

√
3 : a ∈ 3Z3, b ∈ Z3} =

√
3O3,K ,

O3,K/m3,K
∼= Z3/3Z3 = F3.

This confirms that eK = 2, fK = 1.

2. Let K = Q3(i) = {a + bi : a, b ∈ Q3}, where i is a root of X2 + 1. The

polynomial X2 + 1 does not have roots modulo 3, so it is irreducible in Q3[X].

We have for a, b ∈ Q3,

|a+ bi|3 = |a2 + b2|1/23 = max(|a|3, |b|3),

hence

O3,K = {a+ bi : a, b ∈ Z3},
m3,K = {a+ bi : a, b ∈ 3Z3} = 3O3,K ,

O3,K/m3,K = {a+ bi : a, b ∈ F3} = F3(i).

This confirms that eK = 1, fK = 2.

We can extend | · |p to the algebraic closure Qp: given α ∈ Qp, take any

finite extension K of Qp containing α and put

|α|p := |NK/Qp(α)|1/[K:Qp]
p .

(6.1) gives an alternative expression which is independent of the choice of K.

We finish with stating some facts without proof.

Theorem 6.3. (i) Qp is not complete with respect to | · |p.
(ii) The completion Cp of Qp with respect to | · |p is algebraically closed.

7. The zero set of a linear recurrence sequence

The Norwegian mathematician Thoralf Skolem introduced techniques from

p-adic analysis to prove results on Diophantine equations. As an example we

prove a result on linear recurrence sequences.

A linear recurrence sequence in C is a sequence U = {uk}∞k=0 given by a

linear recurrence

(7.1) un = c1un−1 + · · ·+ ckun−k (n > k)



18 MASTER COURSE DIOPHANTINE EQUATIONS, SPRING 2011

with coefficients c1, . . . , ck ∈ C and ck 6= 0, and by initial values

(7.2) u0, . . . , uk−1 ∈ C.

The linear recurrence relation satisfied by U is not uniquely determined. It is

however not difficult to show that there is only one linear recurrence relation

of minimal length satisfied by U . This minimal length is called the order of

U .

Let (7.1) be the linear recurrence of minimal length satisfied by U . Then

the polynomial

(7.3) fU(X) := Xk − c1Xk−1 − · · · − ck

is called the companion polynomial of f .

Remark. Denote by IU the set of polynomials a0X
m + a1X

m−1 + · · ·+ am ∈
C[X] such that

a0un + a1un−1 + · · ·+ amun−m = 0 for all n > m.

Then IU is an ideal of the polynomial ring C[X] generated by fU , i.e., all

polynomials in IU are divisible by fU , see Exercise 10.

Theorem 7.1. Let f = Xk − c1Xk−1 − · · · − ck ∈ C[X] with ck 6= 0. Suppose

that f factorizes over C as

(7.4) f = (X − α1)
e1 · · · (X − αt)et ,

where α1, . . . , αt are distinct, and e1, . . . , et are positive integers. let U =

{un}∞n=0 be a sequence in C. Then the following two assertions are equivalent:

(i) U satisfies

(7.1) un = c1un−1 + c2un−2 + · · ·+ ckun−k (n > k).

(ii) There are polynomials f1, . . . , ft ∈ C[X] of degrees at most e1−1, . . . , et−1,

respectively such that

(7.5) un =
t∑

h=1

fh(n)αnh for n > 0.

Moreover, the polynomials f1, . . . , ft are uniquely determined by U .
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Proof. We first show that (i) implies (ii). Take a sequence U with (7.1). Define

the k × k-matrix

A =


0 1 0

0 1 0
. . .

1

ck ck−1 · · · · · · c1


For n > 0 let un := (un, . . . , un+k−1)

T . Then un+1 = Aun for n > 0 and thus,

(7.6) un = Anu0 for n > 0.

Check that the characteristic polynomial of A is det(XI −A) = f(X). There

is a non-singular matrix C such that A = C−1JC, where J is a Jordan Normal

Form of A. We may take

J =

 J1
. . .

