Lower bounds for resultants II.

Jan-Hendrik Evertse

Abstract. Let $F(X,Y), G(X,Y)$ be binary forms in $\mathbb{Z}[X,Y]$ of degrees $r \geq 3, s \geq 3$, respectively, such that FG has no multiple factors. For each matrix $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{Z})$, define $F_U(X,Y) = F(aX+bY, cX+dY)$, and define G_U similarly. We will show that there is a matrix $U \in \text{GL}_2(\mathbb{Z})$ such that for the resultant $R(F,G)$ of F,G we have $|R(F,G)| \geq C \cdot (H(F_U)^s H(G_U)^r)^{1/718}$, where $H(F_U), H(G_U)$ denote the heights (maxima of absolute values of the coefficients) of F_U, G_U, respectively, and where C is some ineffective constant, depending on r, s and the splitting field of FG. A slightly weaker result was announced without proof in [3] (Theorem 3). We will also prove a p-adic generalisation of the result mentioned above. As a consequence, we will obtain under certain technical restrictions a symmetric improvement of Liouville’s inequality for the difference of two algebraic numbers. In our proofs we use some results from [4], [5], and the latter were proved by means of Schlickewei’s p-adic generalisation of Schmidt’s Subspace theorem.

1991 Mathematics Subject Classification: 11J68, 11C08.

1. Introduction.

Let $F(X,Y) = a_0 X^r + a_1 X^{r-1}Y + \cdots + a_r Y^r, G(X,Y) = b_0 X^s + b_1 X^{s-1}Y + \cdots + b_s Y^s$ be two binary forms with coefficients in some field K of characteristic 0. The resultant $R(F,G)$ of F and G is defined by the determinant of order $r+s$,

\[
R(F,G) = \begin{vmatrix} a_0 & a_1 & \cdots & a_r \\ a_0 & a_1 & \cdots & a_r \\ \vdots & \ddots & \ddots & \vdots \\ b_0 & b_1 & \cdots & b_s \\ b_0 & b_1 & \cdots & b_s \\ \vdots & \ddots & \ddots & \vdots \\ b_0 & b_1 & \cdots & b_s \end{vmatrix},
\]

of which the first s rows consist of coefficients of F and the last r rows of coefficients of G. Both F, G can be factored into linear forms with coefficients in the algebraic
Each pair of binary forms F, G factors of degree ≤ 9 it follows that (1.4) holds true without the constraint that where the dependence of G on F is unspecified. From Theorem 4.1 of Ru and Wong [9] it follows that (1.4) holds true without the constraint that F have no irreducible factors of degree $\leq s$. Győry and the author ([5], Theorem 1) proved that for each pair of binary forms F, G with coefficients in \mathbb{Z} such that $\deg F = r \geq 3$, $\deg G = s \geq 3$, FG has splitting field L over K and FG is square-free one has

$$|R(F, G)| \geq C_1^{\text{eff}}(r, s, F, \varepsilon)H(G)^{-2s-\varepsilon}$$

for $\varepsilon > 0$, (1.4)

where $|D(F)| = \prod_{i=1}^{r}(\alpha_iX + \beta_iY)$ then $D(F) = \prod_{1 \leq i < j \leq r}(\alpha_i\beta_j - \alpha_j\beta_i)^2$. Győry and the author showed also in [5] that if $r \leq 2$ or $s \leq 2$ or if we allow the splitting field of FG to vary, then $|D(F)|$, $|D(G)|$ may grow arbitrarily large while $|R(F, G)|$ remains
bounded. For more information on lower bounds for resultants and on applications we refer to [4], [5].

Our aim is to derive instead of (1.5) a lower bound for $|R(F,G)|$ which is a function increasing in both $H(F)$ and $H(G)$. In general such a lower bound does not exist. Namely, (1.3) implies that

$$|R(F_U,G_U)| = |R(F,G)| \quad \text{for } U \in GL_2(\mathbb{Z}) ,$$

(6.1)

(where $GL_2(\mathbb{Z}) = \{ (a \ b) : a, b, c, d \in \mathbb{Z}, ad - bc = \pm 1 \}$) while $H(F_U), H(G_U)$ may be arbitrarily large for varying U. However, assuming that $r \geq 3, s \geq 3$, we can show that there is an $U \in GL_2(\mathbb{Z})$ such that $|R(F,G)|$ is bounded from below by a function increasing in both $H(F_U), H(G_U)$.

Theorem 1. Let $r \geq 3, s \geq 3$, and let (F,G) be a pair of binary forms with coefficients in \mathbb{Z} such that $\deg F = r$, $\deg G = s$, FG is square-free and FG has splitting field L over \mathbb{Q}. Then there is an $U \in GL_2(\mathbb{Z})$ such that

$$|R(F,G)| \geq C_{n,\alpha}^\text{eff} (r, s, L) (H(F_U)^s H(G_U)^r)^{1/718} .$$

(7.1)

Remark. Similarly as for (1.5), the conditions $r \geq 3, s \geq 3$, as well as the dependence of C_3 on L, are necessary. Namely, the discriminant of a binary form F of degree r is a homogeneous polynomial of degree $2r - 2$ in the coefficients of F, and for $U \in GL_2(\mathbb{Z})$ one has $|D(F_U)| = |D(F)|$. Therefore, there is a constant $c(r)$ such that $|D(F)| \leq c(r) \inf_{U \in GL_2(\mathbb{Z})} H(F_U)^{2r - 2}$. Now, by the result from [5] mentioned above, if $r \leq 2$ or $s \leq 2$ or if we allow the splitting field of FG to vary, then $|D(F)|$, $|D(G)|$, and hence $\inf_{U \in GL_2(\mathbb{Z})} H(F_U), \inf_{U \in GL_2(\mathbb{Z})} H(G_U)$ may grow arbitrarily large while $|R(F,G)|$ remains bounded.

The proof of Theorem 1 ultimately depends on Schmidt’s Subspace theorem, which explains the ineffectivity of the constant C_3. It would be a remarkable breakthrough to obtain an effective lower bound for $|R(F,G)|$ which is a function increasing in both $H(F_U)$ and $H(G_U)$ for some $U \in GL_2(\mathbb{Z})$.

We also prove a p-adic generalisation of Theorem 1. To state this, we have to introduce some further terminology. Let K be an algebraic number field. Denote by O_K the ring of integers of K. The set of places M_K of K consists of the isomorphic embeddings $\sigma : K \hookrightarrow \mathbb{R}$ which are called real infinite places; the pairs of complex conjugate isomorphic embeddings $\{ \sigma, \sigma : K \hookrightarrow \mathbb{C} \}$ which are called complex infinite places; and the prime ideals of O_K which are called finite places.

