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1. Linear forms in logarithms and applications

We start with recalling some results from transcendence theory and then

work towards lower bounds for linear forms in logarithms which are of crucial

importance in effectively solving Diophantine equations.

We start with a transcendence result proved independently by the Russian

Gel’fond and the German Schneider in 1934.

Theorem 1.1. (Gel’fond, Schneider, 1934) Let α, β be algebraic numbers

in C, with α 6= 0, 1 and β 6∈ Q. Then αβ is transcendental.

Here, αβ := eβ logα, where ez =
∑∞

n=0 z
n/n! and logα = log |α|+ i arg(α). The

argument of α is determined only up to a multiple of 2π. Thus, logα and

hence αβ are multi-valued. The theorem holds for any choice of value of argα.

Corollary 1.2. Let β be an algebraic number in C with iβ 6∈ Q. Then eπβ is

transcendental.

Proof. eπβ = eπi·(−iβ) = (−1)−iβ. 2

Given a subring R of C (e.g., Z, Q, field of algebraic numbers), we say

that complex numbers θ1, . . . , θm are called linearly independent over R if the

equation x1θ1 + · · ·+ xmθm = 0 has no solution (x1, . . . , xm) ∈ Rm \ {0}.

Corollary 1.3. Let α, β be algebraic numbers from C different from 0, 1 such

that logα, log β are linearly independent over Q. Then for all non-zero alge-

braic numbers γ, δ from C we have γ logα + δ log β 6= 0.
1
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Proof. Assume γ logα + δ log β = 0. Then logα = −(δ/γ) log β, hence α =

β−δ/γ. By Theorem 1.1 this is possible only if a := δ/γ ∈ Q. But then,

logα− a log β = 0, contrary to our assumption. 2

We now come to Baker’s generalization to linear forms in an arbitrary num-

ber of logarithms of algebraic numbers.

Theorem 1.4. (A. Baker, 1966) Let α1, . . . , αm be algebraic numbers from

C different from 0, 1 such that logα1, . . . , logαm are linearly independent over

Q. Then for every tuple (β0, β1, . . . , βm) of algebraic numbers from C different

from (0, 0, . . . , 0) we have

β0 + β1 logα1 + · · ·+ βm logαm 6= 0.

For applications to Diophantine problems, it is important that not only the

above linear form is non-zero, but also that we have a strong enough lower

bound for the absolute value of this linear form. We give a special case, where

β0 = 0 and β1, . . . , βm are rational integers.

Theorem 1.5. (A. Baker, 1975) Let α1, . . . , αm be algebraic numbers from

C different from 0, 1. Further, let b1, . . . , bm be rational integers such that

b1 logα1 + · · ·+ bm logαm 6= 0.

Then

|b1 logα1 + · · ·+ bm logαm| > (eB)−C ,

where B := max(|b1|, . . . , |bm|) and C is an effectively computable constant

depending only on m and on α1, . . . , αm.

It is possible to get rid of the logarithms. Then Theorem 1.5 leads to the

following:

Corollary 1.6. Let α1, . . . , αm be algebraic numbers from C different from 0, 1

and let b1, . . . , bm be rational integers such that

αb11 · · ·αbmm 6= 1.

Then

|αb11 · · ·αbmm − 1| > (eB)−C
′
,

where again B := max(|b1|, . . . , |bm|) and where C ′ is an effectively computable

constant depending only on m and on α1, . . . , αm.
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Proof. For the logarithm of a complex number z we choose log z = log |z| +
iarg z with −π < arg z 6 π. With this choice of log we have log(1 + w) =∑∞

n=1(−1)n−1wn/n for w ∈ C with |w| < 1. Using this power series expansion,

one easily shows that

| log(1 + w)| 6 2|w| if |w| 6 1/2.

We apply this with w := αb11 · · ·αbmm − 1. If |w| > 1/2 we are done, so we

suppose that |w| 6 1/2. We have to estimate from below | log(1 + w)|.