Jt


where for h = 1, . . . , t, Jh is the Jordan block of order eh associated with αh,

i.e.,

Jh =


αh 1

αh 1
. . . 1

αh

 = αh ·


1 α−1h

1 α−1h
. . . α−1

1

 .

By induction on n we have

Jnh = αnh ·


(
n
0

) (
n
1

)
α−1h · · ·

(
n

eh−1

)
α−eh+1
h(

n
0

)
· · ·

(
n

eh−2

)
α−eh+2
h

. . .
...(
n
0

)

 .

This implies that An = C−1JnC =
(
Eij(n)

)
i,j=1,...,k

, where

Eij(n) =
t∑

h=1

f
(ij)
h (n)αnh with f

(ij)
h ∈ C[X], deg f

(ij)
h 6 eh − 1.

By substituting this into (7.6) and taking the first coordinate, we get (7.5) with

some polynomials f1, . . . , ft of degrees at most e1 − 1, . . . , et − 1, respectively.

This implies (ii).
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We still have to prove (ii)=⇒(i) and the unicity of f1, . . . , ft. Let V be

the set of sequences U satisfying (7.1). Then V is a complex vector space.

Its dimension is k, since any k-tuple of initial values u0, . . . , uk−1 ∈ C can

be extended uniquely to a sequence U satisfying (7.1). Next, let W be the

set of sequences U satisfying (7.5) for certain polynomials f1, . . . , ft of degrees

at most e1 − 1, . . . , et − 1, respectively. Also W is a complex vector space,

generated by the sequences {njαnh}∞n=0, for h = 1, . . . , t, j = 0, . . . , eh − 1.

Note that the number of these generators is e1 + · · · + et = k; so W has

dimension 6 k. We have just shown that V ⊆ W . Hence W must have

dimension equal to k = dimV and so, V = W . This implies the equivalence

of (i) and (ii). Further, {njαnh}∞n=0, (h = 1, . . . , t, j = 0, . . . , eh − 1) must form

a basis of W = V . Hence any sequence in V can be expressed uniquely in the

form (7.5). This completes our proof. 2

Corollary 7.2. Let again

f = Xk − c1Xk−1 − · · · − ck = (X − α1)
e1 · · · (X − αt)et ∈ C[X],

where ck 6= 0, α1, . . . , αt are distinct, and e1 > 0, . . . , et > 0, and let U =

{un}∞n=0 be a sequence in C. Then the following two assertions are equivalent:

(i) U is a linear recurrence sequence with companion polynomial f .

(ii) There are polynomials f1, . . . , ft ∈ C[X] of degrees exactly e1−1, . . . , et−1,

respectively such that

(7.5) un =
t∑

h=1

fh(n)αnh for n > 0.

Proof. First assume that U has companion polynomial f . Then k := deg f is

the length of the minimal recurrence satisfied by U . By Theorem 7.1 we know

that un =
∑t

h=1 fh(n)αn with deg fh =: e′h − 1 6 eh − 1 for h = 1, . . . , t. Then

again by Theorem 7.1, U satisfies a linear recurrence of length e′1 + · · · + e′t
corresponding to the polynomial (X − α1)

e′1 · · · (X − αt)e
′
t . So e′1 + · · · e′t > k.

Hence e′h = eh for h = 1, . . . , t.

Conversely, let U = {un} with un =
∑t

h=1 fh(n)αnh where deg fh = eh − 1

for h = 1, . . . , t. By Theorem 7.1, U satisfies (7.1). By the above remark, the

companion polynomial of U divides f , so it is of the shape (X−α1)
e′1 · · · (X−

αt)
e′t with e′h 6 eh, say. But then, by Theorem 7.1, fh has degree at most
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e′h − 1, for h = 1, . . . , t. Hence e′h = eh for h = 1, . . . , t, and the companion

polynomial of U is f . 2

We are interested in the zero set of a linear recurrence sequence,

(7.7) ZU := {n ∈ Z>0 :, un =
t∑

h=1

fh(n)αnh = 0}.

Equations of the shape
∑t

h=1 fh(n)αnh = 0 are called exponential-polynomial

equations.