We define absolute values $| \cdot |_v$ ($v \in M_K$) normalised with respect to K as follows:

$$| \cdot |_v = | \sigma(\cdot) |^{1/[K:Q]} \text{ if } v = \sigma \text{ is a real infinite place;}$$

$$| \cdot |_v = | \sigma(\cdot)^2/[K:Q] = | \sigma(\cdot) |^{2/[K:Q]} \text{ if } v = \{ \sigma, \sigma \} \text{ is a complex infinite place;}$$

$$| \cdot |_v = (N\varphi)^{-\text{ord}_v(\cdot)/[K:Q]} \text{ if } v = \varphi \text{ is a finite place, i.e. prime ideal of } O_K .$$
where $N\wp = \#(\mathcal{O}_K/\wp)$ denotes the norm of \wp and $\text{ord}_\wp(x)$ is the exponent of \wp in the prime ideal decomposition of (x), with $\text{ord}_\wp(0) = \infty$. These absolute values satisfy the Product formula

$$\prod_{v \in M_K} |x|_v = 1 \text{ for } x \in K^*.$$

For any finite extension L of K, we define absolute values $|*|_w$ ($w \in M_L$) normalised with respect to L in an analogous manner. Thus, if $w \in M_L$ lies above $v \in M_K$, then the restriction of $|*|_w$ to K is equal to $|*|^{[L:K]}/|L:K|$, where K_v, L_w denote the completions of K at v, L at w, respectively. We will frequently use the Extension formula

$$\prod_{w|v} |x|_w = |N_{L/K}(x)|_v^{1/[L:K]} \text{ for } x \in L, \ v \in M_K$$

so in particular

$$\prod_{w|v} |x|_w = |x|_v \text{ for } x \in K, \ v \in M_K,$$

where the product is taken over all places $w \in M_L$ lying above v.

Now let S be a finite set of places on K, containing all (real and complex) infinite places. The ring of S-integers and its unit group, the group of S-units, are defined by

$$\mathcal{O}_S = \{ x \in K : |x|_v \leq 1 \text{ for } v \notin S \}, \ \mathcal{O}_S^* = \{ x \in K : |x|_v = 1 \text{ for } v \notin S \},$$

respectively, where ‘$v \notin S$’ means ‘$v \in M_K \setminus S$.’ We put

$$|x|_S := \prod_{v \in S} |x|_v \text{ for } x \in K.$$

Thus,

$$|x|_S > 1 \text{ for } x \in \mathcal{O}_S, \ x \neq 0, \ x \notin \mathcal{O}_S^*, \ |x|_S = 1 \text{ for } x \in \mathcal{O}_S^*. \ (1.8)$$

We define the truncated height H_S by

$$H_S(x) = H_S(x_1, \ldots, x_n) = \prod_{v \in S} \max(|x_1|_v, \ldots, |x_n|_v) \text{ for } x = (x_1, \ldots, x_n) \in K^n.$$

For a polynomial P with coefficients in K we put $H_S(P) := H_S(p_1, \ldots, p_t)$, where p_1, \ldots, p_t are the coefficients of P. By (1.8) we have

$$H_S(x) \geq 1 \text{ for } x \in \mathcal{O}_S^\circ \setminus \{0\}, \ (1.9)$$

$$H_S(ux) = H_S(x) \text{ for } x \in \mathcal{O}_S^\circ \setminus \{0\}, \ u \in \mathcal{O}_S^*. \ (1.10)$$

Further, one can show that for every $A > 0$ the set of vectors $x \in \mathcal{O}_S^\circ$ with $H_S(x) \leq A$ is the union of finitely many “\mathcal{O}_S°-cosets” $\{uy : u \in \mathcal{O}_S^\circ\}$ with $y \in \mathcal{O}_S^\circ$ fixed.

(1.3) and (1.8) imply that for binary forms F, G with coefficients in \mathcal{O}_S we have

$$|R(F_U, G_U)|_S = |R(F, G)|_S \text{ for } U \in GL_2(\mathcal{O}_S), \ (1.11)$$
where \(GL_2(\mathcal{O}_S) = \{(a, b, c, d) : a, b, c, d \in \mathcal{O}_S, ad - bc \in \mathcal{O}_S^*\} \). We prove the following generalisation of Theorem 1:

Theorem 2. Let \(r \geq 3, s \geq 3 \), and let \((F, G)\) be a pair of binary forms with coefficients in \(\mathcal{O}_S \) such that \(\deg F = r, \deg G = s \), \(FG \) is square-free and \(FG \) has splitting field \(L \) over \(K \). Then there is an \(U \in GL_2(\mathcal{O}_S) \) such that

\[
|R(F, G)|_S \geq C_4^{\text{ineff}}(r, s, L) \left(H_S(F_U)^s H_S(G_U)^r \right)^{1/718}.
\]

(1.12)

In the proof of Theorem 2 we use a lower bound for resultants in terms of discriminants from [5] which has been proved by means of Schlickewei’s p-adic generalisation [10] of Schmidt’s Subspace theorem [11], a lower bound for discriminants in terms of heights from [4] which follows from Lang’s p-adic generalisation [6] (Chap. 7, Thm. 1.1) of Roth’s theorem [8], and also a ‘semi-effective’ result on Thue-Mahler equations, stated below, which follows also from the p-adic generalisation of Roth’s theorem.

Theorem 3. Let \(F(X, Y) \in \mathcal{O}_S[X, Y] \) be a square-free binary form of degree \(r \geq 3 \) with splitting field \(M \) over \(K \) and let \(A \geq 1 \). Then every solution \((x, y) \in \mathcal{O}_S^2\) of

\[
|F(x, y)|_S = A
\]

satisfies

\[
H_S(x, y) \leq C_6^{\text{ineff}}(r, S, M, \varepsilon) \cdot (H_S(F) \cdot A)^{\frac{2}{3} + \varepsilon} \quad \text{for every } \varepsilon > 0.
\]

(1.14)

Using the techniques from the paper of Bombieri and van der Poorten [1] it is probably possible to derive instead of (1.14) an upper bound

\[
H_S(x, y) \leq C_7^{\text{ineff}}(r, S, M, \varepsilon) \cdot H_S(F)^{c(r, \varepsilon)} A^{\frac{2}{3} + \varepsilon} \quad \text{for every } \varepsilon > 0,
\]

where \(c(r, \varepsilon) \) is a function increasing in \(r, \varepsilon^{-1} \).