Recall that the complex logarithm is additive only modulo 2πi. That is,

log(1 + w) = b1 logα1 + · · ·+ bm logαm + 2kπi

for some k ∈ Z. We can apply Theorem 1.5 since 2kπi = 2k log(−1). Thus,

we obtain

| log(1 + w)| >
(
emax(B, |2k|)

)−C1

where C1 is an effectively computable constant depending only on m and

α1, . . . , αm. Since | log(1 + w)| 6 2|w| 6 1 we have

|2kπi| 6 1 +
m∑
j=1

| logαj| · |bj| 6 (1 +
m∑
j=1

log |αj|)B.

Hence |k| 6 C2B, say, and | log(1 + w)| > (eC2B)−C1 . This implies |w| >
1
2
(eC2B)−C1 > (eB)−C

′
for a suitable C ′, as required. 2

For completeness, we give a completely explicit version of Corollary 1.6 in

the case that α1, . . . , αm are integers. The height of a rational number a = x/y,

with x, y ∈ Z coprime, is defined by H(a) := max(|x|, |y|).

Theorem 1.7. (Matveev, 2000) Let a1, . . . , am be non-zero rational numbers

and let b1, . . . , bm be integers such that

ab11 · · · abmm 6= 1.

Then |ab11 · · · abmm − 1| > (eB)−C
′
, where

B = max(|b1|, . . . , |bm|),

C ′ = 1
2
e ·m4.530m+3

m∏
j=1

max
(
1, logH(aj)

)
.

To illustrate the power of this result we give a quick application.
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Corollary 1.8. let a, b be integers with a > 2, b > 2. Then there is an effec-

tively computable number C1 > 0, depending only on a, b, such that for any

two positive integers m,n,

|am − bn| > max(am, bn)

(emax(m,n))C1
.

Consequently, for any non-zero integer k, there exists an effectively computable

number C2, depending on a, b, k such that if m,n are positive integers with

am − bn = k, then m,n 6 C2.

Proof. Let m,n be positive integers. Put B := max(m,n). Assume without

loss of generality that am > bn. By Corollary 1.6 or Theorem 1.7 we have

|1− bna−m| > (eB)−C1 ,

where C1 is an effectively computable number depending only on a, b. Multi-

plying with am gives our first assertion.

Now let m,n be positive integers with am − bn = k. Put again B :=

max(m,n). Then since a, b > 2,

|k| > 2B · (eB)−C1 .

This proves that B is bounded above by an effectively computable number

depending on a, b, k. 2

In 1844, Catalan conjectured that the equation in four unknowns,

xm − yn = 1 in x, y,m, n ∈ Z with x, y,m, n > 2

has only one solution, namely 32 − 23 = 1. In 1976, as one of the striking

consequences of the results on linear forms in logarithms mentioned above,

Tijdeman proved that there is an effectively computable constant C, such

that for every solution (x, y,m, n) of Catalan’s equation, one has xm, yn 6 C.

The constant C can be computed but it is extremely large. Several people

tried to prove Catalan’s conjecture, on the one hand by reducing Tijdeman’s

constant C using sharper linear forms in logarithm estimates, on the other hand

by showing that xm, yn have to be very large as long as (xm, yn) 6= (32, 23),

and finally using heavy computations. This didn’t lead to success. In 2000

Mihailescu managed to prove Catalan’s conjecture by an algebraic method

which is completely independent of linear forms in logarithms.
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We give another application. Consider the sequence {an} with an = 2n

for n = 0, 1, 2, . . .. Note that an+1 − an = an. Similarly, we may consider

the increasing sequence {an} of numbers which are all composed of primes

from {2, 3}, i.e., 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, . . . and ask how the gap

an+1 − an compares with an as n → ∞. More generally, we may take a finite

set of primes and ask this question about the sequence of consecutive integers

composed of these primes.

Theorem 1.9. (Tijdeman, 1974) Let S = {p1, . . . , pt} be a finite set of dis-

tinct primes, and let a1 < a2 < a3 < · · · be the sequence of consecutive positive

integers composed of primes from S. Then there are effectively computable

positive numbers c1, c2, depending on t, p1, . . . , pt, such that

an+1 − an >
an

c1(log an)c2
for n = 1, 2, . . . .

