Chapter 3

Dirichlet series and arithmetical functions

3.1 Dirichlet series

An arithmetical function is a function $f : \mathbb{Z}_{>0} \to \mathbb{C}$. To such a function we associate a Dirichlet series

$$L_f(s) = \sum_{n=1}^{\infty} f(n) n^{-s}$$

where s is a complex variable. It is common practice (although this doesn’t make sense) to write $s = \sigma + it$, where $\sigma = \text{Re } s$ and $t = \text{Im } s$. We want to develop a theory for Dirichlet series similar to that for power series. Every power series $\sum_{n=0}^{\infty} a_n z^n$ has a radius of convergence R such that the series converges if $|z| < R$ and diverges if $|z| > R$. As we will see, a Dirichlet series $L_f(s)$ has an abscissa of convergence $\sigma_0(f)$ such that the series converges for all $s \in \mathbb{C}$ with $\text{Re } s > \sigma_0(f)$ and diverges for all $s \in \mathbb{C}$ with $\text{Re } s < \sigma_0(f)$. For instance, $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ has abscissa of convergence 1.

We start with an important summation result, which we shall use very frequently.

Theorem 3.1 (Partial summation, summation by parts). Let M, N be reals with $M < N$. Let x_1, \ldots, x_r be real numbers with $M \leq x_1 < \cdots < x_r \leq N$, let $a(x_1), \ldots, a(x_r)$ be complex numbers, and put $A(t) := \sum_{x_k \leq t} a(x_k)$ for $t \in [M, N]$.

57
Further, let \(g : [M, N] \to \mathbb{C} \) be a differentiable function. Then
\[
\sum_{k=1}^{r} a(x_k)g(x_k) = A(N)g(N) - \int_{M}^{N} A(t)g'(t)dt.
\]

Proof. Let \(x_0 < M \) and put \(A(x_0) := 0 \). Then
\[
\sum_{k=1}^{r} a(x_k)g(x_k) = \sum_{k=1}^{r} (A(x_k) - A(x_{k-1}))g(x_k)
\]
\[
= \sum_{k=1}^{r} A(x_k)g(x_k) - \sum_{k=1}^{r-1} A(x_k)g(x_{k+1})
\]
\[
= A(x_r)g(x_r) - \sum_{k=1}^{r-1} A(x_k)(g(x_{k+1}) - g(x_k)).
\]
Since \(A(t) = A(x_k) \) for \(x_k \leq t < x_{k+1} \) we have
\[
A(x_k)(g(x_{k+1}) - g(x_k)) = \int_{x_k}^{x_{k+1}} A(t)g'(t)dt.
\]
Hence
\[
\sum_{k=1}^{r} a(x_k)g(x_k) = A(x_r)g(x_r) - \sum_{k=1}^{r-1} \int_{x_k}^{x_{k+1}} A(t)g'(t)dt
\]
\[
= A(x_r)g(x_r) - \int_{x_1}^{x_r} A(t)g'(t)dt.
\]
In case that \(x_1 = M, x_r = N \) we are done. If \(x_1 > M \), then \(A(t) = 0 \) for \(M \leq t < x_1 \) and thus, \(\int_{M}^{x_1} A(t)g'(t)dt = 0 \). If \(x_r < N \), then \(A(t) = A(x_r) \) for \(x_r \leq t \leq N \), hence
\[
\int_{x_r}^{N} A(t)g'(t)dt = A(N)g(N) - A(x_r)g(x_r).
\]
Together with (3.1) this implies our Theorem.

\[\square\]