We derive from Theorem 2 a symmetric improvement of Liouville’s inequality. The (absolute) height of an algebraic number \(\xi \) is defined by

\[
h(\xi) = \prod_{v \in M_K} \max(1, |\xi|_v),
\]

where \(K \) is any number field containing \(\xi \). By the Extension formula, this height is independent of the choice of \(K \).

Let \(K \) be an algebraic number field and \(\xi, \eta \) numbers algebraic over \(K \) with \(\xi \neq \eta \). Put \(L = K(\xi, \eta) \). Further, let \(T \) be a finite set of places on \(L \) (not necessarily containing all infinite places). By the Product formula we have

\[
\prod_{w \in T} \frac{|\xi - \eta|_w}{\max(1, |\xi|_w) \max(1, |\eta|_w)} = \left(\prod_{w \notin T} \frac{\max(1, |\xi|_w) \max(1, |\eta|_w)}{|\xi - \eta|_w} \right) h(\xi)^{-1} h(\eta)^{-1}
\]
where as usual, the absolute values $|*|_w$ are normalised with respect to L. The latter is known as Liouville’s inequality. Under certain hypotheses we can improve upon the exponent -1. Assume that
\[
L = K(ξ, η);
\]
\[
|K(ξ) : K| ≥ 3, |K(η) : K| ≥ 3;
\]
\[
[L : K] = [K(ξ) : K][K(η) : K],
\]
i.e. $K(ξ)$, $K(η)$ are linearly disjoint over K. Further, let T be a finite set of places on L such that if S is the set of places on K lying below those in T then
\[
W := \max_{v \in S} \left[\frac{1}{L : K} \sum_{w \in T \setminus \{v\}} [L_w : K_v] \right] < \frac{1}{3},
\]
where for each place $v \in S$, the sum is taken over those places $w \in T$ that lie above v.

Theorem 4. Assuming that $ξ, η, L, T$ satisfy (1.16), (1.17) we have
\[
\prod_{w \in T} \frac{|ξ - η|_w}{\max(1, |ξ|_w) \max(1, |η|_w)} \geq C_T^{\text{ineff}}(L, T) \cdot (h(ξ)h(η))^{-1+δ} \tag{1.18}
\]
with $δ = \frac{1}{718} \cdot \frac{1 - 3W}{1 + 3W}$.

For instance, suppose that $L, ξ, η$ satisfy (1.16) with $K = Q$ and that T is a subset of the set of infinite places on L, satisfying (1.17) with $K = Q$ and with S consisting of the only infinite place of Q. Inequality (1.18) has been stated in terms of absolute values normalised with respect to L and we will “renormalise” these to Q. Each $w \in T$ is either an isomorphic embedding of L into R and then $L_w = R$; or a pair of complex conjugate embeddings of L into C and then $L_w = C$. Therefore, the union of all places $w \in T$ is a collection $Σ$ of isomorphic embeddings of L into C such that with an isomorphic embedding also its complex conjugate belongs to $Σ$ and moreover, the quantity W of (1.17) is precisely $\#Σ/[L : Q]$. Recall that if $w = σ$ is real then $|*|_w = |σ(σ)|^{1/[L : Q]}$ while if $w = \{σ, σ̅\}$ is complex then $|*|_w = (|σ(σ)| \cdot |σ(σ)|)^{1/[L : Q]}$. This implies that the left-hand side of (1.18) equals
\[
\prod_{σ ∈ Σ} (|σ(ξ - η)|/\max(1, |σ(ξ)|) \max(1, |σ(η)|))^{1/[L : Q]}.
\]
For an algebraic number $ξ$, we define $H(ξ)$ to be the maximum of the absolute values of the coefficients of the minimal polynomial of $ξ$ over Z. Then $h(ξ)^{\text{deg}ξ} ≤ cH(ξ)$ where c depends only on the degree of $ξ$ (cf. [6], Chap. 3, §2, Prop. 2.5). Thus, Theorem 4 implies the following:

Corollary. Let $ξ, η$ be algebraic numbers of degrees $r ≥ 3$, $s ≥ 3$, respectively, such that the field $L = Q(ξ, η)$ has degree rs. Further, let $Σ$ be a collection of isomorphic embeddings of L into C such that if $σ ∈ Σ$ then also $σ̅ ∈ Σ$, and such
that $W := \#\Sigma/[L : \mathbb{Q}] < \frac{1}{3}$. Put $\delta = \frac{1}{718}\frac{1-3W}{1+3W}$. Then

$$\prod_{\sigma \in \Sigma} \frac{|\sigma(\xi - \eta)|}{\max(1, |\sigma(\xi)|) \max(1, |\sigma(\eta)|)} \geq C_{\text{ineff}}^8 (L) \cdot (\tilde{H}(\xi)^{-s} \tilde{H}(\eta)^{-r})^{1-\delta}.$$ (1.19)

For instance, assume that $L \subset \mathbb{R}$ and take $\Sigma = \{\text{identity}\}$. Then $[L : \mathbb{Q}] = rs \geq 9$ and hence $W \leq \frac{1}{3}$. So by (1.19) we have

$$\frac{|\xi - \eta|_w}{\max(1, |\xi|_w) \max(1, |\eta|_w)} \geq C_{\text{ineff}}^8 (L) \cdot (\tilde{H}(\xi)^{-s} \tilde{H}(\eta)^{-r})^{\frac{1436}{1435}}.$$ (1.20)

If $L \subset \mathbb{C}, \ L \not\subset \mathbb{R}$ then with $\Sigma = \{\text{identity, complex conjugation}\}$ we have $W \leq \frac{2}{9}$ and so (1.19) gives

$$\left(\frac{|\xi - \eta|_w}{\max(1, |\xi|_w) \max(1, |\eta|_w)}\right)^2 \geq C_{\text{ineff}}^8 (L) \cdot (\tilde{H}(\xi)^{-s} \tilde{H}(\eta)^{-r})^{\frac{3590}{3589}}.$$ (1.21)

Results similar to (1.20), (1.21) with better exponents were derived in [3] (Corollary 3, 1).

For an inequality of type (1.18) with $\delta > 0$ to hold it is certainly necessary to impose some conditions on ξ, η, L, T but (1.16), (1.17) are probably far too strong. Using for instance geometry of numbers over the adeles of a number field one may prove a generalisation of Dirichlet’s theorem of the sort that for a number field M, a number η of degree 2 over M and a finite set of places T on $L := M(\eta)$ satisfying some mild conditions, there is a constant $c = c(\eta, M, T)$ such that the inequality

$$\prod_{w \in T} \frac{|\xi - \eta|_w}{\max(1, |\xi|_w)} \leq ch(\xi)^{-1}$$

has infinitely many solutions in $\xi \in M$. Thus, for an inequality of type (1.18) to hold it is probably necessary to assume that $[L : K(\xi)] \geq 3, [L : K(\eta)] \geq 3$.

