Chapter 8

P-adic numbers

Literature:
N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions,

8.1 Absolute values

The p-adic absolute value \(|\cdot|_p\) on \(\mathbb{Q}\) is defined as follows: if \(a \in \mathbb{Q}\), \(a \neq 0\) then write \(a = p^mb/c\) where \(b, c\) are integers not divisible by \(p\) and put \(|a|_p = p^{-m}\); further, put \(|0|_p = 0\).

Example. Let \(a = -2^{-7}3^85^{-3}\). Then \(|a|_2 = 2^7\), \(|a|_3 = 3^{-8}\), \(|a|_5 = 5^3\), \(|a|_p = 1\) for \(p \geq 7\).

We give some properties:
\[
|ab|_p = |a|_p|b|_p \quad \text{for} \quad a, b \in \mathbb{Q}^*;
\]
\[
|a + b|_p \leq \max(|a|_p, |b|_p) \quad \text{for} \quad a, b \in \mathbb{Q}^* \quad \text{(ultrametric inequality)}.
\]

Notice that the last property implies that
\[
|a + b|_p = \max(|a|_p, |b|_p) \quad \text{if} \quad |a|_p \neq |b|_p.
\]

It is common to write the ordinary absolute value \(|a| = \max(a, -a)\) on \(\mathbb{Q}\) as \(|a|_\infty\), to call \(\infty\) the ‘infinite prime’ and to define \(M_\mathbb{Q} := \{\infty\} \cup \{\text{primes}\}\). Then we
have the important product formula:

\[\prod_{p \in M_Q} |a|_p = 1 \text{ for } a \in \mathbb{Q}, \ a \neq 0. \]

We define more generally absolute values on fields. Let \(K \) be any field. An absolute value on \(K \) is a function \(|\cdot| : K \to \mathbb{R}_{\geq 0} \) with the following properties:

\[
|ab| = |a| \cdot |b| \text{ for } a, b \in K; \\
|a + b| \leq |a| + |b| \text{ for } a, b \in K \quad \text{(triangle inequality);} \\
|a| = 0 \iff a = 0.
\]

Notice that these properties imply that \(|1| = 1\). The absolute value \(|\cdot|\) is called non-archimedean if the triangle inequality can be replaced by the stronger ultrametric inequality or strong triangle inequality

\[
|a + b| \leq \max(|a|, |b|) \text{ for } a, b \in K.
\]

An absolute value not satisfying the ultrametric inequality is called archimedean.

If \(K \) is a field with absolute value \(|\cdot|\) and \(L \) an extension of \(K \), then an extension or continuation of \(|\cdot|\) to \(L \) is an absolute value on \(L \) whose restriction to \(K \) is \(|\cdot|\).

Examples.

1) Every field \(K \) can be endowed with the trivial absolute value \(|\cdot|\), given by \(|a| = 0\) if \(a = 0 \) and \(|a| = 1\) if \(a \neq 0\). It is not hard to show that if \(K \) is a finite field then there are no non-trivial absolute values on \(K \).

2) The ordinary absolute value \(|\cdot|_\infty\) on \(\mathbb{Q} \) is archimedean, while the \(p \)-adic absolute values are all non-archimedean.

3) Let \(K \) be any field, and \(K(t) \) the field of rational functions of \(K \). For a polynomial \(f \in K[t] \) define \(|f| = 0\) if \(f = 0\) and \(|f| = e^{\deg f} \) if \(f \neq 0\). Further, for a rational function \(f/g \) with \(f, g \in K[t] \) define \(|f/g| = |f|/|g|\). Verify that this defines a non-archimedean absolute value on \(K(t) \).

Let \(K \) be a field. Two absolute values \(|\cdot|_1, |\cdot|_2\) on \(K \) are called equivalent if there is \(\alpha > 0\) such that \(|x|_2 = |x|_1^\alpha\) for all \(x \in K \). We state without proof the following result:

Theorem 8.1. (Ostrowski) Every non-trivial absolute value on \(\mathbb{Q} \) is equivalent to either the ordinary absolute value or a \(p \)-adic absolute value for some prime number \(p \).
8.2 Completions

Let K be a field, $|\cdot|$ a non-trivial absolute value on K, and $\{a_k\}_{k=0}^\infty$ a sequence in K.
We say that $\{a_k\}_{k=0}^\infty$ converges to α with respect to $|\cdot|$ if $\lim_{k \to \infty} |a_k - \alpha| = 0$.
Further, $\{a_k\}_{k=0}^\infty$ is called a Cauchy sequence with respect to $|\cdot|$ if $\lim_{m,n \to \infty} |a_m - a_n| = 0$.
Notice that any convergent sequence is a Cauchy sequence.

We say that K is complete with respect to $|\cdot|$ if every Cauchy sequence w.r.t. $|\cdot|$ in K converges to a limit in \tilde{K} w.r.t. $|\cdot|$.

For instance, \mathbb{R} and \mathbb{C} are complete w.r.t. the ordinary absolute value. Ostrowski proved that any field complete with respect to an archimedean absolute value is isomorphic to \mathbb{R} or \mathbb{C}.

Every field K with an absolute value can be extended to an up to isomorphism complete field, the completion of K.

Theorem 8.2. Let K be a field with non-trivial absolute value $|\cdot|$. There is an up to absolute value preserving isomorphism unique extension field \tilde{K} of K, called the completion of K, having the following properties:

(i) $|\cdot|$ can be continued to an absolute value on \tilde{K}, also denoted $|\cdot|$, such that \tilde{K} is complete w.r.t. $|\cdot|$;

(ii) K is dense in \tilde{K}, i.e., every element of \tilde{K} is the limit of a sequence from K.

Proof. Basically one has to mimic the construction of \mathbb{R} from \mathbb{Q} or the construction of a completion of a metric space in topology. We give a sketch. Cauchy sequences, limits, etc. are all with respect to $|\cdot|$.

The set of Cauchy sequences in K with respect to $|\cdot|$ is closed under termwise addition and multiplication $\{a_n\} + \{b_n\} := \{a_n + b_n\}$, $\{a_n\} \cdot \{b_n\} := \{a_n \cdot b_n\}$. With these operations they form a ring, which we denote by \mathcal{R}. It is not difficult to verify that the sequences $\{a_n\}$ such that $a_n \to 0$ with respect to $|\cdot|$ form a maximal ideal in \mathcal{R}, which we denote by M. Thus, the quotient \mathcal{R}/M is a field, which is our completion \tilde{K}.

We define the absolute value $|\alpha|$ of $\alpha \in \tilde{K}$ by choosing a representative $\{a_n\}$ of α, etc.
and putting \(|\alpha| := \lim_{n \to \infty} |a_n| \), where now the limit is with respect to the ordinary absolute value on \(\mathbb{R} \). It is not difficult to verify that this is well-defined, that is, the limit exists and is independent of the choice of the representative \(\{a_n\} \).