Theorem 3.2. Let \(f : \mathbb{Z}_{>0} \to \mathbb{C} \) be an arithmetical function with the property that there exists a constant \(C > 0 \) such that \(|\sum_{n=1}^{N} f(n)| \leq C \) for every \(N \geq 1 \). Then
\[L_f(s) = \sum_{n=1}^{\infty} f(n)n^{-s} \] converges for every \(s \in \mathbb{C} \) with \(\text{Re} \, s > 0 \).
More precisely, on \(\{ s \in \mathbb{C} : \text{Re} \, s > 0 \} \) the function \(L_f \) is analytic, and for its \(k \)-th derivative we have
\[
L_f^{(k)}(s) = \sum_{n=1}^{\infty} f(n)(-\log n)^{k} n^{-s}.
\]
Proof. We prove that \(Lf \) converges uniformly on the rectangle

\[
R(\sigma_1, \sigma_2, T) := \{ s \in \mathbb{C} : \sigma_1 < \text{Re} s < \sigma_2, \ |\text{Im} s| < T \}
\]

for every \(\sigma_1, \sigma_2, T \) with \(\sigma_2 > \sigma_1 > 0 \) and \(T > 0 \), that is, the partial sums \(\sum_{n=1}^{N} f(n)n^{-s} \) converge uniformly to \(Lf(s) \), for \(s \) in the rectangle. Since these partial sums are all analytic, it follows from Theorem 2.24 from the previous chapter that for \(s \in R(\sigma_1, \sigma_2, T) \),

\[
Lf(s) = \lim_{N \to \infty} \sum_{n=1}^{N} f(n)n^{-s} \text{ is analytic,}
\]

\[
L_f^{(k)}(s) = \lim_{N \to \infty} \left(\sum_{n=1}^{N} f(n)n^{-s} \right)^{(k)} = \sum_{n=1}^{\infty} (-\log n)^k f(n)n^{-s}.
\]

Since every \(s \in \mathbb{C} \) with \(\text{Re} s > 0 \) lies in \(R(\sigma_1, \sigma_2, T) \) for some \(\sigma_2 > \sigma_1 > 0 \) and \(T > 0 \), this implies Theorem 3.2.

Fix \(\sigma_1, \sigma_2, T \) with \(\sigma_2 > \sigma_1 > 0 \) and \(T > 0 \). Recall that a sequence of functions \(\{f_n : U \to \mathbb{C}\}_{n=1}^{\infty} \) defined on a subset \(U \) of \(\mathbb{C} \) converges uniformly on \(U \) if and only if

\[
\lim_{M,N \to \infty} \sup_{s \in U} |f_N(s) - f_M(s)| = 0.
\]

Applying this to \(f_M(s) = \sum_{n=1}^{M} f(n)n^{-s} \), we see that we have to prove that

\[
\lim_{M,N \to \infty} \sup_{s \in R(\sigma_1, \sigma_2, T)} \left| \sum_{n=M+1}^{N} f(n)n^{-s} \right| = 0.
\]

We prove this using partial summation.

Let \(N > M > 0 \) and put \(F(t) := \sum_{M<n \leq t} f(n) \). Notice that by our assumption on \(F \),

\[
|F(t)| \leq \left| \sum_{n=1}^{M} f(n) \right| + \left| \sum_{n \leq t} f(n) \right| \leq 2C \quad \text{for all } t > M.
\]

By Theorem 3.1 (with \(\{x_1, \ldots, x_r\} = \{M+1, \ldots, N\} \) and \(g(t) := t^{-s} \)), we have

\[
\sum_{n=M+1}^{N} f(n)n^{-s} = F(N)N^{-s} - \int_{M}^{N} F(t)(-s)t^{-s-1}dt.
\]
We determine an upper bound for the absolute value of the right-hand side that is independent of \(s \in R(\sigma_1, \sigma_2, T) \). Let \(s \) be in this rectangle. Then

\[
|N^{-s}| = |e^{-s \log N}| = e^{-(\Re s) \log N} \leq N^{-\Re s} \leq N^{-\sigma_1},
\]

\[
|s| \leq \{(\Re s)^2 + (\Im s)^2\}^{1/2} \leq \{\sigma_2^2 + T^2\}^{1/2} =: B,
\]

and for \(t \geq 1 \),

\[
|t^{-s-1}| = t^{-\Re s-1} \leq t^{-\sigma_1-1}.
\]

Hence

\[
\left| \sum_{n=M}^{N} f(n)n^{-s} \right| \leq |F(N)| \cdot N^{-\sigma_1} + \int_{M}^{N} |F(t)| \cdot |s| \cdot t^{-\sigma_1-1} dt
\]

\[
\leq 2CN^{-\sigma_1} + 2CB \int_{M}^{N} t^{-\sigma_1-1} dt
\]

\[
= 2CN^{-\sigma_1} + 2CB\sigma_1^{-1}(M^{-\sigma_1} - N^{-\sigma_1}).
\]

This last bound is independent of \(s \), and tends to 0 as \(M, N \to \infty \). This proves the uniform convergence, hence our Theorem.