The following example shows that the condition $W < 1$ is necessary. Assume that $W = 1$. Then there is a place v on K such that T contains all places on L lying above v. Fix two elements ξ_0, η_0 of L such that $L = K(\xi_0, \eta_0), [K(\xi_0) : K] \geq 3$, $[K(\eta_0) : K] \geq 3$ and $[L : K] = [K(\xi_0) : K][\eta_0] : K]$. Let $\gamma_1, \gamma_2, \ldots$ be a sequence of elements from K such that $\lim_{i \to \infty} |\gamma_i|_v = \infty$. By the strong approximation theorem, there exists for every i an $\alpha_i \in K$ such that $|\alpha_i - \gamma_i|_v < 1$ and $|\alpha_i|_{v'} \leq 1$ for every place $v' \neq v$ on K. Now put $\xi_i := \xi_0 + \alpha_i, \eta_i := \eta_0 + \alpha_i$ for $i = 1, 2, \ldots$. Then for all places $w \in M_L$ lying outside a finite collection depending only on ξ_0, η_0 we have $|\xi_i|_w \leq 1, |\eta_i|_w \leq 1$, while for the remaining places on L not lying above v we have $|\xi_i|_w \ll 1, |\eta_i|_w \ll 1$ for $i = 1, 2, \ldots$, where the constants implied by \ll depend only on ξ_0, η_0. Further, for $w \in M_L$ lying above v we have $|\xi_i|_w \gg |\alpha_i|_w \gg |\gamma_i|_w, |\eta_i|_w \gg |\gamma_i|_w$ for i sufficiently large. Therefore, by the Extension formula, $h(\xi_i) \ll \prod_{w|v} \max(1, |\xi_i|_w) \gg |\gamma_i|_v \to \infty$ for $i \to \infty$ and similarly, $h(\eta_i) \ll \prod_{w|v} \max(1, |\eta_i|_w) \gg |\gamma_i|_v \to \infty$ for $i \to \infty$, where the products are taken over the places $w \in M_L$ lying above v. Moreover, since
where $\sum_{x,y}$ we have

$$
\prod_{w \in T} \max(1, |\xi_i - \eta_i|_w) \ll \prod_{w | \nu} \max(1, |\xi_i - \eta_i|_w) \ll (h(\xi_i)h(\eta_i))^{-1} \text{ for } i = 1, 2, \ldots .
$$

2. Proof of Theorem 3.

As in Section 1, K is an algebraic number field and S a finite set of places on K containing all infinite places. Further, $F(X, Y)$ is a square-free binary form of degree $r \geq 3$ with coefficients in \mathcal{O}_S and A a real ≥ 1. We assume that

$$
F(X, Y) = \prod_{i=1}^{r} (\alpha_i X + \beta_i Y) \text{ with } \alpha_i, \beta_i \in \mathcal{O}_S \text{ for } i = 1, \ldots , r . \quad (2.1)
$$

This is no loss of generality. Namely, suppose that F has splitting field M over K. Thus, $F(X, Y) = \prod_{i=1}^{r} (\alpha'_i X + \beta'_i Y)$ with $\alpha'_i, \beta'_i \in M$. Let L be the Hilbert class field of M/K and T the set of places on L lying above those in S. Then for $i = 1, \ldots , r$, the fractional ideal with respect to \mathcal{O}_T generated by α'_i, β'_i is principal and since F has its coefficients in \mathcal{O}_S this implies that F can be factored as in (2.1) but with $\alpha_i, \beta_i \in \mathcal{O}_T$. From the Extension formula it follows that for $(x, y) \in \mathcal{O}_S^2$ we have $|F(x, y)|_T = |F(x, y)|_S$, $H_T(x, y) = H_S(x, y)$ and that also $H_T(F) = H_S(F)$, where $|*|_T = \prod_{w \in T} |*|_w$, $H_T(*, \ldots , *) = \prod_{w \in T} \max(|*|_w, \ldots , |*|_w)$. So, if we have proved that for all $(x, y) \in \mathcal{O}_T^2$ with $|F(x, y)|_T = A$ and all $\varepsilon > 0$ we have $H_T(x, y) \leq C_{12}^{\text{ineff}}(A, T, L, \varepsilon)(H_T(F), A)^{\frac{1}{r} + \varepsilon}$, then Theorem 3 readily follows, on observing that T, L are uniquely determined by S, M.

In the proof of Theorem 3 we need some lemmas. The first lemma is fundamental for everything in this paper:

Lemma 1. Let x_0, \ldots , x_n be non-zero elements of \mathcal{O}_S such that

$$
x_0 + \cdots + x_n = 0,
$$

$\sum_{i \in I} x_i \neq 0$ for each proper nonempty subset I of $\{0, \ldots , n\}$.

Then for all $\varepsilon > 0$ we have

$$
H_S(x_0, \ldots , x_n) \leq C_{12}^{\text{ineff}}(K, S, \varepsilon) \cdot \prod_{i=0}^{n} x_i^{1+\varepsilon}
$$

Proof. Lemma 1 in this form appeared in Laurent’s paper [7]. It is a reformulation of Theorem 2 of [2]. For $n = 2$, Lemma 1 follows from the p-adic generalisation of Roth’s theorem [6] (Chap. 7, Thm. 1.1) and for $n > 2$ from Schlickewei’s p-adic generalisation [10] of Schmidt’s Subspace theorem [11]. The constant C_{11}
(and also each other constant in this paper) is ineffective because the Subspace theorem is ineffective. In fact, we need Lemma 1 only for $n = 2$ in which case the non-vanishing subsum condition is void. However, Lemma 1 with $n > 2$ has been used in the proof of a result from [5] which we will need in the present paper.

For a polynomial P with coefficients in K and for $v \in M_K$ we define $|P|_v := \max(|p_1|_v, \ldots, |p_t|_v)$ where p_1, \ldots, p_t are the coefficients of P.