We may view \(K \) as a subfield of \(\tilde{K} \) by identifying \(a \in K \) with the element of \(\tilde{K} \) represented by the constant Cauchy sequence \(\{a\} \). In this manner, the absolute value on \(\tilde{K} \) constructed above extends that of \(K \), and moreover, every element of \(\tilde{K} \) is a limit of a sequence from \(K \). So \(K \) is dense in \(\tilde{K} \). One shows that \(\tilde{K} \) is complete, that is, any Cauchy sequence \(\{a_n\} \) in \(\tilde{K} \) has a limit in \(\tilde{K} \), by taking very good approximations \(b_n \in K \) of \(a_n \) and then taking the limit of the \(b_n \).

Finally, if \(K' \) is another complete field with absolute value extending the one on \(K \) such that \(K \) is dense in \(K' \) one obtains an isomorphism from \(\tilde{K} \) to \(K' \) as follows: Take \(\alpha \in \tilde{K} \). Choose a sequence \(\{a_k\} \) in \(K \) converging to \(\alpha \); this is necessarily a Cauchy sequence. Then map \(\alpha \) to the limit of \(\{a_k\} \) in \(K' \).

Corollary 8.3. Assume that \(|\cdot|\) is a non-trivial, non-archimedean absolute value on \(K \). Then the extension of \(|\cdot|\) to \(\tilde{K} \) is also non-archimedean.

Proof. Let \(a, b \in \tilde{K} \). Choose sequences \(\{a_k\}, \{b_k\} \) in \(K \) that converge to \(a, b \), respectively. Then

\[
|a + b| = \lim_{k \to \infty} |a_k + b_k| \leq \lim_{k \to \infty} \max(|a_k|, |b_k|) = \max(|a|, |b|).
\]

\[\square\]

8.3 p-adic Numbers and p-adic integers

In everything that follows, \(p \) is a prime number.

The completion of \(\mathbb{Q} \) with respect to \(|\cdot|_p\) is called the field of p-adic numbers, notation \(\mathbb{Q}_p \).

The continuation of \(|\cdot|_p\) to \(\mathbb{Q}_p \) is also denoted by \(|\cdot|_p\). This is a non-archimedean absolute value on \(\mathbb{Q}_p \). Convergence, limits, Cauchy sequences and the like will all be with respect to \(|\cdot|_p\). As mentioned before, by identifying \(a \in \mathbb{Q} \) with the class of the constant Cauchy sequence \(\{a\} \), we may view \(\mathbb{Q} \) as a subfield of \(\mathbb{Q}_p \).

Lemma 8.4. The value set of \(|\cdot|_p\) on \(\mathbb{Q}_p \) is \(\{0\} \cup \{p^m : m \in \mathbb{Z}\} \).
Proof. Let \(x \in \mathbb{Q}_p, x \neq 0 \). Choose again a sequence \(\{x_k\} \) in \(\mathbb{Q} \) converging to \(x \). Then \(\lim_{k \to \infty} |x_k|_p \). For \(k \) sufficiently large we have \(|x_k|_p = p^{m_k} \) for some \(m_k \in \mathbb{Z} \). Since the sequence of numbers \(p^{m_k} \) converges we must have \(m_k = m \in \mathbb{Z} \) for \(k \) sufficiently large. Hence \(|x|_p = p^m \).

The set \(\mathbb{Z}_p := \{ x \in \mathbb{Q}_p : |x|_p \leq 1 \} \) is called the ring of \(p \)-adic integers. Notice that if \(x, y \in \mathbb{Z}_p \) then \(|x - y|_p \leq \max(|x|_p, |y|_p) \leq 1 \). Hence \(x - y \in \mathbb{Z}_p \). Further, if \(x, y \in \mathbb{Z}_p \) then \(|xy|_p \leq 1 \) which implies \(xy \in \mathbb{Z}_p \). So \(\mathbb{Z}_p \) is indeed a ring.

Viewing \(\mathbb{Q} \) as a subfield of \(\mathbb{Q}_p \), we have
\[
\mathbb{Z}_p \cap \mathbb{Q} = \{ \frac{a}{b} : a, b \in \mathbb{Z}, p \nmid b \}.
\]

It is not hard to show that the group of units of \(\mathbb{Z}_p \), these are the elements \(x \in \mathbb{Z}_p \) with \(x^{-1} \in \mathbb{Z}_p \), is equal to
\[
\mathbb{Z}_p^* = \{ x \in \mathbb{Q}_p : |x|_p = 1 \}.
\]

Further, \(M_p := \{ x \in \mathbb{Q}_p : |x|_p < 1 \} \) is an ideal of \(\mathbb{Z}_p \). In fact, \(M_p \) is the only maximal ideal of \(\mathbb{Z}_p \) since any ideal of \(\mathbb{Z}_p \) not contained in \(M_p \) contains an element of \(\mathbb{Z}_p^* \), hence generates the whole ring \(\mathbb{Z}_p \). Noting
\[
|x|_p < 1 \iff |x|_p \leq p^{-1} \iff |x/p|_p \leq 1 \iff x/p \in \mathbb{Z}_p
\]
for \(x \in \mathbb{Q}_p \), we see that \(M_p = p\mathbb{Z}_p \).

For \(\alpha, \beta \in \mathbb{Q}_p \) we write \(\alpha \equiv \beta \pmod{p^m} \) if \((\alpha - \beta)/p^m \in \mathbb{Z}_p \). This is equivalent to \(|\alpha - \beta|_p \leq p^{-m} \). Notice that if \(\alpha = \frac{a_1}{b_1}, \beta = \frac{a_2}{b_2} \) with \(a_1, b_1, a_2, b_2 \in \mathbb{Z} \) and \(p \nmid b_1 b_2 \), then
\[
a_1 \equiv a_2 \pmod{p^m}, \; b_1 \equiv b_2 \pmod{p^m} \implies \alpha \equiv \beta \pmod{p^m}.
\]

For \(p \)-adic numbers, “very small” means “divisible by a high power of \(p \)”, and two \(p \)-adic numbers \(\alpha \) and \(\beta \) are \(p \)-adically close if and only if \(\alpha - \beta \) is divisible by a high power of \(p \).

Lemma 8.5. For every \(\alpha \in \mathbb{Z}_p \) and every positive integer \(m \) there is a unique \(a_m \in \mathbb{Z} \) such that \(|\alpha - a_m|_p \leq p^{-m} \) and \(0 \leq a_m < p^m \). Hence \(\mathbb{Z} \) is dense in \(\mathbb{Z}_p \).