Example. Let U be given by

un := 1
2

(2n + (−2)n) + (n− 1)

(
ωn+1 − ω−n−1

ω − ω−1

)
(ω = e2πi/3).

By Corollary 7.2, U has companion polynomial

(X− 2)(X + 2)(X−ω)2(X−ω−1)2 = X6 + 2X5−X4− 6X3− 11X2− 8X− 4,

so it is a linear recurrence sequence of order 6.

By considering n ≡ 0 (mod 6), n ≡ 1 (mod 6), . . . one verifies that

ZU = {0, 1} ∪ {n ∈ Z>0 : n ≡ 5 (mod 6)}

(check this). This example was specifically constructed to make it easy to com-

pute the set ZU . In case that k := deg fU 6 3 and the αi and the coefficients

of the fi are algebraic numbers there exists an algorithm to determine the set

ZU which is based on lower bounds for linear forms in logarithms. But for

k > 3 such an algorithm is not known.

The next theorem describes the structure of the set of solutions of (7.7).

It was proved first by Skolem in 1934 for the case that U is a sequence in Z,

then by Mahler in 1935 for the case that U consists of algebraic numbers, and

finally, in 1953 by Lech for arbitrary linear recurrence sequences in C.

Theorem 7.3 (Skolem, Mahler, Lech). The set ZU is either finite, or a union

of a finite set and a finite number of infinite arithmetic sequences.

Under an additional hypothesis, it can be shown that there are no infinite

arithmetic sequences in ZU , and thus, that the set of solutions is finite.

Corollary 7.4. Let t > 2. Suppose that the polynomials fi in (7.7) are non-

zero, and that none of the quotients αi/αj (1 6 i < j 6 t) is a root of unity.

Then the set ZU is finite.
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Proof. Suppose that ZU contains an infinite arithmetic sequence, say {a+dm :

m ∈ Z>0}. That is,

vm :=
t∑

h=1

gh(m)βmh = 0 for all m ∈ Z>0,

where

gh(X) = fh(a+ dX)αah, βh = αdh.

If any two numbers βi, βj were equal, we would have (αi/αj)
d = 1, contradict-

ing our assumption. Hence β1, . . . , βt are distinct. Theorem 7.1 implies that

the polynomials g1, . . . , gt are identically 0, hence the polynomials f1, . . . , ft
are identically 0, which is again against our assumption. 2

To prove Theorem 7.3, we want to apply techniques from p-adic analysis.

For this, we have to map U to a sequence in Qp.

Denote by {v1, . . . , vm} the set of coefficients of the polynomials f1, . . . , ft
in (7.5), and let

K = Q(v1, . . . , vm, α1, . . . , αt)

be the field generated by the vi and the αh, i.e., consisting of all expressions

f/g where f, g are polynomials in the vi and αh with coefficients from Q.

Clearly, un ∈ K for all n > 0. Note that a priori the vi and αh are just

complex numbers, with the αh 6= 0. So these numbers may be algebraic or

transcendental.

First suppose that v1, . . . , vm, α1, . . . , αt are algebraic, i.e., K is an algebraic

number field. Similarly as one may embed K in C, one may embed K in any

algebraically closed field that contains Q. So in particular, one may embed

K in Qp for any prime number p. Thus, we can map the sequence U to a

sequence in Qp with the same set of zeros, and apply techniques from p-adic

analysis on Qp.

The Chebotarev density theorem from algebraic number theory implies that

there are infinitely many primes p such that K can be embedded in Qp. Thus,

by choosing the prime p appropriately, we can work also on Qp itself instead

of an algebraic extension.

Now assume that not all v1, . . . , vm, α1, . . . , αt are algebraic. Lech showed

that also in this general case, there are infinitely many primes p, such that the

field K can be embedded in Qp. We leave aside the intricate proof of this fact.
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Thus, in all cases, the sequence U can be mapped to a sequence of which the

coefficients of the polynomials fh and the numbers αh all lie in Qp. In fact, by

a careful choice of the prime p we can see to it that

fh ∈ Zp[X], αh ∈ Z∗p for h = 1, . . . , t.