Lemma 2. Let $F(X, Y) = \prod_{i=1}^{r}(\alpha_iX + \beta_iY)$ with $\alpha_i, \beta_i \in \mathcal{O}_S$ for $i = 1, \ldots, r$. There is a constant c depending only on r and K such that

$$c^{-1} \prod_{i=1}^{r} H_S(\alpha_i, \beta_i) \leq H_S(F) \leq c \prod_{i=1}^{r} H_S(\alpha_i, \beta_i) \quad (2.2)$$

Proof. According to, for instance [6], Chap. 3, §2, we have for any polynomials $P_1, \ldots, P_r \in K[X_1, \ldots, X_n], v \in M_K$ that

$$c_v^{-1}|P_1 \cdots P_r|_v \leq |P_1|_v \cdots |P_r|_v \leq c_v|P_1 \cdots P_r|_v$$

if v is infinite,

$$|P_1 \cdots P_r|_v = |P_1|_v \cdots |P_r|_v$$

if v is finite,

where each c_v is a constant > 1 depending only on r, n, K. Now Lemma 2 follows by applying this with $P_i(X, Y) = \alpha_iX + \beta_iY$ for $i = 1, \ldots, r$ and any $v \in S$, and then taking the product over $v \in S$.

We complete the proof of Theorem 3. Let $F(X, Y)$ be a square-free binary form of degree $r \geq 3$ satisfying (2.1) and let $\varepsilon > 0$. Put $\varepsilon' := \varepsilon/10$. In what follows, the constants implied by \ll will be ineffective and depending only on K, S, r, ε. Define

$$\Delta_{ij} := \alpha_i\beta_j - \alpha_j\beta_i \quad \text{for } i, j = 1, \ldots, r.$$

We will use that

$$|\Delta_{ij}|_v \ll \max(|\alpha_i|_v, |\beta_i|_v) \max(|\alpha_j|_v, |\beta_j|_v) \quad \text{for } v \in M_K \quad (2.2)$$

whence, on taking the product over $v \in S$,

$$|\Delta_{ij}|_S \ll H_S(\alpha_i, \beta_i)H_S(\alpha_j, \beta_j). \quad (2.3)$$

Pick three distinct indices i, j, k from $\{1, \ldots, r\}$ and define the linear forms

$$A_1 = \Delta_{jk}(\alpha_iX + \beta_iY), \quad A_2 = \Delta_{ki}(\alpha_jX + \beta_jY), \quad A_3 = \Delta_{ij}(\alpha_kX + \beta_kY).$$

Thus,

$$A_1 + A_2 + A_3 = 0. \quad (2.4)$$

Further,

$$\Delta_{ij}\Delta_{jk}\Delta_{ki} \cdot X = \Delta_{ki}\beta_j A_1 - \Delta_{jk}\beta_i A_2,$$

$$\Delta_{ij}\Delta_{jk}\Delta_{ki} \cdot Y = -\Delta_{ki}\alpha_j A_1 + \Delta_{jk}\alpha_i A_2. \quad (2.5)$$
Let \((x, y) \in \mathcal{O}_S^2\) be a pair satisfying (1.13). Put \(a_h := A_h(x, y)\) for \(h = 1, 2, 3\). From (2.5) and (2.2) it follows that for \(v \in S\),

\[
|\Delta_{ij} \Delta_{jk} \Delta_{ki}|_v \max(|x|_v, |y|_v) \ll \left(\prod_{p \in \{i, j, k\}} \max(|\alpha_p|_v, |\beta_p|_v) \right) \max(|a_1|_v, |a_2|_v).
\]

By taking the product over all subsets \(\{i, j, k\}\) we obtain

\[
|\Delta_{ij} \Delta_{jk} \Delta_{ki}|_v H_S(x, y) \ll \left(\prod_{p \in \{i, j, k\}} H_S(\alpha_p, \beta_p) \right) \cdot H_S(a_1, a_2).
\]

By Lemma 1 and (2.4) we have

\[
H_S(a_1, a_2) \leq H_S(a_1, a_2, a_3) \ll \left(|\Delta_{ij} \Delta_{jk} \Delta_{ki}|_S \prod_{p \in \{i, j, k\}} |\alpha_p x + \beta_p y|_S \right)^{1+\varepsilon'}.
\]

By combining these inequalities we obtain

\[
H_S(x, y) \ll |\Delta_{ij} \Delta_{jk} \Delta_{ki}|_S \left(\prod_{p \in \{i, j, k\}} H_S(\alpha_p, \beta_p) \right) \prod_{p \in \{i, j, k\}} |\alpha_p x + \beta_p y|_S \left(1+\varepsilon' \right).
\]

\[
\ll \left(\prod_{p \in \{i, j, k\}} \left(H_S(\alpha_p, \beta_p) \cdot |\alpha_p x + \beta_p y|_S \right) \right)^{1+3\varepsilon'} \quad \text{in view of (2.3)}.
\]

By taking the product over all subsets \(\{i, j, k\}\) of \(\{1, \ldots, r\}\) we get, using Lemma 2 and \(\prod_{i=1}^r |\alpha_i x + \beta_i y|_S = A\) which is a consequence of (2.1), (1.13), that

\[
H_S(x, y)^{(r)} \ll \left(\prod_{i=1}^r \left(H_S(\alpha_i, \beta_i) \cdot |\alpha_i x + \beta_i y|_S \right) \right)^{(r-1)(1+3\varepsilon')} \ll \left(H_S(F) \cdot A \right)^{(r)} \left(1+\varepsilon\right) .
\]

This proves Theorem 3. \(\square\)

3. Proof of Theorem 2.

Let again \(K\) be an algebraic number field and \(S\) a finite set of places on \(K\) containing all infinite places. We recall that the discriminant of a binary form \(F(X, Y) = \prod_{i=1}^r (\alpha_i X + \beta_i Y)\) is given by \(D(F) = \prod_{1 \leq i < j \leq r} (\alpha_i \beta_j - \alpha_j \beta_i)^2\). This implies that \(|D(F_U)|_S = |D(F)|_S\) for \(U \in GL_2(\mathcal{O}_S)\). We need some results from other papers.

Lemma 3. Let \(F\) be a square-free binary form of degree \(r \geq 3\) with coefficients in \(\mathcal{O}_S\) and with splitting field \(M\) over \(K\). Then there is an \(U \in GL_2(\mathcal{O}_S)\) such that

\[
|D(F)|_S \geq c^{\text{eff}} \left(r, M, S \right) H_S(F_U)^{\frac{2r}{r-1}}.
\]
Proof. This follows from Theorem 2 of [4]. The proof of that theorem uses Lemma 1 mentioned above with \(n = 2 \) and a reduction theory for binary forms.