Proof. There is a rational number \(a/b \) (with coprime \(a, b \in \mathbb{Z} \)) such that
\[
|\alpha - (a/b)|_p \leq p^{-m} \text{ since } \mathbb{Q} \text{ is dense in } \mathbb{Q}_p.
\]
At most one of \(a, b \) is divisible by \(p \) and
it cannot be b since $|a/b|_p \leq 1$. Hence there is an integer a_m with $ba_m \equiv a \pmod{p^m}$ and $0 \leq a_m < p^m$. Thus,

$$|\alpha - a_m|_p \leq \max(|\alpha - (a/b)|_p, |(a/b) - a_m|_p) \leq p^{-m}.$$

This shows the existence of a_m. As for the unicity, if a'_m is another integer with the properties specified in the lemma, we have $|a_m - a'_m|_p \leq p^{-m}$, hence $a_m \equiv a'_m \pmod{p^m}$, implying $a_m = a'_m$. \hfill \Box

Theorem 8.6. The non-zero ideals of \mathbb{Z}_p are $p^m\mathbb{Z}_p$ ($m = 0, 1, 2, \ldots$) and $\mathbb{Z}_p/p^m\mathbb{Z}_p \cong \mathbb{Z}/p^m\mathbb{Z}$. In particular, $\mathbb{Z}_p/p\mathbb{Z}_p \cong F_p$.

Proof. Let I be a non-zero ideal of \mathbb{Z}_p and choose $\alpha \in I$ for which $|\alpha|_p$ is maximal. Then $|\alpha|_p = p^{-m}$ with $m \in \mathbb{Z}_{\geq 0}$. We have $p^{-m}\alpha \in \mathbb{Z}_p^*$, hence $p^m \in I$. Further, for $\beta \in I$ we have $|\beta p^{-m}|_p \leq 1$, hence $\beta \in p^m\mathbb{Z}_p$. Hence $I \subset p^m\mathbb{Z}_p$. This implies $I = p^m\mathbb{Z}_p$.

The homomorphism $\mathbb{Z}/p^m\mathbb{Z} \to \mathbb{Z}_p/p^m\mathbb{Z}_p$: $a \pmod{p^m} \mapsto a \pmod{p^m}$ is clearly injective, and also surjective in view of Lemma 8.5. Hence $\mathbb{Z}/p^m\mathbb{Z} \cong \mathbb{Z}_p/p^m\mathbb{Z}_p$. \hfill \Box

Lemma 8.7. Let $\{a_k\}_{k=0}^\infty$ be a sequence in \mathbb{Q}_p. Then $\sum_{k=0}^\infty a_k$ converges in \mathbb{Q}_p if and only if $\lim_{k \to \infty} a_k = 0$.

Further, every convergent series in \mathbb{Q}_p is unconditionally convergent, i.e., neither the convergence, nor the value of the series, are affected if the terms a_k are rearranged.

Proof. Suppose that $\alpha := \sum_{k=0}^\infty a_k$ converges. Then

$$a_n = \sum_{k=0}^n a_k - \sum_{k=0}^{n-1} a_k \to \alpha - \alpha = 0.$$

Conversely, suppose that $a_k \to 0$ as $k \to \infty$. Let $\alpha_n := \sum_{k=0}^n a_k$. Then for any integers m, n with $0 < m < n$ we have

$$|\alpha_n - \alpha_m|_p = |\sum_{k=m+1}^n a_k|_p \leq \max(|a_{m+1}|_p, \ldots, |a_n|_p) \to 0 \text{ as } m, n \to \infty.$$

So the partial sums α_n form a Cauchy sequence, hence must converge to a limit in \mathbb{Q}_p.

136
To prove the second part of the lemma, let \(\sigma \) be a bijection from \(\mathbb{Z}_{\geq 0} \) to \(\mathbb{Z}_{\geq 0} \). We have to prove that \(\sum_{k=0}^{\infty} a_{\sigma(k)} = \sum_{k=0}^{\infty} a_k \). Equivalently, we have to prove that \(\sum_{k=0}^{M} a_k - \sum_{k=0}^{M} a_{\sigma(k)} \to 0 \) as \(M \to \infty \), i.e., for every \(\varepsilon > 0 \) there is \(N \) such that
\[
| \sum_{k=0}^{M} a_k - \sum_{k=0}^{M} a_{\sigma(k)} |_p < \varepsilon \quad \text{for every} \quad M > N.
\]

Let \(\varepsilon > 0 \). There is \(N \) such that \(|a_k|_p < \varepsilon \) for all \(k \geq N \). Choose \(N_1 > N \) such that \(\{\sigma(0), \ldots, \sigma(N_1)\} \) contains \(\{0, \ldots, N\} \) and let \(M > N_1 \). Then in the sum
\[
S := \sum_{k=0}^{M} a_k - \sum_{k=0}^{M} a_{\sigma(k)},
\]
only terms \(a_k \) with \(k > N \) and \(a_{\sigma(k)} \) with \(\sigma(k) > N \) occur. Hence each term in \(S \) has \(p \)-adic absolute value \(< \varepsilon \) and therefore, by the ultrametric inequality, \(|S|_p < \varepsilon \).

We now show that every element of \(\mathbb{Z}_p \) has a “Taylor series expansion,” and every element of \(\mathbb{Q}_p \) a “Laurent series expansion” where instead of powers of a variable \(X \) one takes powers of \(p \).

Theorem 8.8. (i) Every element of \(\mathbb{Z}_p \) can be expressed uniquely as \(\sum_{k=0}^{\infty} b_k p^k \) with \(b_k \in \{0, \ldots, p-1\} \) for \(k \geq 0 \) and conversely, every such series belongs to \(\mathbb{Z}_p \).

(ii) Every element of \(\mathbb{Q}_p \) can be expressed uniquely as \(\sum_{k=-k_0}^{\infty} b_k p^k \) with \(k_0 \in \mathbb{Z} \), \(b_k \in \{0, \ldots, p-1\} \) for \(k \geq -k_0 \) and \(b_{-k_0} \neq 0 \) and conversely, every such series belongs to \(\mathbb{Q}_p \).

Proof. We first prove part (i). First observe that by Lemma 8.7, a series \(\sum_{k=0}^{\infty} b_k p^k \) with \(b_k \in \{0, \ldots, p-1\} \) converges in \(\mathbb{Q}_p \). Further, it belongs to \(\mathbb{Z}_p \), since \(|\sum_{k=0}^{\infty} b_k p^k|_p \leq \max_{k \geq 0} |b_k p^k|_p \leq 1 \).

Let \(\alpha \in \mathbb{Z}_p \). Define sequences \(\{\alpha_k\}_{k=0}^{\infty} \) in \(\mathbb{Z}_p \), \(\{b_k\}_{k=0}^{\infty} \) in \(\{0, \ldots, p-1\} \) inductively as follows:
\[
\begin{cases}
\alpha_0 := \alpha; \\
\text{For } k = 0, 1, \ldots, \text{ let } b_k \in \{0, \ldots, p-1\} \text{ be the integer with } \\
\alpha_k \equiv b_k \pmod{p} \quad \text{and put} \quad \alpha_{k+1} := (\alpha_k - b_k)/p.
\end{cases}
\]

By induction on \(k \), one easily deduces that for \(k \geq 0 \),
\[
\alpha_k \in \mathbb{Z}_p, \quad \alpha = \sum_{j=0}^{k} b_j p^j + p^{k+1} \alpha_k.
\]
Hence $|\alpha - \sum_{j=0}^{k} b_j p^j|_p \leq p^{-k-1}$ for $k \geq 0$. It follows that

$$\alpha = \lim_{k \to \infty} \sum_{j=0}^{k} b_j p^j = \sum_{j=0}^{\infty} b_j p^j.$$

Notice that the integer a_m from Lemma 8.5 is precisely $\sum_{k=0}^{m-1} b_k p^k$. Since a_m is uniquely determined, so must be the integers b_k.