Corollary 3.3. Let \(f : \mathbb{Z}_{>0} \to \mathbb{C} \) be an arithmetical function and let \(s_0 \in \mathbb{C} \) be such that \(\sum_{n=1}^{\infty} f(n)n^{-s_0} \) converges. Then on \(\{s \in \mathbb{C} : \Re s > \Re s_0\} \) the function \(L_f \) is analytic, and

\[
L_f^{(k)}(s) = \sum_{n=1}^{\infty} f(n)(-\log n)^k n^{-s} \text{ for } k \geq 1.
\]

Proof. Write \(s = s' + s_0 \). Then \(\Re s' > 0 \) if \(\Re s > \Re s_0 \). There is \(C > 0 \) such that \(|\sum_{n=1}^{N} f(n)n^{-\Re s_0}| \leq C \) for all \(N \). Apply Theorem 3.2 to \(\sum_{n=1}^{\infty} (f(n)n^{-s_0})n^{-s'} \). \(\square \)

Theorem 3.4. There exists a number \(\sigma_0(f) \) with \(-\infty \leq \sigma_0(f) \leq \infty \) such that \(L_f(s) \) converges for all \(s \in \mathbb{C} \) with \(\Re s > \sigma_0(f) \) and diverges for all \(s \in \mathbb{C} \) with \(\Re s < \sigma_0(f) \).

Moreover, if \(\sigma_0(f) < \infty \), then on \(\{s \in \mathbb{C} : \Re s > \sigma_0(f)\} \) the function \(L_f \) is analytic, and

\[
L_f^{(k)}(s) = \sum_{n=1}^{\infty} f(n)(-\log n)^k n^{-s} \text{ for } k \geq 1.
\]
Exercise 3.1. Show that there exist arithmetical functions \(\sigma \).

The number \(\sigma \) is called the \textit{abscissa of convergence} of \(L_f \).

There exists also a real number \(\sigma_a(f) \), called the \textit{abscissa of absolute convergence} of \(L_f \) such that \(L_f(s) \) converges absolutely if \(\Re s > \sigma_a(f) \), and does not converge absolutely if \(\Re s < \sigma_a(f) \).

In fact, we have \(\sigma_a(f) = \sigma_0(|f|) \) is the abscissa of convergence of \(L_{|f|}(s) = \sum_{n=1}^{\infty} |f(n)| n^{-s} \). Write \(\sigma = \Re s \). Then \(\sum_{n=1}^{\infty} |f(n)| n^{-s} = \sum_{n=1}^{\infty} |f(n)| n^{-\sigma} \) converges if \(\Re s > \sigma_0(|f|) \) and diverges if \(\Re s < \sigma_0(|f|) \).

Theorem 3.5. For every arithmetical function \(f : \mathbb{Z}_0 \to \mathbb{C} \) we have \(\sigma_0(f) \leq \sigma_a(f) \leq \sigma_0(f) + 1 \).

Proof. It is clear that \(\sigma_0(f) \leq \sigma_a(f) \). To prove \(\sigma_a(f) \leq \sigma_0(f) + 1 \), we have to show that \(L_f(s) \) converges absolutely if \(\Re s > \sigma_0(f) + 1 \).

Take such \(s \); then \(\Re s = \sigma_0(f) + 1 + \varepsilon \) with \(\varepsilon > 0 \). Put \(\sigma := \sigma_0(f) + \varepsilon/2 \). The series \(\sum_{n=1}^{\infty} f(n) n^{-\sigma} \) converges, hence there is a constant \(C \) such that \(|f(n) n^{-\sigma}| \leq C \) for all \(n \). Therefore,

\[
|f(n) n^{-\sigma}| = |f(n)| \cdot n^{-\Re s} = |f(n) n^{-\sigma}| \cdot n^{-1-\varepsilon/2} \leq C n^{-1-\varepsilon/2}
\]

for \(n \geq 1 \). The series \(\sum_{n=1}^{\infty} n^{-1-\varepsilon/2} \) converges, hence \(\sum_{n=1}^{\infty} |f(n) n^{-s}| \) converges. \(\square \)

Exercise 3.1. Show that there exist arithmetical functions \(f \) such that \(\sigma_a(f) = \sigma_0(f) + 1 \).