I would like to mention here that the reduction theory for binary forms developed in [4] is essentially a special case of a reduction theory for norm forms which was developed some years earlier by Schmidt [13] (for a totally different purpose). I apologize for having overlooked this in [4]. \(\square \)

Lemma 4. Let \(F, G \) be binary forms of degrees \(r \geq 3, s \geq 3 \), respectively, with coefficients in \(\mathcal{O}_S \) such that \(FG \) is square-free and \(FG \) has splitting field \(L \) over \(K \). Then

\[
|R(F,G)|_S \geq C_{14}^{\text{ineff}} (r, s, L, S, \varepsilon) \left(|D(F)|_S^{\frac{1}{r+1}} |D(G)|_S^{\frac{1}{s+1}} \right)^{\frac{1}{r+1} - \varepsilon} \text{ for } \varepsilon > 0.
\]

Proof. This is Theorem 1A of [5]. The proof of that theorem uses Lemma 1 with \(n > 2 \). \(\square \)

We now prove Theorem 2. We assume that

\[
|D(F)|_S^{\frac{1}{r+1}} \leq |D(G)|_S^{\frac{1}{s+1}}
\]

which is clearly no loss of generality. Let \(U \in \text{GL}_2(\mathcal{O}_S) \) be the matrix from Lemma 3. We will show that (1.12) holds with this \(U \). Let \(M \) be the Hilbert class field of \(L/K \), and \(T \) the set of places on \(M \) lying above those in \(S \). Thus, we have

\[
F_U(X,Y) = \prod_{i=1}^{r} (\alpha_i X + \beta_i Y), \quad G_U(X,Y) = \prod_{j=1}^{s} (\gamma_j X + \delta_j Y)
\]

with \(\alpha_i, \beta_i, \gamma_j, \delta_j \in \mathcal{O}_T \) for \(i = 1, \ldots, r, \ j = 1, \ldots, s \). \(\text{(3.2)} \)

The height \(H_T \) and the quantity \(|\ast|_T \) are defined similarly to \(H_S, |\ast|_S \) but with respect to the absolute values \(|\ast|_w \) (\(w \in T \)). In what follows, the constants implied by \(\ll, \gg \) will be ineffective and depending only on \(r, s, L, S \) and \(\varepsilon \), where \(\varepsilon \) is a positive number depending only on \(r, s \) which will later be chosen sufficiently small.

Note that by Lemma 4, (3.1), our choice of \(U \), and Lemma 3 we have

\[
|R(F,G)|_S \gg \left(|D(F)|_S^{\frac{1}{r+1}} |D(G)|_S^{\frac{1}{s+1}} \right)^{\frac{1}{r+1} - \varepsilon} \gg |D(F)|_S^{\frac{1}{r+1} \left(\frac{2}{3} - 2\varepsilon \right)}
\]

\[
\gg H_S(F_U)^{s\left(\frac{2}{3} - \frac{2\varepsilon}{s+1} \right)}.
\]

We estimate \(H_S(G_U) \) from above. By (1.2), (3.2) we have

\[
R(F_U, G_U) = \prod_{i=1}^{r} \prod_{j=1}^{s} (\alpha_i \delta_j - \beta_i \gamma_j) = \prod_{j=1}^{s} F_U(\delta_j, -\gamma_j),
\]
and together with (1.11) and the Extension formula this implies that

$$|R(F,G)|_S = |R(F_U, G_U)|_T = \prod_{j=1}^s |F_U(\delta_j, -\gamma_j)|_T .$$ \hfill (3.4)

Further, using that $H_S(F_U) = H_T(F_U)$, $H_S(G_U) = H_T(G_U)$ by the Extension formula, we have

$$H_S(G_U) \ll \prod_{j=1}^s H_T(\gamma_j, \delta_j) \text{ by (3.2), Lemma 2,}$$ \hfill (3.5)$$H_T(\gamma_j, \delta_j) \ll \left(H_S(F_U) \cdot |F_U(\delta_j, -\gamma_j)|_T \right)^{\frac{2}{r\varepsilon}} \text{ for } j = 1, \ldots, s \text{ by Theorem 3, (3.6)}$$

where both Lemma 2, Theorem 3 have been applied with M, T replacing K, S. Now (3.4), (3.5), (3.6) together imply

$$H_S(G_U) \ll \left(H_S(F_U)^s |R(F,G)|_S \right)^{\frac{2}{r\varepsilon}} .$$

In combination with (3.3) this gives

$$H_S(F_U)^s H_S(G_U)^r \ll H_S(F_U)^{(4+rc)} |R(F,G)|_S^{3+rc}$$
$$\ll |R(F,G)|_S^{(4+rc)(\frac{2}{3+r\varepsilon})^{-1} + 3+rc}$$
$$\ll |R(F,G)|_S^{718} \text{ for } \varepsilon \text{ sufficiently small.}$$

This implies (1.12), whence completes the proof of Theorem 2. \hfill \Box

As before, let K be an algebraic number field and S a finite set of places on K containing all infinite places. For a matrix $U = (\begin{smallmatrix} a & c \\ b & d \end{smallmatrix})$ with entries in K we define

$$|U|_v := \max(|a|_v, |b|_v, |c|_v, |d|_v) \text{ for } v \in M_K , \quad H_S(U) = \prod_{v \in S} |U|_v .$$

We need the following elementary lemma:

Lemma 5. Let $F(X,Y)$ be a square-free binary form of degree $r \geq 3$ with coefficients in O_S and $U \in GL_2(O_S)$. Then for some constant c depending only on r and the splitting field of F over K we have

$$H_S(U) \leq c \cdot (H_S(F)H_S(F_U))^{\frac{3}{r}} .$$ \hfill (4.1)
Proof. We prove (4.1) only for binary forms F such that

$$F(X, Y) = \prod_{i=1}^{r} (\alpha_iX + \beta_iY) \text{ with } \alpha_i, \beta_i \in \mathcal{O}_S \text{ for } i = 1, \ldots, r. \quad (4.2)$$

This is no restriction. Namely, in general F has a factorisation as in (4.2) with $\alpha_i, \beta_i \in \mathcal{O}_T$ where T is the set of places lying above those in S on the Hilbert class field of the splitting field of F over K. Now if we have shown that $H_T(U) \leq c \cdot (HT(F)HT(F_U))^{3/r}$ then (4.1) follows from the Extension formula.