We prove part (ii). As above, any series $\sum_{k=0}^{\infty} b_k p^k$ converges in \mathbb{Q}_p. Let $\alpha \in \mathbb{Q}_p$ with $\alpha \neq 0$. Suppose that $|\alpha|_p = p^{k_0}$. Then $\beta := p^{-k_0} \alpha$ has $|\beta|_p = 1$, so it belongs to \mathbb{Z}_p. Applying (i) to β we get

$$\alpha = p^{-k_0} \beta = p^{-k_0} \sum_{k=0}^{\infty} c_k p^k$$

with $c_k \in \{0, \ldots, p - 1\}$ which implies (ii).

Corollary 8.9. \mathbb{Z}_p is uncountable.

Proof. Apply Cantor’s diagonal method.

We use the following notation:

- $\alpha = 0. b_0 b_1 \ldots (p)$ if $\alpha = \sum_{k=0}^{\infty} b_k p^k$,
- $\alpha = b_{-k_0} \ldots b_{-1} b_0 b_1 \ldots (p)$ if $\alpha = \sum_{k=-k_0}^{\infty} b_k p^k$ with $k_0 < 0$.

We can describe various of the definitions given above in terms of p-adic expansions. For instance, for $\alpha \in \mathbb{Q}_p$ we have $|\alpha|_p = p^{-m}$ if $\alpha = \sum_{k=m}^{\infty} b_k p^k$ with $b_k \in \{0, \ldots, p - 1\}$ for $k \geq m$ and $b_m \neq 0$. Next, if $\alpha = \sum_{k=0}^{\infty} a_k p^k$, $\beta = \sum_{k=0}^{\infty} b_k p^k \in \mathbb{Z}_p$ with $a_k, b_k \in \{0, \ldots, p - 1\}$, then

$$\alpha \equiv \beta \pmod{p^m} \iff a_k = b_k \text{ for } k < m.$$

For p-adic numbers given in their p-adic expansions, one has the same addition with carry algorithm as for real numbers given in their decimal expansions, except that for p-adic numbers one has to work from left to right instead of right to left. Likewise, one has subtraction and multiplication algorithms for p-adic numbers which are precisely the same as for real numbers apart from that one has to work from left to right instead of right to left.
Theorem 8.10. Let $\alpha = \sum_{k=-k_0}^{\infty} b_k p^k$ with $b_k \in \{0,\ldots,p-1\}$ for $k \geq -k_0$. Then

$\alpha \in \mathbb{Q} \iff \{b_k\}_{k=-k_0}^{\infty}$ is ultimately periodic.

Proof. \Leftarrow Exercise.

\Rightarrow Without loss of generality, we assume that $\alpha \in \mathbb{Z}_p$ (if $\alpha \in \mathbb{Q}_p$ with $|\alpha|_p = p^{k_0}$, say, then we proceed further with $\beta := p^{k_0} \alpha$ which is in \mathbb{Z}_p).

Suppose that $\alpha = A/B$ with $A, B \in \mathbb{Z}$, $\gcd(A, B) = 1$. Then p does not divide B (otherwise $|\alpha|_p > 1$). Let $C := \max(|A|, |B|)$. Let $\{\alpha_k\}_{k=0}^{\infty}$ be the sequence defined by (8.1). Notice that α_k determines uniquely the numbers b_k, b_{k+1}, \ldots.

Claim. $\alpha_k = A_k/B$ with $A_k \in \mathbb{Z}$, $|A_k| \leq C$.

This is proved by induction on k. For $k = 0$ the claim is obviously true. Suppose the claim is true for $k = m$ where $m \geq 0$. Then

$$\alpha_{m+1} = \frac{\alpha_m - b_m}{p} = \frac{(A_m - b_mB)/p}{B}.$$

Since $\alpha_m \equiv b_m \pmod{p}$ we have that $A_m - b_mB$ is divisible by p. So $A_{m+1} := (A_m - b_mB)/p \in \mathbb{Z}$. Further,

$$|A_{m+1}| \leq \frac{C + (p-1)B}{p} \leq C.$$

This proves our claim.

Now since the integers A_k all belong to $\{-C, \ldots, C\}$, there must be indices $l < m$ with $A_l = A_m$, that is, $\alpha_l = \alpha_m$. But then, $b_{k+m-l} = b_k$ for all $k \geq l$, proving that $\{b_k\}_{k=0}^{\infty}$ is ultimately periodic. \hfill \square

Examples. (i) We determine the 3-adic expansion of $-\frac{2}{5}$. We compute the numbers α_k, b_k according to (8.1).

Notice that $\frac{2}{5} \equiv 2 \pmod{3}$.

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_k</td>
<td>$-\frac{2}{5}$</td>
<td>$-\frac{4}{5}$</td>
<td>$-\frac{3}{5}$</td>
<td>$-\frac{1}{5}$</td>
<td>$-\frac{2}{5}$</td>
</tr>
<tr>
<td>b_k</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
It follows that the sequence of 3-adic digits \(\{b_k\}_{k=0}^{\infty} \) of \(-\frac{2}{5}\) is periodic with period 2, 1, 0, 1 and that

\[
-\frac{2}{5} = 2 \times 3^0 + 1 \times 3^1 + 0 \times 3^2 + 1 \times 3^3 + 2 \times 3^4 + 1 \times 3^5 + 0 \times 3^6 + 1 \times 3^7 + \ldots
\]

\[
= 0.21012101\ldots (2) = 0.\overline{2101} (2).
\]

(ii) We determine the 2-adic expansion of \(\frac{1}{56} \). Notice that \(\frac{1}{56} = 2^{-3} \times \frac{1}{7} \). We start with the 2-adic expansion of \(\frac{1}{7} \).

\[
\begin{array}{cccccc}
 k & 0 & 1 & 2 & 3 & 4 \\
 a_k & \frac{1}{7} & -\frac{3}{7} & -\frac{5}{7} & -\frac{6}{7} & -\frac{3}{7} \\
 b_k & 1 & 1 & 1 & 0 & 1 \\
\end{array}
\]

So

\[
\frac{1}{7} = 0.1\overline{1} (2), \quad \frac{1}{56} = 111.0\overline{1} (2).
\]

8.4 The p-adic topology

The ball with center \(a \in \mathbb{Q}_p \) and radius \(r \) in the value set \(\{0\} \cup \{p^m : m \in \mathbb{Z}\} \) of \(|\cdot|_p \) is defined by \(B(a, r) := \{x \in \mathbb{Q}_p : |x - a|_p \leq r \} \). Notice that if \(b \in B(a, r) \) then \(|b - a|_p \leq r \). So by the ultrametric inequality, for \(x \in B(a, r) \) we have \(|x - b|_p \leq \max(|x - a|_p, |a - b|_p) \leq r \), i.e. \(x \in B(b, r) \). So \(B(a, r) \subseteq B(b, r) \). Similarly one proves \(B(b, r) \subseteq B(a, r) \). Hence \(B(a, r) = B(b, r) \). In other words, any point in a ball can be taken as center of the ball.