The next theorem implies that an arithmetical function is uniquely determined by its Dirichlet series.

Theorem 3.6. Let \(f, g : \mathbb{Z}_0 \to \mathbb{C} \) be two arithmetical functions for which there is \(\sigma \in \mathbb{R} \) such that \(L_f(s) \), \(L_g(s) \) converge absolutely and \(L_f(s) = L_g(s) \) for all \(s \in \mathbb{C} \) with \(\Re s > \sigma \). Then \(f = g \).
Proof. Let $h := f - g$. Our assumptions imply that $L_h(s)$ converges absolutely, and $L_h(s) = 0$ for all $s \in \mathbb{C}$ with $\text{Re} \ s > \sigma$. We have to prove that $h = 0$.

Assume that there are positive integers n with $h(n) \neq 0$, and let m be the smallest such n. Then for all $s \in \mathbb{C}$ with $\text{Re} \ s > \sigma$ we have

$$h(m)m^{-s} = - \sum_{n=m+1}^{\infty} h(n)n^{-s}.$$

Let $\sigma_1 > \sigma$, and let $s \in \mathbb{C}$ with $\text{Re} \ s > \sigma_1$. Then

$$|h(m)| \leq \sum_{n=m+1}^{\infty} |h(n)|(m/n)^{\text{Re} \ s} = \sum_{n=m+1}^{\infty} |h(n)|(m/n)^{\sigma_1}(m/n)^{\text{Re} \ s - \sigma_1}$$

$$\leq m^{\sigma_1} \left(\sum_{n=m+1}^{\infty} |h(n)| \cdot n^{-\sigma_1} \right) \cdot (m/(m + 1))^{\text{Re} \ s - \sigma_1}.$$

The series between the parentheses is convergent, hence a finite number. So the right-hand side tends to 0 as $\text{Re} \ s \to \infty$. This contradicts that $h(m) \neq 0$. \qed

3.2 Arithmetical functions

A multiplicative function is an arithmetical function f such that $f \neq 0$ and $f(mn) = f(m)f(n)$ for all positive integers m,n with $\gcd(m,n) = 1$. A strongly multiplicative function is an arithmetical function f with the property that $f \neq 0$ and $f(mn) = f(m)f(n)$ for all integers m,n.

Notation. In expressions $p_1^{k_1} \cdots p_t^{k_t}$ it is always assumed that the p_i are distinct prime numbers, and the k_i positive integers.

Remarks. 1) If f is a multiplicative function, then $f(1) = 1$.

2) If f is a multiplicative function and $n = p_1^{k_1} \cdots p_t^{k_t}$, then $f(n) = f(p_1^{k_1}) \cdots f(p_t^{k_t})$. That is, a multiplicative function is uniquely determined by its values in the prime powers or otherwise stated, two multiplicative functions coinciding on the prime powers are equal.

3) If f is a strongly multiplicative function and $n = p_1^{k_1} \cdots p_t^{k_t}$, then $f(n) = f(p_1)^{k_1} \cdots f(p_t)^{k_t}$. Hence a strongly multiplicative function is uniquely determined by its values in the primes.
We define the convolution product \(f \ast g \) of two arithmetical functions \(f, g \) by

\[
(f \ast g)(n) := \sum_{d \mid n} f(n/d)g(d) \quad \text{for } n \in \mathbb{Z}_{>0},
\]

where \('d \mid n' \) means that the sum is taken over all positive divisors of \(n \).