This is what we assume henceforth.

The idea of the proof is then to define a power series

u(x) :=
t∑

h=1

fh(x)αxh

and to apply Theorem 5.1, to get a hand on the zeros in Zp. The problem

is that for this, we have to define αxh as a power series and this is not always

possible.

In analogy to the well-known expansion over R or C, we define

(1 + β)x =
∞∑
k=0

(
x

k

)
βk for β, x ∈ Zp with |β|p 6 1/p,

where (
x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
.

Notice that for x = n a non-negative integer, this coincides with the usual

definition for (1 + β)n.

We show that the series converges. Choose a sequence of positive integers

xn → x. Then
(
xn
k

)
→
(
x
k

)
since also in the p-adic setting, polynomials are

continuous. The numbers
(
xn
k

)
are all integers, so

(
x
k

)
∈ Zp. This implies that

|
(
x
k

)
βk|p 6 |βk|p → 0 as k →∞. Hence indeed, the series converges.

We want to express (1 + β)x as a power series in x. Put r := 1 if p > 2,

r := 2 if p = 2.

Lemma 7.5. . Suppose that |β|p 6 p−r. Then there is a power series expan-

sion

(1 + β)x =
∞∑
k=0

ckx
k

which converges for x ∈ Zp.
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Proof. Assume that we have shown that |βk/k!|p → 0 as k →∞. Let x ∈ Zp.
Then

(1 + β)x =
∞∑
k=0

βk

k!
x(x− 1) · · · (x− k + 1)

=
∞∑
k=0

βk

k!

k∑
j=0

akjx
j with akj ∈ Z

=
∞∑
j=0

(
∞∑
k=j

βk

k!
akj

)
xj.

Interchanging the summations is allowed by Lemma 2.6, and the expressions

between the parentheses converge. This yields our power series expression.

It remains to show that |βk/k!|p → 0 as k → ∞. We first estimate |k!|p.
Among {1, . . . , k} there are precisely [k/p] multiples of p which together con-

tribute [k/p] factors p to the prime factorization of k!. Further, among these

integers there are precisely [k/p2] multiples of p2 which contribute another

[k/p2] factors p; and so on. Thus, the maximal power of p dividing k! is

[k/p] + [k/p2] + [k/p3] + · · · < k

p− 1
,

and so, |βk/k!|p 6 pk/(p−1)−kr → 0 as k →∞. This completes our proof. 2

We are now ready to complete the proof of Theorem 7.3. Put again r = 1

if p > 2 and r = 2 if p = 2. Further, set D = p − 1 if p > 2 and D = 2

if p = 2. Then the unit group (Zp/prZp)∗ has order D. This implies that

αDh ≡ 1 (mod pr), i.e., αDh = 1 + βh with |βh|p 6 p−r. We now split up ZU into

residue classes modulo D, i.e., we consider the sets

Za := {m ∈ Z>0 : ua+Dm = 0} for a = 0, . . . , D − 1.

Now indeed,

ua(x) :=
t∑

h=1

fi(a+Dx)αa+Dxh =
t∑

h=1

fi(a+Dx)αah(1 + βh)
x

is a power series converging on Zp with ua(m) = ua+Dm for m ∈ Z>0. By

Theorem 5.1, ua(x) is either identically 0, or it has only finitely many zeros

on Zp. This implies that either Za = Z>0, or is finite. As a consequence, the
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solution set of (7.7) is indeed the union of a finite set and finitely many infinite

arithmetic sequences. 2

An important problem is to estimate the cardinality of the finite set and of

the number of arithmetic sequences that occur in the set of solutions of (7.7).

The following result is due to W.M. Schmidt. Let U be a linear recurrence

sequence in C of order k. Let A(U) denote the cardinality of the finite set in

ZU , and B(U) the number of arithmetic sequences in ZU . Then

A(U) +B(U) 6 exp exp exp(20k).

The importance of this bound is that it depends only on k and not on any other

parameter. It is very likely far from best possible. Schmidt’s very difficult

proof does not use p-adic analysis like above, but is based on Diophantine

approximation.