We define the \(p \)-adic topology on \(\mathbb{Q}_p \) as follows. A subset \(U \) of \(\mathbb{Q}_p \) is called open if for every \(a \in U \) there is \(m > 0 \) such that \(B(a, p^{-m}) \subseteq U \). It is easy to see that this topology is Hausdorff: if \(a, b \) are distinct elements of \(\mathbb{Q}_p \), and \(m \) is an integer with \(p^{-m} < |a - b|_p \), then the balls \(B(a, p^{-m}) \) and \(B(b, p^{-m}) \) are disjoint.

But apart from this, the \(p \)-adic topology has some strange properties.

Theorem 8.11. Let \(a \in \mathbb{Q}_p, m \in \mathbb{Z} \). Then \(B(a, p^{-m}) \) is both open and compact in the \(p \)-adic topology.

Proof. The ball \(B(a, p^{-m}) \) is open since for every \(b \in B(a, p^{-m}) \) we have \(B(b, p^{-m}) = B(a, p^{-m}) \).
To prove the compactness we modify the proof of the Heine-Borel theorem stating that every closed and bounded set in \mathbb{R} is compact. Assume that $B_0 := B(a, p^{-m})$ is not compact. Then there is an infinite open cover $\{U_a\}_{a \in A}$ of B_0 no finite subcollection of which covers B_0. Take $x \in B(a, p^{-m})$. Then $|(x - a)/p^m|_p < 1$. Hence there is $b \in \{0, \ldots, p - 1\}$ such that $x - a \equiv b \pmod{p}$. But then, $x \in B(a + bp^m, p^{-m-1})$. It follows that there is a ball $B_1 \subset B(a, p^{-m})$ of radius p^{-m-1} which can not be covered by finitely many sets from $\{U_a\}_{a \in A}$. By continuing this argument we find an infinite sequence of balls $B_0 \supset B_1 \supset B_2 \supset \cdots$, where B_i has radius p^{-m-i}, such that B_i can not be covered by finitely many sets from $\{U_a\}_{a \in A}$.

We show that the intersection of the balls B_i is non-empty. For $i \geq 0$, choose $x_i \in B_i$. Thus, $B_i = B(x_i, p^{-m-i})$. Then $\{x_i\}_{i \geq 0}$ is a Cauchy sequence since $|x_i - x_j|_p \leq p^{-m-\min(i,j)} \to 0$ as $i, j \to \infty$. Hence this sequence has a limit x^* in \mathbb{Q}_p. Now we have $|x_i - x^*|_p = \lim_{j \to \infty} |x_i - x_j|_p \leq p^{-m-i}$, hence $x^* \in B_i$, and so $B_i = B(x^*, p^{-m-i})$ for $i \geq 0$.

The point x^* belongs to one of the sets, U, say, of $\{U_a\}_{a \in A}$. Since U is open, for i sufficiently large the ball B_i must be contained in U. This gives a contradiction.

Corollary 8.12. Every non-empty open subset of \mathbb{Q}_p is disconnected.

Proof. Let U be an open non-empty subset of \mathbb{Q}_p. Take $a \in U$. Then $B := B(a, p^{-m}) \subset U$ for some $m \in \mathbb{Z}$. By increasing m we can arrange that B is strictly smaller than U. Now B is open and also $U \setminus B$ is open since B is compact. Hence U is the union of two non-empty disjoint open sets.

8.5 Algebraic extensions of \mathbb{Q}_p

We fix an algebraic closure $\overline{\mathbb{Q}_p}$ of \mathbb{Q}_p, i.e., a minimal extension of \mathbb{Q}_p over which every non-zero polynomial in $\mathbb{Q}_p[X]$ factors into linear factors. We construct an extension of $| \cdot |_p$ to $\overline{\mathbb{Q}_p}$.

For polynomials $f, g \in \mathbb{Z}_p[X]$ we write $f \equiv g \pmod{p^m}$ if $p^{-m}(f - g) \in \mathbb{Z}_p[X]$. Given $f \in \mathbb{Z}_p[X]$ and a sequence of polynomials $f_m \in \mathbb{Z}_p[X]$ ($m = 1, 2, \ldots$), we write $\lim_{m \to \infty} f_m = f$ if for every $k \geq 0$, the sequence of coefficients of X^k in f_m converges to the coefficient of X^k in f. Clearly, $\lim_{m \to \infty} f_m = f$ if and only if there
is a sequence of non-negative integers a_m with $\lim_{m \to \infty} a_m \to \infty$ (in \mathbb{R}) such that $f_m \equiv f \pmod{p^{m^s}}$.

An important tool is the so-called Hensel’s Lemma, which gives a method to derive, from a factorization of a polynomial $f \in \mathbb{Z}_p[X]$ modulo p, a factorization of f in $\mathbb{Z}_p[X]$.

Theorem 8.13. Let f, g_1, h_1 be polynomials in $\mathbb{Z}_p[X]$ such that $f \neq 0$,

\[
f \equiv g_1 h_1 \pmod{p}, \quad \gcd(g_1, h_1) \equiv 1 \pmod{p},
\]

g_1 is monic, $0 < \deg g_1 < \deg f$, $\deg g_1 h_1 \leq \deg f$.

Then there exist polynomials $g, h \in \mathbb{Z}_p[X]$ such that

\[
f = gh, \quad g \equiv g_1 \pmod{p}, \quad h \equiv h_1 \pmod{p}, \quad g \text{ is monic}, \quad \deg g = \deg g_1.
\]

Proof. By induction on m, we prove that there are polynomials $g_m, h_m \in \mathbb{Z}_p[X]$ such that

\[
\begin{array}{ll}
 f & \equiv g_m h_m \pmod{p^m}, \; g_m \equiv g_1 \pmod{p}, \; h_m \equiv h_1 \pmod{p}, \\
 g_m & \text{is monic, } \deg g_m = \deg g_1, \; \deg g_m h_m \leq \deg f,
\end{array}
\]

For $m = 1$ this follows from our assumption. Let $m \geq 2$, and suppose that there are polynomials g_{m-1}, h_{m-1} satisfying (8.2) with $m - 1$ instead of m. We try to find $u, v \in \mathbb{Z}_p[X]$ such that $g_m = g_{m-1} + p^{m-1}u$, $h_m = h_{m-1} + p^{m-1}v$ satisfy (8.2). By assumption,

\[
A := p^{1-m}(f - g_{m-1}h_{m-1}) \in \mathbb{Z}_p[X].
\]

Notice that $f \equiv g_m h_m \pmod{p^m}$ if and only if

\[
f - (g_{m-1} + p^{m-1}u)(h_{m-1} + p^{m-1}v) \equiv 0 \pmod{p^m}
\]

\[
\iff A \equiv vg_{m-1} + uh_{m-1} \pmod{p} \iff A \equiv vg_1 + uh_1 \pmod{p}.
\]

Thanks to our assumption $\gcd(g_1, h_1) \equiv 1 \pmod{p}$ such u, v exist, and in fact, we can choose u with $\deg u < \deg g_1$. Then clearly, $g_m = g_{m-1} + p^{m-1}u$, $h_m = h_{m-1} + p^{m-1}v$ satisfy (8.2).