Examples. Define the arithmetical functions \(e, E \) by

\[
e(1) = 1, \quad e(n) = 0 \quad \text{for all } n \in \mathbb{Z}_{>1},
\]

\[
E(n) = 1 \quad \text{for all } n \in \mathbb{Z}_{>0}.
\]

Clearly, \(e \) is multiplicative, and \(E \) is strongly multiplicative. If \(f \) is any arithmetical function, then \(e \ast f = f \), while

\[
(E \ast f)(n) = \sum_{d \mid n} f(d).
\]

Lemma 3.7. (i) For any two arithmetical functions \(f, g \) we have \(f \ast g = g \ast f \).

(ii) For any three arithmetical functions \(f, g, h \) we have \((f \ast g) \ast h = f \ast (g \ast h) \).

Proof. Straightforward verification. \(\square \)

Theorem 3.8. (i) Let \(A \) be the set of arithmetical functions \(f \) with \(f(1) \neq 0 \). Then \(A \) with \(\ast \) is an abelian group with unit element \(e \).

(ii) Let \(M \) be the set of multiplicative functions. Then \(M \) with \(\ast \) is a subgroup of \(A \).

Proof. (i) We know already that \(\ast \) is commutative and associative and that \(e \) is the unit element of \(\ast \). It remains to verify that every element of \(A \) has an inverse with respect to \(\ast \). Let \(f \in A \), and define \(g \) recursively by

\[
g(1) := f(1)^{-1}, \quad g(n) := -f(1)^{-1} \sum_{d \mid n, d < n} f(n/d)g(d) \quad \text{for } n > 1.
\]

Then clearly, \((f \ast g)(1) = 1 \) and \((f \ast g)(n) = 0 \) for \(n > 1 \), i.e., \(f \ast g = e \). Hence \(f \) has an inverse. It should be observed here that the inverse of \(f \) is uniquely determined.

(ii) We first have to verify that the convolution product of two multiplicative functions is again multiplicative. Here we use that if \(m, n \) are two coprime integers
and d is a positive divisor of mn, then d has a unique decomposition $d = d_1d_2$ where d_1 is a positive divisor of m and d_2 a positive divisor of n. Now let $f, g \in \mathcal{M}$ and let m, n be two coprime positive integers. Then

$$(f \ast g)(mn) = \sum_{d \mid mn} f(mn/d)g(d) = \sum_{d \mid m, d \mid n} f(mn/d_1d_2)g(d_1d_2)$$

$$= \sum_{d_1 \mid m} \sum_{d_2 \mid n} f(m/d_1)f(n/d_2)g(d_1)g(d_2)$$

$$= \left(\sum_{d_1 \mid m} f(m/d_1)g(d_1) \right) \cdot \left(\sum_{d_2 \mid n} f(n/d_2)g(d_2) \right)$$

$$= (f \ast g)(m) \cdot (f \ast g)(n).$$

This shows that $f \ast g \in \mathcal{M}$.

It remains to show that the inverse of a multiplicative function is again multiplicative. Let $f \in \mathcal{M}$ and let g be its inverse with respect to \ast. Define h by

$$h(p^k) := g(p^k) \quad \text{for any prime power } p^k,$$

$$h(n) := h(p_1^{k_1}) \cdots h(p_t^{k_t}),$$

where $n = p_1^{k_1} \cdots p_t^{k_t}$. Then h is multiplicative, and $(f \ast h)(p^k) = (f \ast g)(p^k) = e(p^k)$ for every prime power p^k. Both $f \ast h$ and e are multiplicative, so in fact $f \ast h = e$. Since the inverse of f is uniquely determined, this shows that $g = h$ is multiplicative.

Example. The Möbius function μ is the inverse under \ast of E, where $E(n) = 1$ for all n.

Lemma 3.9. We have

$$\mu(n) = \begin{cases} (-1)^t & \text{if } n = p_1 \cdots p_t \text{ with } p_1, \ldots, p_t \text{ distinct primes}, \\ 0 & \text{if } n \text{ is divisible by the square of a prime}. \end{cases}$$

Proof. let g denote the function defined by the right-hand side. Then clearly, g is multiplicative, and $g(p) = -1$, $g(p^k) = 0$ for every prime p and every $k \geq 2$. One verifies easily that $(E \ast g)(p^k) = 0$ for all primes p and $k > 0$. So $E \ast g$ coincides with e on the prime powers, hence $E \ast g = e$. But then it follows that $\mu = g$.