Proof. We have an = pk11 · · · pkt
t , and an+1 = pl11 · · · pltt with non-negative inte-

gers ki, li. By Corollary 1.6,∣∣∣an+1

an
− 1
∣∣∣ = |pl1−k11 · · · plt−kt

t − 1| > (eB)−C ,

where B := max(|l1 − k1|, . . . , |lt − kt|). First note that

ki 6
log an
log pi

6
log an
log 2

for i = 1, . . . , t.

Next, an+1 6 a2
n. So

li 6
log an+1

log pi
6

log a2
n

log 2
for i = 1, . . . , t.

Hence B 6 2 log an/ log 2. It follows that an+1−an > an(2e log an/ log 2)−C . 2

Most results in Diophantine approximation that have been proved for al-

gebraic numbers in C have an analogue for p-adic numbers. We can define

p-adic exponentiation, p-adic logarithms, etc., and this enables us to formu-

late analogues for Theorem 1.1– Theorem 1.7 in the p-adic setting. We give

an analogue of Corollary 1.6 in the case that α1, . . . , αm are rational num-

bers. There is a more general version for algebraic α1, . . . , αm but this is more

difficult to state.

Theorem 1.10. (Yu, 1986) Let p be a prime number, let a1, . . . , am be non-

zero rational numbers which are not divisible by p. Further, let b1, . . . , bm be
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integers such that

ab11 · · · abmm 6= 1.

Put B := max(|b1|, . . . , |bm|). Then

|ab11 · · · abmm − 1|p > (eB)−C

where C is an effectively computable number depending on p, m and a1, . . . , am.

For m = 1 there is a sharper result which can be proved by elementary

means (Exercise 6a). But for m > 2 the proof is very difficult.

2. The effective Siegel-Mahler-Lang Theorem

Let K be an algebraic number field and let Γ be a finitely generated, multi-

plicative subgroup of K∗, i.e., there are γ1, . . . , γt ∈ Γ such that every element

of Γ can be expressed as

ζγz11 · · · γzt
t

where ζ is a root of unity in K, and z1, . . . , zt are integers. Further, let a, b be

non-zero elements from K and consider the equation

(2.1) ax+ by = 1 in x, y ∈ Γ.

In 1979, Győry gave an effective proof of the Siegel-Mahler-Lang Theorem.

Theorem 2.1. (Győry, 1979) Equation (2.1) has only finitely many solu-

tions, and its set of solutions can be determined effectively.

The idea of the proof is to express a solution (x, y) of (2.1) as

x = ζ1γ
b1
1 · · · γbtt , y = ζ2γ

b′1
1 · · · γ

b′t
t

with ζ1, ζ2 ∈ UK , bi, b
′
i ∈ Z. By combining Corollary 1.6 and a generalization of

Theorem 1.10 for algebraic numbers instead of the rational numbers a1, . . . , am
in the statement of that lemma, Győry shows that for every solution (x, y) of

(2.1) one has max(|b1|, . . . , |b′t|) 6 C, where C is effectively computable in

terms of K, γ1, . . . , γt. Then one can find all solutions of (2.1) by checking for

each ζ1, ζ2 ∈ UK and bi, b
′
i 6 C whether ax+ by = 1 holds.

We prove two special cases of Theorem 2.1, namely the case that a, b ∈ Q
and Γ is contained in Q∗, and the case that a, b lie in an algebraic number field

K and Γ is the group of units of the ring of integers of K.
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As has been explained before, if a, b ∈ Q and Γ is contained in Q∗, then

Eq. (2.1) can be reduced to an S-unit equation. There are rational numbers

γ1, . . . , γt such that all elements of Γ are of the shape ±γz11 · · · γzt
t . Let S =

{p1, . . . , pt} be the prime numbers occurring in the prime factorizations of the

numerators and denominators of a, b, γ1, . . . , γt. Then a, b, γ1, . . . , γt lie in the

multiplicative group of S-units

Z∗S = {±pz11 · · · pzt
t : z1, . . . , zt ∈ Z}.

Hence if (x, y) is a solution to (2.1), the numbers ax, by are S-units. So instead

of (2.1), we may as well consider

(2.2) x+ y = 1 in x, y ∈ Z∗S.

Theorem 2.2. Let S = {p1, . . . , pt} be a finite set of primes. Then (2.2)

has only finitely many solutions, and its set of solutions can be determined

effectively.