Now for each term X^k, the coefficients of X^k in the g_m form a Cauchy sequence, hence have a limit, so we can take $g := \lim_{m \to \infty} g_m$. Then g is monic, and $0 < \deg g < \deg f$. Likewise, we can define $h := \lim_{m \to \infty} h_m$. Then

\[
f - gh = \lim_{m \to \infty} (f - g_m h_m) = 0.
\]

This completes our proof.
Corollary 8.14. Let \(f = a_0X^n + a_1X^{n-1} + \cdots + a_n \in \mathbb{Q}_p[X] \) be irreducible. Put \(M := \max(|a_0|_p, \ldots, |a_n|_p) \). Let \(k \) be the smallest index \(i \) such that \(|a_i|_p = M \). Then \(k = 0 \) or \(k = n \).

Proof. Assume that \(0 < k < n \). So \(|a_i|_p < |a_k|_p \) for \(i < k \) and \(|a_i|_p \leq |a_k|_p \) for \(i \geq k \).

Put \(\tilde{f} := b_k^{-1}f \). Then
\[
\tilde{f} = b_0X^n + \cdots + b_{k-1}X^{n-k+1} + X^{n-k} + b_{k+1}X^{n-k-1} + \cdots + b_n
\]
with \(|b_i|_p < 1 \) for \(i < k \) and \(|b_i|_p \leq 1 \) for \(i > k \). Now \(\tilde{f} \in \mathbb{Z}_p[X] \), \(b_0, \ldots, b_{k-1} \) are divisible by \(p \), and thus,
\[
\tilde{f} \equiv (X^{n-k} + b_{k+1}X^{n-k-1} + \cdots + b_n) \cdot 1 \pmod{p}.
\]
By applying Hensel’s Lemma, we infer that there are polynomials \(g, h \in \mathbb{Z}_p[X] \) such that \(\tilde{f} = gh \) and \(\deg g = n - k \). Then \(\tilde{f} \), hence \(f \), is reducible, contrary to our assumption. \(\square \)

We are now ready to define an extension of \(| \cdot |_p\) to \(\overline{\mathbb{Q}}_p \). Given \(\alpha \in \overline{\mathbb{Q}}_p \), let
\[
f = X^n + a_1X^{n-1} + \cdots + a_n \in \mathbb{Q}_p[X]
\]
be the monic minimal polynomial of \(\alpha \) over \(\mathbb{Q}_p \), that is the monic polynomial in \(\mathbb{Q}_p[X] \) of smallest degree having \(\alpha \) as a root. Then we put
\[
|\alpha|_p := |a_n|_p^{1/n}.
\]
Let \(\alpha^{(1)} = \alpha, \ldots, \alpha^{(n)} \) be the conjugates of \(\alpha \), i.e., the roots of \(f \) in \(\overline{\mathbb{Q}}_p \). Let \(L \) be any finite extension of \(\mathbb{Q}_p \) containing \(\alpha \), and suppose that \([L : \mathbb{Q}_p] = m \). Completely similarly as for algebraic number fields, the field \(L \) has precisely \(m \) embeddings in \(\overline{\mathbb{Q}}_p \) that leave the elements of \(\mathbb{Q}_p \) unchanged, say \(\sigma_1, \ldots, \sigma_m \). Now in the sequence \(\sigma_1(\alpha), \ldots, \sigma_m(\alpha) \), each of the conjugates \(\alpha^{(1)}, \ldots, \alpha^{(n)} \) occurs precisely \(m/n \) times. Define the norm \(N_{L/\mathbb{Q}_p}(\alpha) := \sigma_1(\alpha) \cdots \sigma_m(\alpha) \). Then
\[
|\alpha|_p = |a_n|_p^{1/n} = |\alpha^{(1)} \cdots \alpha^{(n)}|_p^{1/n} = |N_{L/\mathbb{Q}_p}(\alpha)|_p^{1/[L : \mathbb{Q}_p]}.
\]
In case that \(\alpha \in \mathbb{Q}_p \), the minimal polynomial of \(\alpha \) is \(X - \alpha \), and thus we get back our already defined \(|\alpha|_p\).

Theorem 8.15. \(| \cdot |_p\) defines a non-archimedean absolute value on \(\overline{\mathbb{Q}}_p \).
Proof. Let $\alpha, \beta \in \overline{\mathbb{Q}_p}$, and take $L = \mathbb{Q}_p(\alpha, \beta)$. Then

$$|\alpha \beta|_p = |N_{L/\mathbb{Q}_p}(\alpha \beta)|^{1/[L: \mathbb{Q}_p]} = |N_{L/\mathbb{Q}_p}(\alpha)|^{1/[L: \mathbb{Q}_p]} |N_{L/\mathbb{Q}_p}(\beta)|^{1/[L: \mathbb{Q}_p]} = |\alpha|_p |\beta|_p.$$

To prove that $|\alpha + \beta|_p \leq \max(|\alpha|_p, |\beta|_p)$, assume without loss of generality that $|\alpha|_p \leq |\beta|_p$ and put $\gamma := \alpha / \beta$. Then $|\gamma|_p \leq 1$, and we have to prove that $|1 + \gamma|_p \leq 1$. Let $f = X^n + a_1 X^{n-1} + \cdots + a_n$ be the minimal polynomial of γ over \mathbb{Q}_p. Then $|a_n|_p = |\gamma|_p^n \leq 1$, and by Corollary 8.14, also $|a_i|_p \leq 1$ for $i = 1, \ldots, n-1$. Now the minimal polynomial of $\gamma + 1$ is $f(X - 1) = X^n + \cdots + f(-1)$ and so

$$|\gamma + 1|_p = |f(-1)|^{1/n}_p = |(-1)^n + a_1(-1)^{n-1} + \cdots + a_0|^{1/n}_p \leq \max(1, |a_1|_p, \ldots, |a_n|_p)^{1/n} \leq 1,$$

as required. \qed

We recall Eisenstein’s irreducibility criterion for polynomials in \mathbb{Z}_p.

Lemma 8.16. Let $f(X) = X^n + a_1 X^{n-1} + \cdots + a_n X + a_n \in \mathbb{Z}_p[X]$ be such that $a_i \equiv 0 \pmod{p}$ for $i = 1, \ldots, n$, and $a_n \not\equiv 0 \pmod{p^2}$. Then f is irreducible in $\mathbb{Q}_p[X]$.

Proof. Completely similar as the Eisenstein criterion for polynomials in $\mathbb{Z}[X]$. \qed

Example. Let α be a zero of $X^3 - 8X + 10$ in $\overline{\mathbb{Q}_2}$. The polynomial $X^3 - 8X + 10$ is irreducible in $\mathbb{Q}_2[X]$, hence it is the minimal polynomial of α. It follows that $|\alpha|_2 = |10|^{1/3}_2 = 2^{-1/3}$.