From (4.2) it follows that

$$F_U(X, Y) = \prod_{i=1}^{r} (\alpha_i^*X + \beta_i^*Y) \text{ with } (\alpha_i^*, \beta_i^*) = (\alpha_i, \beta_i)U \text{ for } i = 1, \ldots, r. \quad (4.3)$$

Let $U = (a \, b \, c \, d)$. Pick three indices i, j, k from $\{1, \ldots, r\}$. Then $(a, c, b, d, -1, -1, -1)$ is a solution to the system of six linear equations

$$
\begin{pmatrix}
\alpha_i & \beta_i & 0 & 0 & \alpha_i^* & 0 & 0 \\
0 & 0 & \alpha_i & \beta_i & \alpha_i^* & 0 & 0 \\
\alpha_j & \beta_j & 0 & 0 & \alpha_j^* & 0 & 0 \\
0 & 0 & \alpha_j & \beta_j & \alpha_j^* & 0 & 0 \\
\alpha_k & \beta_k & 0 & 0 & \alpha_k^* & 0 & 0 \\
0 & 0 & \alpha_k & \beta_k & \alpha_k^* & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}. \quad (4.4)
$$

(4.4) can be reformulated as $-x_3(\alpha_i^*, \beta_i^*) = (\alpha_i, \beta_i)X$, $-x_6(\alpha_j^*, \beta_j^*) = (\alpha_j, \beta_j)X$, $-x_7(\alpha_k^*, \beta_k^*) = (\alpha_k, \beta_k)X$, with $X = (x_1, x_2, x_3, x_4, x_5, x_6, x_7)$. It is well-known that up to a constant factor, there is at most one 2×2-matrix mapping three given, pairwise non-proportional vectors to scalar multiples of three given other vectors. Therefore, the solution space of system (4.4) is one-dimensional. One solution to (4.4) is given by $(\Delta_1, -\Delta_2, \ldots, \Delta_7)$ where Δ_p is the determinant of the matrix obtained by removing the p-th column of the matrix at the left-hand side of (4.4). Therefore, there is a non-zero $\lambda \in K$ such that $U = \lambda(\Delta_1, -\Delta_2, \ldots, -\Delta_4)$. Note that $\Delta_1, \ldots, \Delta_4$ contain the fifth, sixth, and seventh column of the matrix at the left-hand side of (4.4). Therefore, each of $\Delta_1, \ldots, \Delta_4$ is a sum of terms each of which is up to sign a product of six numbers, containing one of α_p, β_p for $p = i, j, k$ and one of α_p^*, β_p^* for $p = i, j, k$. Consequently,

$$|U|_v = |\lambda|_v \prod_{p=i,j,k} \max(|\alpha_p|_v, |\beta_p|_v) \max(|\alpha_p^*|_v, |\beta_p^*|_v) \text{ for } v \in M_K. \quad (4.5)$$

where for infinite places v, c_v is an absolute constant and for finite places v, $c_v = 1$. Let $v \notin S$. Then since $U \in GL_2(\mathcal{O}_S)$ we have $|\det U|_v = 1$, whence $|U|_v = 1$. Further, $\alpha_p, \beta_p, \alpha_p^*, \beta_p^* \in \mathcal{O}_S$ for $p = i, j, k$, therefore, these numbers have v-adic absolute value ≤ 1. It follows that $|\lambda|_v \geq 1$ for $v \notin S$, and together with the Product formula this implies $|\lambda|_S = \prod_{v \in S} |\lambda|_v \leq 1$. Now (4.5) implies, on taking
the product over \(v \in S \),
\[
H_S(U) \leq c_1|\lambda_S| \prod_{p=i,j,k} \left(H_S(\alpha_p, \beta_p)H_S(\alpha_p^*, \beta_p^*) \right) \\
\leq c_1 \prod_{p=i,j,k} \left(H_S(\alpha_p, \beta_p)H_S(\alpha_p^*, \beta_p^*) \right),
\]
where \(c_1 \) depends only on \(K \). By taking the product over all subsets \(\{i, j, k\} \) of \(\{1, \ldots, r\} \), on using (4.2), (4.3), Lemma 2, we obtain
\[
H_S(U)_{(s)} \leq c_2(H_S(F)H_S(F_U))^{(s^{-1})},
\]
where \(c_2 \) depends only on \(K, r \). This implies (4.1).

Lemma 6. Let \(M \) be an extension of \(K \) of degree \(r \) and \(T \) the set of places on \(M \) lying above those in \(S \). Denote by \(x \mapsto x^{(i)} \) \((i = 1, \ldots, r) \) the \(K \)-isomorphisms of \(M \).

(i) Let \(F(X, Y) = \prod_{i=1}^r (\alpha^{(i)} X + \beta^{(i)} Y) \), where \(\alpha, \beta \in \mathcal{O}_T \) and \(H_S(F)^{1/r} \ll\ll H_T(\alpha, \beta) \).

(ii) Let \(\xi \in M \) with \(\xi \neq 0 \). Then there are \(\alpha, \beta \in \mathcal{O}_T \) such that \(\xi = \alpha/\beta \) and such that for the binary form \(F(X, Y) = \prod_{i=1}^r (\alpha^{(i)} X + \beta^{(i)} Y) \) we have \(H_S(F)^{1/r} \ll\ll h(\xi) \).

Here the constants implied by \(\ll, \gg \) depend only on \(M \).

Proof. (i) \(F \) has its coefficients in \(\mathcal{O}_S \) since \(\mathcal{O}_T \) is the integral closure of \(\mathcal{O}_S \) in \(M \). Let \(M' \) be the normal closure of \(M/K \) and \(T' \) the set of places on \(M' \) lying above those in \(T \). By the Extension formula, we have \(H_T(\alpha, \beta) = H_T'(\alpha, \beta) \). Further, by the Extension formula and Lemma 2 we have
\[
H_S(F) = H_T'(F) \gg\ll \prod_{i=1}^r H_T'(\alpha^{(i)}, \beta^{(i)}).
\]
Now \(M'/K \) is normal, hence if \(w_1, \ldots, w_p \) are the places on \(M' \) lying above some \(v \in S \) then for \(i = 1, \ldots, r \), the tuple of absolute values \(|x^{(i)}|_w : j = 1, \ldots, g \) is a permutation of \(|*|_w : j = 1, \ldots, g \). Therefore, \(H_T(\alpha^{(i)}, \beta^{(i)}) = H_T'(\alpha^{(i)}, \beta^{(i)}) \) for \(i = 1, \ldots, r \). This implies (i).