Proof. Let (x, y) be a solution of (2.2). We may write x = u/w, y = v/w

where u, v, w are integers with gcd(u, v, w) = 1. Then

(2.3) u+ v = w.

The integers u, v, w are composed of primes from S, and moreover, no prime

divides two numbers among u, v, w since u, v, w are coprime. After reordering

the primes p1, . . . , pt, we may assume that

u = ±pb11 · · · pbrr , v = ±pbr+1

r+1 · · · pbss , w = ±pbs+1

s+1 · · · pbtt ,

where 0 6 r 6 s 6 t and the bi are non-negative integers (empty products

are equal to 1; for instance if r = 0 then u = ±1). We have to prove that

B := max(b1, . . . , bt) is bounded above by an effectively computable number

depending only on p1, . . . , pt. By symmetry, we may assume that B = bt. Then

using −(u/v)− 1 = −(w/v) we obtain

0 < | ± pb11 · · · pbrr p
−br+1

r+1 · · · p−bss − 1|pt = |w/v|pt = p−btt = p−Bt .

From Theorem 1.10 we obtain that | · · · |pt > (eB)−C , where C is effectively

computable in terms of p1, . . . , pt. Hence

(eB)−C2 6 p−Bt .

So indeed, B is bounded above by an effectively computable number depending

on p1, . . . , pt. 2
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Remark. In his PhD-thesis from 1988, de Weger gave a practical algorithm,

based on strong linear forms in logarithms estimates and the LLL-basis re-

duction algorithm, to solve equations of the type (2.2). As a consequence, he

showed that the x+y = z has precisely 545 solutions in positive integers x, y, z

with x 6 y, all of the shape 2b13b25b37b411b513b6 with bi ∈ Z.

Theorem 2.3. Let a, b ∈ K∗. Then the equation

(2.4) ax+ by = 1 in x, y ∈ O∗K
has only finitely many solutions and its set of solutions can be determined

effectively.

Corollary 2.4. Let F (X, Y ) = a0X
d+a1X

d−1Y + · · ·+adY
d be a binary form

in Z[X, Y ] such that F (X, 1) has at least three distinct roots in C, and let m

be a non-zero integer. Then the equation

F (x, y) = m in x, y ∈ Z

has only finitely many solutions, and its set of solutions can be determined

effectively.

Corollary 2.5. Let f(X) ∈ Z[X] be a polynomial without multiple zeros and

n an integer > 2. Assume that f has at least two zeros in C if n > 3 and at

least three zeros in C if n = 2. Then the equation

yn = f(x) in x, y ∈ Z

has only finitely many solutions, and its set of solutions can be determined

effectively.

In Frits’ lecture notes on the Siegel-Mahler Theorem it was explained how

the equations in Corollaries 2.4 and 2.5 can be reduced to (2.4).

In the proof of Theorem 2.3 we need some facts on units. Suppose the

number field K has degree d. Then K has precisely d distinct embeddings in

C, which can be divided into real embeddings (of which the image lies in R) and

complex embeddings (with image in C but not in R). Further, the complex

embeddings occur in complex conjugate pairs σ, σ, where σ(x) := σ(x) for

x ∈ K. Suppose that K has precisely r1 real embeddings, and precisely r2
pairs of complex conjugate embeddings, where r1 + 2r2 = d. We renumber the

embeddings such that σ1, . . . , σr1 are the real embeddings of K, and σr1+r2+i =

σr1+i for i = 1, . . . , r2.
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The following fact is well known.

Lemma 2.6. Let ε be a unit of OK. Then

NK/Q(ε) =
d∏
i=1

σi(ε) = ±1.

Proof. Exercise. 2

To study the units of OK , it is useful to consider the absolute values of their

conjugates. Clearly, for ε ∈ O∗K we have

|σr1+r2+i(ε)| = |σr1+i(ε)| for i = 1 . . . r2,
r1∏
i=1

|σi(ε)|
r1+r2∏
i=r1+1

|σi(ε)|2 = 1,

so |σi(ε)| (i = 1, . . . , r1 + r2 − 1) determine |σi(ε)| (i = r1 + r2, . . . , d).

The following lemma is a more precise version of Dirichlet’s Unit Theorem.