We finish with some facts which we state without proof.

Theorem 8.17. (i) Let K be a finite extension of \mathbb{Q}_p. Then there is precisely one absolute value on K whose restriction to \mathbb{Q}_p is $|\cdot|_p$, and this is given by $|N_{K/\mathbb{Q}_p}(|\cdot|)|^{1/[K: \mathbb{Q}_p]}$. Further, K is complete with respect to this absolute value.

(ii) $\overline{\mathbb{Q}_p}$ is not complete with respect to $|\cdot|_p$.

(iii) The completion \mathbb{C}_p of $\overline{\mathbb{Q}_p}$ with respect to $|\cdot|_p$ is algebraically closed.
8.6 Exercises

In the exercises below, \(p \) always denotes a prime number and convergence is with respect to \(| \cdot |_p \).

Exercise 8.1. (a) Determine the \(p \)-adic expansion of \(-1\).

(b) Let \(\alpha = \sum_{k=0}^{\infty} b_k p^k \) with \(b_k \in \{0, \ldots, p-1\} \) for \(k \geq 0 \). Determine the \(p \)-adic expansion of \(-\alpha\).

Exercise 8.2. Let \(\alpha \in \mathbb{Q}_p, \alpha \neq 0 \). Prove that \(\alpha \) has a finite \(p \)-adic expansion if and only if \(\alpha = a/p^r \) where \(a \) is a positive integer and \(r \) a non-negative integer.

Exercise 8.3. Let \(\alpha = \sum_{k=-\infty}^{\infty} b_k p^k \in \mathbb{Q}_p \) where \(b_k \in \{0, \ldots, p-1\} \) for \(k \geq -\infty \) and \(b_{-\infty} \neq 0 \). Suppose that the sequence \(\{b_k\}_{k=-\infty}^{\infty} \) is ultimately periodic, i.e., there exist \(r, s \) with \(r \geq -\infty \), \(s > 0 \) such that \(a_{k+s} = a_k \) for all \(k \geq r \). Prove that \(\alpha \in \mathbb{Q} \).

Exercise 8.4. Let \(\alpha \in \mathbb{Z}_p \) with \(|\alpha - 1|_p \leq p^{-1} \). In this exercise you are asked to define \(\alpha^x \) for \(x \in \mathbb{Z}_p \) and to show that this exponentiation has the expected properties. You may use without proof that the limit of the sum, product etc. of two sequences in \(\mathbb{Z}_p \) is the sum, product etc. of the limits.

(a) Prove that \(\left| \frac{\alpha^x - 1}{\alpha - 1} \right|_p \leq p^{-1} \).

(b) Let \(u \) be a positive integer. Prove that \(|\alpha^u - 1|_p \leq |u|_p |\alpha - 1|_p \).

Hint. Write \(u = p^m b \) where \(b \) is not divisible by \(p \) and use induction on \(m \).

(c) Let \(u, v \) be positive integers. Prove that \(|\alpha^u - \alpha^v|_p \leq |u - v|_p |\alpha - 1|_p \).

(d) We now define \(\alpha^x \) for \(x \in \mathbb{Z}_p \) as follows. Take a sequence of positive integers \(\{a_k\}_{k=0}^{\infty} \) such that \(\lim_{k \to \infty} a_k = x \) and define

\[
\alpha^x := \lim_{k \to \infty} \alpha^{a_k}.
\]

Prove that this is well-defined, i.e., the limit exists and is independent of the choice of the sequence \(\{a_k\}_{k=0}^{\infty} \).

(e) Prove that for \(x, y \in \mathbb{Z}_p \) we have \(|\alpha^x - \alpha^y|_p \leq |x - y|_p |\alpha - 1|_p \). (**Hint.** Take sequences of positive integers converging to \(x, y \).) Then show that if \(\{x_k\}_{k=0}^{\infty} \) is a sequence in \(\mathbb{Z}_p \) such that \(\lim_{k \to \infty} x_k = x \) then \(\lim_{k \to \infty} \alpha^{x_k} = \alpha^x \) (so the function \(x \mapsto \alpha^x \) is continuous).
(f) Prove the following properties of the above defined exponentiation:

(i) \((\alpha \beta)^x = \alpha^x \beta^x \) for \(\alpha, \beta \in \mathbb{Z}_p \), \(x \in \mathbb{Z}_p \) with \(|\alpha - 1|_p \leq p^{-1}, |\beta - 1|_p \leq p^{-1} \);

(ii) \(\alpha^{x+y} = \alpha^x \alpha^y \), \((\alpha^x)^y = \alpha^{xy} \) for \(\alpha \in \mathbb{Z}_p \) with \(|\alpha - 1|_p \leq p^{-1}, x, y \in \mathbb{Z}_p \).

Remark. In 1935, Mahler proved the following \(p \)-adic analogue of the Gel'fond-Schneider Theorem: let \(\alpha, \beta \) be elements of \(\mathbb{Z}_p \), both algebraic over \(\mathbb{Q} \), such that \(|\alpha - 1|_p \leq p^{-1} \) and \(\beta \not\in \mathbb{Q} \). Then \(\alpha^\beta \) is transcendental over \(\mathbb{Q} \).

Exercise 8.5. Denote by \(\mathbb{C}((t)) \) the field of formal Laurent series

\[
\sum_{k=k_0}^{\infty} b_k t^k
\]

with \(k_0 \in \mathbb{Z} \), \(b_k \in \mathbb{C} \) for \(k \geq k_0 \). We define an absolute value \(\cdot |_0 \) on \(\mathbb{C}((t)) \) by

\[
|0|_0 := 0 \quad \text{and} \quad |\alpha|_0 := c^{-k_0} \quad (c > 1 \text{ some constant})
\]

where \(\alpha = \sum_{k=k_0}^{\infty} b_k t^k \) with \(b_{k_0} \neq 0 \).

This absolute value is clearly non-archimedean.

(a) Prove that \(\mathbb{C}((t)) \) is complete w.r.t. \(\cdot |_0 \).

(b) Define \(\cdot |_0 \) on the field of rational functions \(\mathbb{C}(t) \) by

\[
|0|_0 := 0 \quad \text{and} \quad |\alpha|_0 := c^{-k_0}
\]

if \(\alpha \neq 0 \), where \(k_0 \) is the integer such that \(\alpha = t^{k_0} f/g \) with \(f, g \) polynomials not divisible by \(t \). Prove that \(\mathbb{C}((t)) \) is the completion of \(\mathbb{C}(t) \) w.r.t. \(\cdot |_0 \).

Exercise 8.6. In this exercise you are asked to work out a \(p \)-adic analogue of Newton’s method to approximate the roots of a polynomial (which is in fact a special case of Hensel’s Lemma). Let \(f = a_0 X^n + \cdots + a_n \in \mathbb{Z}_p[X] \). The derivative of \(f \) is \(f' = na_0 X^{n-1} + \cdots + a_{n-1} \).