64
Theorem 3.10 (Möbius’ Inversion Formula). Let \(f \) be an arithmetical function. Define \(F(n) := \sum_{d|n} f(n) \) for \(n \in \mathbb{Z}_{>0} \). Then

\[
f(n) = \sum_{d|n} \mu(n/d)F(d) \quad \text{for } n \in \mathbb{Z}_{>0}.
\]

Proof. We have \(F = E \ast f \). Hence

\[
\mu \ast F = \mu \ast (E \ast f) = (\mu \ast E) \ast f = e \ast f = f.
\]

\[\square\]

Examples. 1) Define \(\varphi(n) := \#\{k \in \mathbb{Z} : 1 \leq k \leq n, \gcd(k,n) = 1\} \). It is well-known that \(\sum_{d|n} \varphi(d) = n \) for \(n \in \mathbb{Z}_{>0} \). This implies that

\[
\varphi(n) = \sum_{d|n} \mu(n/d)d,
\]

or \(\varphi = \mu \ast I_1 \), where we define \(I_\alpha(n) = n^\alpha \) for \(n \in \mathbb{Z}_{>0} \), \(\alpha \in \mathbb{C} \). As a consequence, \(\varphi \) is multiplicative, and for \(n = p_1^{k_1} \cdots p_t^{k_t} \) we have

\[
\varphi(n) = \prod_{i=1}^{t} \varphi(p_i^{k_i}) = \prod_{i=1}^{t} (p_i^{k_i} - p_i^{k_i-1}).
\]

2) Let \(\alpha \in \mathbb{C} \) and define \(\sigma_\alpha(n) := \sum_{d|n} d^\alpha \) for \(n \in \mathbb{Z}_{>0} \). Then \(\sigma_\alpha = E \ast I_\alpha \), which implies that \(\sigma_\alpha \) is multiplicative. Hence for \(n = p_1^{k_1} \cdots p_t^{k_t} \) we have

\[
\sigma_\alpha(n) = \prod_{i=1}^{t} \sigma_\alpha(p_i^{k_i}) = \begin{cases}
\prod_{i=1}^{t} \frac{p_i^{\alpha(k_i+1)-1}}{p_i^\alpha - 1} & \text{if } \alpha \neq 0, \\
\prod_{i=1}^{t} (k_i + 1) & \text{if } \alpha = 0.
\end{cases}
\]

We now give the relation between the convolution product of two arithmetical functions and their associated Dirichlet series.

Theorem 3.11. Let \(f, g \) be two arithmetical functions. Let \(s \in \mathbb{C} \) be such that \(L_f(s) \) and \(L_g(s) \) converge absolutely.
Then also \(L_{f \ast g}(s) \) converges absolutely, and \(L_{f \ast g}(s) = L_f(s)L_g(s) \).
Proof. Since both $L_f(s)$ and $L_g(s)$ are absolutely convergent we can rearrange their product as a double series and then rearrange the terms:

$$
\left(\sum_{m=1}^{\infty} f(m)m^{-s} \right) \left(\sum_{n=1}^{\infty} g(n)n^{-s} \right)
= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(m)g(n)(mn)^{-s} = \sum_{k=1}^{\infty} \left(\sum_{mn=k} f(m)g(n) \right) k^{-s}
= \sum_{k=1}^{\infty} (f * g)(k)k^{-s} = L_{f*g}(s).
$$

We now show that $L_{f*g}(s)$ converges absolutely:

$$
\sum_{k=1}^{\infty} |(f * g)(k)k^{-s}| \leq \sum_{k=1}^{\infty} \left(\sum_{mn=k} |f(m)| \cdot |g(n)| \right) \cdot |k^{-s}|
= \left(\sum_{m=1}^{\infty} |f(m)m^{-s}| \right) \left(\sum_{n=1}^{\infty} |g(n)n^{-s}| \right) < \infty
$$

by following the above reasoning in opposite direction and taking absolute values everywhere. This completes our proof. \(\square\)

We define $\sum_p (\cdots) = \lim_{N \to \infty} \sum_{p \leq N} (\cdots)$, and $\prod_p (\cdots) = \lim_{N \to \infty} \prod_{p \leq N} (\cdots)$ where the sums and products are taken over the primes.