We give an application to cubic Thue equations. Let f(X) = X3 + aX2 +

bX + c be an irreducible polynomial in Z[X] with one real root, say α1 and

two complex roots α2, α3 = α2. Consider the equation

(7.8) F (x, y) = x3 + ax2y + bxy2 + cy3 = 1 in x, y ∈ Z.

Theorem 7.6. Eq. (7.8) has only finitely many solutions.

Proof. Let K = Q(α1). Then K is a cubic field with one real embedding and

two complex embeddings. Then the unit group O∗K has rank 1. That is, there

is η1 such that O∗K = {±ηn1 : n ∈ Z}. Let (x, y) be a solution of (7.8). The

conjugates of x− α1y are x− αiy for i = 1, 2, 3. Hence

NK/Q(x− α1y) =
3∏
i=1

(x− αiy) = F (x, y) = 1.

So x−α1y is a unit, i.e., x−α1y = ±ηn1 for some n ∈ Z. Then also x−αiy = ±ηni
for i = 1, 2, 3. We use the identity

(α2 − α3)(x− α1y) + (α3 − α1)(x− α2y) + (α1 − α2)(x− α3y) = 0.

This implies

(α2 − α3)η
n
1 + (α3 − α1)η

n
2 + (α1 − α2)η

n
3 = 0.

We leave as Exercise 13 to prove that none of the quotients ηi/ηj (i 6= j) is a

root of unity. Then by Corollary 7.4, this last equation has only finitely many

solutions n ∈ Z>0. We prove in the same manner that there are only finitely
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many solutions n < 0 by applying 7.4 again, but now with η−1i instead of ηi
and taking n′ := −n > 0. As a consequence, the equation F (x, y) = 1 has

only finitely many solutions. 2

8. Exercises.

In the exercises below, p always denotes a prime number and convergence is

with respect to | · |p.

Exercise 1.

(a) Determine the p-adic expansion of −1.

(b) Let α =
∑∞

k=0 bkp
k with bk ∈ {0, . . . , p − 1} for k > 0. Determine the

p-adic expansion of −α.

Exercise 2.

(a) Let α ∈ Qp. Prove that α has a finite p-adic expansion if and only if

α = a/pr where a is a positive integer and r a non-negative integer.

(b) Let α =
∑∞

k=−k0 bkp
k where bk ∈ {0, . . . , p − 1} for k > −k0. Suppose

that the sequence {bk}∞k=−k0 is ultimately periodic, i.e., there exist r, s

with s > 0 such that bk+s = bs for all k > r. Prove that α ∈ Q.

Hint. Prove first that 1
1−x =

∑∞
k=0 x

k for all x ∈ Zp with |x|p 6 p−1.

Exercise 3. In this exercise you are asked to work out a p-adic analogue of

Newton’s method to approximate the roots of a polynomial. Let f = a0X
n +

· · ·+ a0 ∈ Zp[X]. The derivative of f is f ′ = na0X
n−1 + · · ·+ a1.

(a) Let a, x ∈ Zp and suppose that x ≡ 0 (mod pm) for some positive

integer m. Prove that f(a + x) ≡ f(a) (mod pm) and f(a + x) ≡
f(a) + f ′(a)x (mod p2m).

Hint. Use that f(a+X) ∈ Zp[X].

(b) Let x0 ∈ Z such that f(x0) ≡ 0 (mod p), f ′(x0) 6≡ 0 (mod p). Define

the sequence {xn}∞n=0 recursively by

xn+1 := xn −
f(xn)

f ′(xn)
(n > 0).

Prove that xn ∈ Zp, f(xn) ≡ 0 (mod p2
n
), f ′(xn) 6≡ 0 (mod p) for n > 0.

(c) Prove that xn converges to a zero of f in Zp.
(d) Prove that f has precisely one zero ξ ∈ Zp such that ξ ≡ x0 (mod p).
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Exercise 4. Denote by C((t)) the field of formal Laurent series

∞∑
k=k0

bkt
k

with k0 ∈ Z, bk ∈ C for k > k0. We define an absolute value | · |0 on C((t)) by

|0|0 := 0 and |α|0 := c−k0 (c > 1 some constant) where

α =
∞∑

k=k0

bkt
k with bk0 6= 0.