(a) Let \(a, x \in \mathbb{Z}_p \) and suppose that \(x \equiv 0 \pmod{p^m} \) for some positive integer \(m \). Prove that \(f(a + x) \equiv f(a) \pmod{p^m} \) and \(f(a + x) \equiv f(a) + f'(a)x \pmod{p^{2m}} \).

Hint. Use that \(f(a + X) \in \mathbb{Z}_p[X] \).
(b) Let \(x_0 \in \mathbb{Z} \) such that \(f(x_0) \equiv 0 \pmod{p} \), \(f'(x_0) \not\equiv 0 \pmod{p} \). Define the sequence \(\{x_n\}_n \) recursively by

\[
x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)} \quad (n \geq 0).
\]

Prove that \(x_n \in \mathbb{Z}_p \), \(f(x_n) \equiv 0 \pmod{p^{2^n}} \), \(f'(x_n) \not\equiv 0 \pmod{p} \) for \(n \geq 0 \).

(c) Prove that \(x_n \) converges to a zero of \(f \) in \(\mathbb{Z}_p \).

(d) Prove that \(f \) has precisely one zero \(\xi \in \mathbb{Z}_p \) such that \(\xi \equiv x_0 \pmod{p} \).

Exercise 8.7. In this exercise, \(p \) is a prime \(> 2 \).

(a) Let \(d \) be a positive integer such that \(d \not\equiv 0 \pmod{p} \) and \(x^2 \equiv d \pmod{p} \) is solvable. Show that \(x^2 = d \) is solvable in \(\mathbb{Z}_p \).

(b) Let \(a, b \) be two positive integers such that none of the congruence equations \(x^2 \equiv a \pmod{p} \), \(x^2 \equiv b \pmod{p} \) is solvable in \(x \in \mathbb{Z} \). Prove that \(ax^2 \equiv b \pmod{p} \) is solvable in \(x \in \mathbb{Z} \).

\[\text{Hint.} \text{ Use that the multiplicative group } (\mathbb{Z}/p\mathbb{Z})^* \text{ is cyclic of order } p-1. \text{ This implies that there is an integer } g \text{ such that } (\mathbb{Z}/p\mathbb{Z})^* = \{g^m \pmod{p} : m = 0, \ldots, p-2\}.\]

(c) Let \(K \) be a quadratic extension of \(\mathbb{Q}_p \). Prove that \(K = \mathbb{Q}_p(\sqrt{d}) \) for some \(d \in \mathbb{Z}_p \). Next, prove that \(\mathbb{Q}_p(\sqrt{d_1}) = \mathbb{Q}_p(\sqrt{d_2}) \) if and only if \(d_1/d_2 \) is a square in \(\mathbb{Q}_p \).

(d) Determine all quadratic extensions of \(\mathbb{Q}_5 \).

(e) Prove that for any prime \(p > 2 \), \(\mathbb{Q}_p \) has up to isomorphism only three distinct quadratic extensions.

Exercise 8.8. (a) Prove that \(x^p - 1 = 1 \) has precisely \(p - 1 \) solutions in \(\mathbb{Z}_p \), and that these solutions are different modulo \(p \).

(b) Let \(S \) consist of \(0 \) and of the solutions in \(\mathbb{Z}_p \) of \(x^p - 1 = 1 \). Let \(\alpha \in \mathbb{Z}_p \). Prove that for any positive integer \(m \), there are \(\xi_0, \ldots, \xi_{m-1} \in S \) such that \(\alpha \equiv \sum_{k=0}^{m-1} \xi_k p^k \pmod{p^m} \). Then prove that there is a sequence \(\{\xi_k\}_{k=0}^\infty \) in \(S \) such that \(\alpha = \sum_{k=0}^\infty \xi_k p^k \). (This is called the Teichmüller representation of \(\alpha \).)
Exercise 8.9. In this exercise you may use the following facts on \(p \)-adic power series (the coefficients are always in \(\mathbb{Q}_p \), and \(m,m' \in \mathbb{Z} \)).

1) Suppose \(f(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^n \), \(g(x) = \sum_{n=0}^{\infty} b_n(x - x_0)^n \) converge and are equal on \(B(x_0, p^{-m}) \). Then \(a_n = b_n \) for all \(n \geq 0 \).

2) Suppose that for \(x \in B(x_0, p^{-m}) \), \(f(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^n \) converges and \(|f(x) - f(x_0)|_p \leq p^{-m} \). Further, suppose that \(g(x) = \sum_{n=0}^{\infty} b_n(x - f(x_0))^n \) converges on \(B(f(x_0), p^{-m'}) \). Then the composition \(g(f(x)) \) can be expanded as a power series \(\sum_{n=0}^{\infty} c_n(x - x_0)^n \) which converges on \(B(x_0, p^{-m}) \).

3) We define the derivative of \(f(x) = \sum_{n=0}^{\infty} a_n(x - x_0)^n \) by
\[
f'(x) := \sum_{n=1}^{\infty} na_n(x - x_0)^{n-1}.
\]

If \(f \) converges on \(B(x_0, p^m) \) then so does \(f' \). The derivative satisfies the same sum rules, product rule, quotient rule and chain rule as the derivative of a function on \(\mathbb{R} \), e.g., \(g(f(x))' = g'(f(x))f'(x) \).

Now define the \(p \)-adic exponential function and \(p \)-adic logarithm by
\[
\exp_p x := \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \log_p x := \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot (x - 1)^n.
\]

Further, let \(r = 1 \) if \(p > 2 \), \(r = 2 \) if \(p = 2 \). Prove the following properties.

(a) Prove that \(\exp_p(x) \) converges and \(|\exp_p(x) - 1|_p = |x|_p \) for \(x \in B(0, p^{-r}) \).

Hint. Prove that \(|x^n/n!|_p \to 0 \) as \(n \to \infty \), and \(|x^n/n!|_p < |x|_p \) for \(n \geq 2 \).

(b) Prove that \(\log_p(x) \) converges and \(|\log_p x|_p = |x - 1|_p \) for \(x \in B(1, p^{-r}) \).

(c) Prove that \(\exp_p(x + y) = \exp_p(x)\exp_p(y) \) for \(x, y \in B(0, p^{-r}) \).

Hint. Fix \(y \) and consider the function in \(x \),
\[
f(x) := \exp_p(y)^{-1}\exp_p(x + y).
\]

Then \(f(x) \) can be expanded as a power series \(\sum_{n=0}^{\infty} a_n x^n \). Its derivative \(f'(x) \) can be computed in the same way as one should do it for real or complex functions. This leads to conditions on the coefficients \(a_n \).

(d) Prove that \(\log_p(xy) = \log_p(x) + \log_p(y) \) for \(x, y \in B(1, p^{-r}) \).
(e) Prove that $\log_p(\exp_p x) = x$ for $x \in B(0, p^{-r})$.

(f) Prove that $\exp_p(\log_p x) = x$ for $x \in B(1, p^{-r})$.