Theorem 3.12. Let f be a multiplicative function. Let $s \in \mathbb{C}$ be such that $L_f(s) = \sum_{n=1}^{\infty} f(n)n^{-s}$ converges absolutely. Then

$$
L_f(s) = \prod_p \left(\sum_{j=0}^{\infty} f(p^j)p^{-js} \right)
$$

and the right-hand side converges absolutely.

Further, $L_f(s) \neq 0$ as soon as $\sum_{j=0}^{\infty} f(p^j)p^{-js} \neq 0$ for every prime p.

Proof. We first show the absolute convergence of the right-hand side of (3.3), i.e.,

$$
\prod_p \left(\sum_{j=0}^{\infty} |f(p^j)p^{-js}| \right)
$$

converges.
First notice that for every prime \(p \),

\[
A_p(s) := \sum_{j=0}^{\infty} |f(p^j)p^{-js}| \leq \sum_{n=1}^{\infty} |f(n)n^{-s}| < \infty.
\]

Recall that \(\prod_p A_p(s) \) converges if and only if \(\sum_p |A_p(s) - 1| \) converges (see the section on uniform convergence in the Prerequisites). But the latter holds, since

\[
\sum_p |A_p(s) - 1| = \sum_p \sum_{j=1}^{\infty} |f(p^j)p^{-js}| \leq \sum_{n=2}^{\infty} |f(n)n^{-s}| < \infty.
\]

This proves the absolute convergence of the right-hand side of (3.3).

Put \(L_p(s) := \sum_{j=0}^{\infty} f(p^j)p^{-js} \). We have seen that the series \(L_p(s) \) all converge absolutely. Further,

\[
\sum_p |L_p(s) - 1| \leq \sum_p \sum_{j=1}^{\infty} |f(p^j)p^{-js}| < \infty.
\]

Hence \(\prod_p L_p(s) \) converges, which implies that the product is 0 if and only if at least one of its factors is 0.

It remains to prove that \(L_f(s) = \prod_p L_p(s) \). Let \(N > 1 \) and let \(p_1, \ldots, p_t \) be the prime numbers \(\leq N \). Further, let \(S_N \) be the set of integers composed of prime numbers \(\leq N \) and \(T_N \) the set of remaining integers, i.e., divisible by at least one prime > \(N \). Since the series \(L_p(s) \) (\(p \) prime) converge absolutely, we have

\[
\prod_{p \leq N} L_p(s) = \sum_{j_1, \ldots, j_t \geq 0} f(p_1^{j_1}) \cdots f(p_t^{j_t})(p_1^{-j_1} \cdots p_t^{-j_t})^s = \sum_{n \in S_N} f(n)n^{-s}.
\]

Now clearly,

\[
\left| L_f(s) - \prod_{p \leq N} L_p(s) \right| = \left| \sum_{n=1}^{\infty} f(n)n^{-s} - \sum_{n \in S_N} f(n)n^{-s} \right| = \left| \sum_{n \in T_N} f(n)n^{-s} \right| \leq \sum_{n=N+1}^{\infty} |f(n)n^{-s}| \to 0 \text{ as } N \to \infty.
\]

This proves (3.3). \(\Box \)
Corollary 3.13. Let \(f \) be a strongly multiplicative function. Let \(s \in \mathbb{C} \) be such that \(L_f(s) \) converges absolutely. Then

\[
L_f(s) = \prod_p \frac{1}{1 - f(p)p^{-s}}
\]

and the right-hand side converges absolutely. Further, \(L_f(s) \neq 0 \).

Proof. Use that

\[
\sum_{j=0}^{\infty} f(p^j)p^{-js} = \sum_{j=0}^{\infty} (f(p)p^{-s})^j = \frac{1}{1 - f(p)p^{-s}} \quad \text{and} \quad \sum_{j=0}^{\infty} |f(p^j)p^{-js}| = \frac{1}{1 - |f(p)p^{-s}|}.
\]

Further, all factors \((1 - f(p)p^{-s})^{-1}\) are \(\neq 0 \), hence \(L_p(s) \neq 0 \).