Lemma 2.7. Let r := r1 + r2 − 1 and define the map

L : O∗K → Rr : ε 7→ (log |σ1(ε), . . . , log |σr(ε)|).

Then L is a group homomorphism. The kernel of L is the group UK of roots

of unity of K and the image of L is a lattice of rank r in Rr.

Choose units ε1, . . . , εr such that L(ε1), . . . , L(εr) form a basis of the lattice

L(O∗K). Then every ε ∈ O∗K can be expressed uniquely as

(2.5) ζεb11 · · · εbrr with ζ ∈ UK , b1, . . . , br ∈ Z.

Further, the matrix

(2.6) M :=

 log |σ1(ε1)| · · · log |σ1(εr)|
...

...

log |σr(ε1)| · · · log |σr(εr)|


is invertible.

We deduce a consequence.

Lemma 2.8. There is a constant C > 0 with the following property. If ε is

any unit of OK, and b1, . . . , br are the corresponding integers defined by (2.4),
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then

max(|b1|, . . . , |br|) 6 C · max
16i6d

log |σi(ε)|.

Proof. Let b := (b1, . . . , br)
T (column vector). Then L(ε) = Mb, hence b =

M−1L(ε). Writing M−1 = (aij), we obtain

bi =
r∑
j=1

aijσj(ε) (i = 1, . . . , r).

Applying the triangle inequality, we get

max
16i6r

|bi| 6

(
max
16i6r

r∑
j=1

|aij|

)
· max

16j6r
|σj(ε)|.

2

Proof of Theorem 2.3. Let (x, y) be a solution of (2.3). There are ζ1, ζ2 ∈
UK , as well as integers a1, . . . , ar, b1, . . . , br, such that

x = ζ1ε
a1
1 · · · εar

r , y = ζ2ε
b1
1 · · · εbrr .

Thus

aζ1ε
a1
1 · · · εar

r + bζ2ε
b1
1 · · · εbrr = 1.

We assume without loss of generality that B := max(|a1|, . . . , |br|) = |br|. We

estimate from above and below,

Λi := |σi(a)σ(ζ1)σi(ε1)
a1 · · ·σi(εr)ar − 1| = |σi(b)σi(y)|

for a suitable choice of i.

In fact, let |σi(y)| be the smallest, and |σj(y)| the largest among |σ1(y)|, . . . , |σd(y)|.
Then by Lemma 2.6,

|σi(y)|d−1|σj(y)| 6 1

and subsequently by Lemma 2.8,

|σi(y)| 6 |σj(y)|−1/(d−1) 6 e−B/C(d−1).

This leads to

Λi 6 |σi(β)|e−B/C(d−1).

By Corollary 1.6 we have |Λi| > (eB)−C
′
for some effectively computable num-

ber C ′ depending on a, ε1, . . . , εr and the finitely many roots of unity of K.

We infer

(eB)−C
′
6 |σi(a)|e−B/C(d−1)
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and this leads to an effectively computable upper bound for B. 2

Remark. There are practical algorithms to solve equations of the type (2.4)

which work well as long as the degree of the field K, and the fundamental units

of the ring of integers of K, are not too large. These algorithms are again

based on linear forms in logarithms estimates and the LLL-algorithm. For

instance, in 2000 Wildanger determined all solutions of the equation x+ y = 1

in x, y ∈ O∗K , with K = Q(cos(2π/19)). The number field K has degree 9 and

all its embeddings are real. Thus, the unit group O∗K has rank 8.

3. Exercises

Exercise 1. Let p1, . . . , ps, ps+1, . . . , pt be distinct prime numbers. Let A be

the set of positive integers composed of primes from p1, . . . , ps, and B the set

of positive integers composed of primes from ps+1, . . . , pt.

(a) Prove that there exist positive numbers c1, c2, effectively computable

in terms of p1, . . . , pt such that

|x− y| > max(x, y)

c1
(

log max(x, y)
)c2 for all x ∈ A, y ∈ B.

(b) Given a non-zero integer a, denote by P (a) the largest prime number

dividing a, with P (±1) := 1. Prove that

lim
x∈A, y∈B,max(|x|,|y|)→∞

P (x− y) =∞.