This absolute value is clearly non-archimedean.

(a) Prove that C((t)) is complete w.r.t. | · |0.
(b) Define | · |0 on the field of rational functions C(t) by |0|0 := 0 and

|α|0 := c−k0 if α 6= 0, where k0 is the integer such that α = tk0f/g with

f, g polynomials not divisible by t. Prove that C((t)) is the completion

of C(t) w.r.t. | · |0.

Exercise 5. In this exercise, p is a prime > 2.

(a) Let d be a positive integer such that d 6≡ 0 (mod p) and x2 ≡ d (mod p)

is solvable. Show that x2 = d is solvable in Zp.
(b) Let a, b be two positive integers such that none of the congruence equa-

tions x2 ≡ a (mod p), x2 ≡ b (mod p) is solvable in x ∈ Z. Prove that

ax2 ≡ b (mod p) is solvable in x ∈ Z.

Hint. Use that the multiplicative group (Z/pZ)∗ is cyclic of order p−1.

This implies that there is an integer g such that (Z/pZ)∗ = {gm mod p :

m = 0, . . . , p− 2}.
(c) Let K be a quadratic extension of Qp. Prove that K = Qp(

√
d) for

some d ∈ Zp. Next, prove that Qp(
√
d1) = Qp(

√
d2) if and only if d1/d2

is a square in Qp.

(d) Determine all quadratic extensions of Q5.

(e) Prove that for any prime p > 2, Qp has up to isomorphism only three

distinct quadratic extensions.

Exercise 6.

(a) Prove that xp−1 = 1 has precisely p− 1 solutions in Zp, and that these

solutions are different modulo p.
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(b) Let S consist of 0 and of the solutions in Zp of xp−1 = 1. Let α ∈ Zp.
Prove that for any positive integer m, there are ξ0, . . . , ξm−1 ∈ S such

that α ≡
∑m−1

k=0 ξkp
k (mod pm). Then prove that there is a sequence

{ξk}∞k=0 in S such that α =
∑∞

k=0 ξkp
k. (This is called the Teichmüller

representation of α).

Exercise 7.

(a) Prove that for any two positive integers x, y and any integer n > 0, one

has (
x+ y

n

)
=

n∑
k=0

(
x

n− k

)(
y

k

)
.

(b) Prove the same with x, y ∈ Zp.
(c) Let β ∈ Zp with |β|p 6 p−1 and let x, y ∈ Zp. Prove that (1 + β)x+y =

(1 + β)x(1 + β)y.

Hint. You may use that if a :=
∑∞

n=0 an, b :=
∑∞

n=0 bn are two conver-

gent series in Zp, then
∑∞

n=0 (
∑n

k=0 an−kbk) converges also and is equal

to a · b.

Exercise 8. In this exercise you may use the following facts on p-adic power

series (the coefficients are always in Qp, and m,m′ ∈ Z).

1) Suppose f(x) =
∑∞

n=0 an(x− x0)n, g(x) =
∑∞

n=0 bn(x− x0)n converge and

are equal on B(x0, p
−m). Then an = bn for all n > 0.

2) Suppose that for x ∈ B(x0, p
−m), f(x) =

∑∞
n=0 an(x − x0)n converges and

|f(x) − f(x0)|p 6 p−m
′
. Further, suppose that g(x) =

∑∞
n=0 bn(x − f(x0))

n

converges on B(f(x0), p
−m′

). Then the composition g(f(x)) can be expanded

as a power series
∑∞

n=0 cn(x− x0)n which converges on B(x0, p
−m).

3) We define the derivative of f(x) =
∑∞

n=0 an(x− x0)n by

f ′(x) :=
∞∑
n=1

nan(x− x0)n−1.

If f converges on B(x0, p
m) then so does f ′. The derivative satisfies the same

sum rules, product rule, quotient rule and chain rule as the derivative of a

function on R, e.g., g(f(x))′ = g′(f(x))f ′(x).