Examples. 1) \(\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_p (1 - p^{-s})^{-1} \) for \(s \in \mathbb{C} \) with \(\Re s > 1 \) (Euler).

2) \(L_\mu(s) = \sum_{n=1}^{\infty} \mu(n)n^{-s} \) converges absolutely if \(\Re s > 1 \). So on \(\{ \Re s > 1 \} \) we have

\[
\zeta(s)L_\mu(s) = \sum_{n=1}^{\infty} (E*\mu)(n)n^{-s} = \sum_{n=1}^{\infty} e(n)n^{-s} = 1,
\]

that is, \(\zeta(s)^{-1} = \sum_{n=1}^{\infty} \mu(n)n^{-s} \) for \(s \in \mathbb{C} \) with \(\Re s > 1 \). An alternative way to prove this is to observe that

\[
\zeta(s)^{-1} = \prod_p (1 - p^{-s}) = \prod_p \left(\sum_{j=0}^{\infty} \mu(p^j)p^{-js} \right) = \sum_{n=1}^{\infty} \mu(n)n^{-s}.
\]

3) Recall that \(\varphi = \mu * I_1 \). The series \(L_{I_1}(s) = \sum_{n=1}^{\infty} n/n^s = \zeta(s) - 1 \) converges absolutely on \(\{ \Re s > 2 \} \). Hence

\[
\sum_{n=1}^{\infty} \varphi(n)n^{-s} = L_{\varphi(s)} = L_\mu(s)L_{I_1}(s) = \zeta(s-1)/\zeta(s)
\]

and \(L_\varphi(s) \) converges absolutely if \(\Re s > 2 \).

4) The (very important) von Mangoldt function \(\Lambda \) is defined by

\[
\Lambda(n) = \begin{cases}
\log p & \text{if } n = p^k \text{ for some prime } p \text{ and some } k \geq 1, \\
0 & \text{otherwise}.
\end{cases}
\]
E.g., $\Lambda(1) = 0$, $\Lambda(2) = \log 2$, $\Lambda(3) = \log 3$, $\Lambda(4) = \log 2$, $\Lambda(5) = \log 5$, $\Lambda(6) = 0$, $\Lambda(7) = \log 7$, $\Lambda(8) = \log 2$, $\Lambda(9) = \log 3$, $\Lambda(10) = 0$.

For $n = p_1^{k_1} \cdots p_t^{k_t}$ (unique prime factorization) we have

$$
\sum_{d|n} \Lambda(n) = \sum_{i=1}^{t} \sum_{j=1}^{k_i} \log p_i = \sum_{i=1}^{t} k_i \log p_i = \log n.
$$

Hence $E \ast \Lambda = \log$, where log denotes the arithmetical function $n \mapsto \log n$. So $\Lambda = \mu \ast \log$.

Lemma 3.14. For $s \in \mathbb{C}$ with $\Re s > 1$, the series $\sum_{n=1}^{\infty} \Lambda(n)n^{-s}$ converges absolutely, and

$$
\sum_{n=1}^{\infty} \Lambda(n)n^{-s} = -\zeta'(s)/\zeta(s).
$$

Proof. We apply Theorem 3.11. First recall that $L_{\mu}(s)$ converges absolutely if $\Re s > 1$. Further, by Theorem 3.4, we have $\zeta'(s) = \sum_{n=1}^{\infty} (-\log n)n^{-s}$ for $\Re s > 1$. It follows that

$$
\sum_{n=1}^{\infty} \left| \log(n)n^{-s} \right| = \sum_{n=1}^{\infty} (\log n)n^{-\Re s} = -\zeta'(\Re s)
$$

converges if $\Re s > 1$. That is, $L_{\log}(s)$ converges absolutely if $\Re s > 1$. It follows that

$$
L_{\Lambda}(s) = L_{\mu}(s)L_{\log}(s) = -\zeta^{-1}(s)\zeta'(s)
$$

and $L_{\Lambda}(s)$ converges absolutely if $\Re s > 1$. \qed