Exercise 2. Let f(X) = X2 − AX − B be a polynomial with coefficients

A,B ∈ Z. Let α, β be the two zeros of f in C. Assume that f is irreducible,

and that α/β is not a root of unity. Let the sequence U = {un}∞n=0 in Z be

given by

un = Aun−1 +Bun−2 (n > 0)

and initial values u0, u1 ∈ Z, not both 0.

(a) Prove that M := max(|α|, |β|) > 1.

(b) Prove that there are non-zero algebraic numbers γ1, γ2 such that un =

γ1α
n + γ2β

n for n > 0.

(c) Prove that there is an effectively computable number C such that un 6=
0 for n > C.
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(d) Prove that there are effectively computable positive numbers c1, c2 such

that |un| > Mn/c1n
c2 for n > C.

Exercise 3. Let A,B,C be integers such that C 6= 0 and

X3 − AX2 −BX − C = (X − α1)(X − α2)(X − α3),

where α1, α2, α3 ∈ C, and none of the quotients αi/αj (1 6 i < j 6 3) is a

root of unity. Consider the linear recurrence sequence U = {un}∞n=0, given by

un = Aun−1 +Bun−2 + Cun−3 (n > 3)

and initial values u0, u1, u2 ∈ Z, not all zero.

(a) Prove that there exist algebraic numbers γ1, γ2, γ3 such that

un = γ1α
n
1 + γ2α

n
2 + γ3α

n
3 for n > 0.

(b) Prove that |α1| = |α2| = |α3| cannot hold.

(c) Prove that there exists an effectively computable number C, depending

on A,B,C, such that if n is a non-negative integer with un = 0 then

n < C.

Exercise 4. In 1995, Laurent, Mignotte and Nesterenko proved the following

explicit estimate for linear forms in two logarithms. Let a1, a2 be two positive

rational numbers 6= 1. Further, let b1, b2 be non-zero integers. Suppose that

Λ := b1 log a1 − b2 log a2 6= 0. Then

log |Λ| >

−22

(
max

{
log
( |b1|

logH(a2)
+

|b2|
logH(a1)

)
+ 0.06 , 21

})2

logH(a1) logH(a2) .

Using this estimate, compute an upper bound C, such that for all positive

integers m,n with 97m − 89n = 8 we have m,n 6 C.

Hint. Use | log(1 + z)| 6 2|z| if |z| 6 1
2
.

Exercise 5. In this exercise you are asked to apply the estimate of Laurent,

Mignotte and Nesterenko to more advanced equations.

(a) Prove that the equation

xn − 2yn = 1 in unknowns x, y with x > 2, y > 2

has no solutions if n > 10000.

Hint. Applying Laurent-Mignotte-Nesterenko to an appropriate linear
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form in two logarithms you will get a lower estimate depending on n

and x, y. But you can derive also an upper estimate which depends on

n, x, y. Comparing the two estimates leads to an upper bound for n

independent of x, y.

(b) Let a, b, c be positive integers. Prove that there is a number C, effec-

tively computable in terms of a, b, c, such that the equation

axn − byn = c

has no solutions if n > C. In the case a = b you may give an elementary

proof, without using the result of Laurent-Mignotte-Nesterenko.

(c) Let k be a fixed integer > 2. Prove that the equation

yz =

(
x

k

)
in integers x, y, z with x > 0, y > 2, z > 3

has only finitely many solutions.

Exercise 6. In this exercise, you are asked to prove a very simple case of

Theorem 1.10 and to apply this to certain Diophantine equations.

(a) Let a be an integer, and p a prime, such that |a|p 6 p−1 if p > 2 and

|a|2 6 2−2 if p = 2. Prove that for any positive integer b we have

|(1 + a)b − 1|p = |ab|p > 1/ab.

Hint. You may either prove that |
(
b
k

)
ak|p < |ab|p for k > 2 or write

b = upt where u is an integer not divisible by p and t a non-negative

integer, and use induction on t.

(b) Let p be a prime > 5. Using (a), prove that the equation px − 2y = 1

has no solutions in integers x > 2, y > 2. Prove also that the equation

2x − py = 1 has no solutions in integers x ≥ 2, y > 2.