Now define the p-adic exponential function and p-adic logarithm by

expp x :=
∞∑
n=0

xn

n!
, logp x :=

∞∑
n=1

(−1)n−1

n
· (x− 1)n.
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Further, let r = 1 if p > 2, r = 2 if p = 2. Prove the following properties.

(a) Prove that expp(x) converges and | expp(x)−1|p = |x|p for x ∈ B(0, p−r).

Hint. Prove that |xn/n!|p → 0 as n → ∞, and |xn/n!|p < |x|p for

n > 2.

(b) Prove that logp(x) converges and | logp x|p = |x− 1|p for x ∈ B(1, p−r).

(c) Prove that expp(x+ y) = expp(x) expp(y) for x, y ∈ B(0, p−r).

Hint. Fix y and consider the function in x,

f(x) := expp(y)−1 expp(x+ y).

Then f(x) can be expanded as a power series
∑∞

n=0 anx
n. Its derivative

f ′(x) can be computed in the same way as one should do it for real or

complex functions. This leads to conditions on the coefficients an.

(d) Prove that logp(xy) = logp(x) + logp(y) for x, y ∈ B(1, p−r).

(e) Prove that logp(expp x) = x for x ∈ B(0, p−r).

(f) Prove that expp(logp x) = x for x ∈ B(1, p−r).

Exercise 9. Consider the sequence U = {un}∞n=0

un =
(2ω)n − (2ω−1)n

2ω − 2ω−1
+ (−1)n + 1 (ω = e2πi/3).

(a) Determine the companion polynomial and initial values of U .

(b) Determine the set ZU and show that it is infinite.

(c) Show that there is a linear recurrence sequence V = {vn}∞n=0, with the

same companion polynomial as U , such that the set ZV is finite.

Exercise 10. Let U = {un}∞n=0 be a linear recurrence sequence in C. Consider

the set IU of polynomials f = a0 + a1X + · · · + amX
m with a0, . . . , am ∈ C,

m > 0 such that

a0un+m + a1un+m−1 + · · ·+ amun = 0 for n > m.

(a) Prove that I is an ideal of C[X], generated by the companion polyno-

mial of U .

(b) Give a necessary and sufficient condition in terms of the companion

polynomial of U such that U is periodic.

Exercise 11. Let U = {un}∞n=0, V = {vn}∞n=0 be two linear recurrence

sequences in C.



30 MASTER COURSE DIOPHANTINE EQUATIONS, SPRING 2011

(a) Prove that {unvn}∞n=0 is a linear recurrence sequence.

(b) Define the sequence W = {wn}∞n=0 by wn = un/2 if n is even, and

wn = v(n−1)/2 if n is odd. Prove that W is a linear recurrence sequence.

Exercise 12. Let α1, . . . , αt be reals with 0 < α1 < α2 · · · < αt, and let

f1, . . . , ft be polynomials in R[X] with deg fh 6 eh − 1 for h = 1, . . . , t, and

e1 + · · ·+ et = k. Define the linear recurrence sequence U = {un}∞n=0 by

un =
t∑

h=1

fh(n)αnh (n > 0).

Prove that ZU has cardinality at most k − 1.

Hint. Prove by induction on k that the number of zeros x ∈ R of the real

function u(x) :=
∑t

h=1 fh(x)αxh is a most k−1. The induction step is at follows.

There is no loss of generality to assume that αt = 1 since dividing u(x) by αxt
does not change the cardinality of ZU . Now consider the derivative u′(x) and

apply Rolle’s Theorem.

Exercise 13. Let K be a cubic field with one real embedding σ1 and two

complex embeddings σ2, σ3.

(a) Suppose that K = Q(α). Prove that σi(α) (i = 1, 2, 3) are all distinct.

(b) Let α ∈ K be such that at least two among the numbers σ1(α), σ2(α), σ3(α)

are equal. Prove that α ∈ Q.

Hint. What is the degree of α?

(c) Let η be a unit in OK with η 6= ±1. Prove that none of the quotients

σi(η)/σj(η), with i, j ∈ {1, 2, 3}, i 6= j is a root of unity.