(ii) The ideal class of \((1, \xi) \) (the fractional ideal with respect to \(\mathcal{O}_M \) generated by \(1, \xi \)) contains an ideal, contained in \(\mathcal{O}_M \), with norm \(\ll 1 \). This implies that there are \(\alpha, \beta \in \mathcal{O}_M \) with \(\xi = \alpha/\beta \) such that the ideal \((\alpha, \beta) \) has norm \(\ll 1 \). It follows that \(\prod_{w \notin T} \max(|\alpha|_w, |\beta|_w) \gg\ll 1 \). Now by the Product formula we have \(h(\xi) = \prod_{w \in M_M} \max(1, |\xi|_w) = \prod_{w \in M_M} \max(|\alpha|_w, |\beta|_w) \) and so \(h(\xi) \gg\ll \prod_{w \in T} \max(|\alpha|_w, |\beta|_w) = H_T(\alpha, \beta) \). Together with (i) this implies (ii). \(\square \)

We now complete the proof of Theorem 4. Let \(L = K(\xi, \eta), r = |K(\xi) : K|, s = |K(\eta) : K| \). Then (1.16) implies that \(r \geq 3, s \geq 3, [L : K] = rs \). Further, let \(T \) be a finite set of places on \(L \) such that (1.17) holds and \(S \) the set of places on \(K \) lying below those in \(T \). We add to \(S \) all infinite places on \(K \) that do not belong
to S. Thus, S contains all infinite places and the places lying below those in T. There might be places in S above which there is no place in T but then (1.17) still holds. Denote by T_1 the set of places on L lying above the places in S. Note that T is a proper subset of T_1. In what follows, the constants implied by \ll, \gg depend only on L, S. We mention that constants depending on some subfield of L may be replaced by constants depending on L since L has only finitely many subfields.

Denote by $x \mapsto x(i)$ $(i = 1, \ldots, r)$ the K-isomorphisms of $K(\xi)$ and by $y \mapsto y(j)$ $(j = 1, \ldots, s)$ the K-isomorphisms of $K(\eta)$. From part (ii) of Lemma 6 (applied with $M = K(\xi), M = K(\eta)$, respectively) it follows that there are $\alpha, \beta, \gamma, \delta$ such that $\xi = \frac{2}{7}, \eta = \frac{2}{7}$, where α, β belong to the integral closure of \mathcal{O}_S in $K(\xi)$ and γ, δ to the integral closure of \mathcal{O}_S in $K(\eta)$ and such that for the binary forms

$$F(X, Y) = \prod_{i=1}^{r} (\alpha^{(i)} X + \beta^{(i)} Y), \quad G(X, Y) = \prod_{j=1}^{s} (\gamma^{(j)} X + \delta^{(j)} Y)$$

we have

$$H_S(F)^{1/r} \gg \ll h(\xi), \quad H_S(G)^{1/s} \gg \ll h(\eta).$$

The forms F, G have their coefficients in \mathcal{O}_S, and $\deg F = r \geq 3$, $\deg G = s \geq 3$. Further, since $K(\xi), K(\eta)$ are linearly disjoint over K, the numbers ξ and η are not conjugate over K and so FG is square-free. Hence all hypotheses of Theorem 2 are satisfied. The splitting field of FG is the normal closure of L over K. By Theorem 2 there is a matrix $U \in GL_2(\mathcal{O}_S)$ such that

$$|R(F, G)|_S \gg \left(H_S(F_U)^{s} H_S(G_U)^{s} \right)^{\frac{1}{rs}}.$$ \hspace{1cm} (4.8)

By (4.6) we have

$$F_U(X, Y) = \prod_{i=1}^{r} ((\ast)^{i}) X + (\ast')^{(i)} Y), \quad G_U(X, Y) = \prod_{j=1}^{s} ((\ast)^{j}) X + (\ast')^{(j)} Y),$$

with $(\ast, \ast') = (\alpha, \beta)U, (\ast', \ast') = (\gamma, \delta)U$.

We define the following quantities:

$$\Lambda^*_w := \frac{|\xi - \eta|_w}{\max(1, |\xi|_w) \max(1, |\eta|_w)} = \frac{|\alpha \delta - \beta \gamma|_w}{\max(|\alpha|_w, |\beta|_w) \max(|\gamma|_w, |\delta|_w)} \text{ for } w \in T_1,$$

$$H := H_s(F)^{1/r} H_s(G)^{1/s}, \quad H^* := H_S(F_U)^{1/r} H_S(G_U)^{1/s}.$$

Thus, (4.7) and (4.8) translate into

$$H \gg \ll h(\xi) h(\eta), \quad |R(F, G)|^{1/rs}_S \gg (H^*)^{\frac{1}{rs}}.$$ \hspace{1cm} (4.9)

Note that we have to estimate from below $\prod_{w \in T} \Lambda^*_w$.

For matrices $A = (a_{i,j})$ and places w on L we put $|A|_w = \max(|a|_w, \ldots, |d|_w)$. Let $v \in S$ and $w \in T_1$ a place lying above v. Using that the restriction of $|\ast|_w$ to K
and by applying part (i) of Lemma 6 and (4.9) we obtain
\[\Lambda_w \gg \frac{|\det U^{-1}|_w}{|U^{-1}|^2_w} \cdot \Lambda_w^* = \left(\frac{|\det U^{-1}|_w}{|U^{-1}|^2_w} \right)^{\frac{2w_K}{|w|}} \cdot \Lambda_w^*. \]

Note that by Lemma 5 we have \[H_S(U^{-1}) \ll \left(H_S(F) H_S(F_U) \right)^{3/2} \] and \[H_S(U^{-1}) \ll \left(H_S(G) H_S(G_U) \right)^{3/2}. \] Hence \[H_S(U^{-1}) \ll (H \cdot H^*)^{3/2}. \] We take the product over \(w \in T \). Using (1.17), \[|\det U^{-1}|_w/|U^{-1}|^2_w \ll 1 \] for \(v \in S \) and det \(U \in O_S^* \), we get
\[\prod_{w \in S} \prod_{w \in T} \left(\frac{|\det U^{-1}|_w}{|U^{-1}|^2_w} \right)^{\frac{2w_K}{|w|}} \gg \prod_{w \in S} \left(\frac{|\det U^{-1}|_w}{|U^{-1}|^2_w} \right)^W = \left(\frac{|\det U^{-1}|_S}{H_S(U^{-1})^2} \right)^W \gg (H \cdot H^*)^{-3W}. \]

Hence
\[\prod_{w \in T} \Lambda_w \gg (H \cdot H^*)^{-3W} \prod_{w \in T} \Lambda_w^*. \tag{4.10} \]

We need also lower bounds for \(\prod_{w \in T} \Lambda_w, \prod_{w \in T} \Lambda_w^* \). Note that since \([L : K] = [K(\xi) : K][K(\eta) : K] = rs \) we have
\[R(F,G) = \prod_{i=1}^r \prod_{j=1}^s (\alpha(i) \delta(j) - \beta(i) \gamma(j)) = N_{L/K}(\alpha \delta - \beta \gamma). \]

Together with the Extension formula this implies
\[|R(F,G)|_v^{1/rs} = \prod_{w \in v} |\alpha \delta - \beta \gamma|_w \text{ for } v \in M_K, \]

and by applying part (i) of Lemma 6 and (4.9) we obtain
\[\prod_{w \in T} \Lambda_w = \frac{|R(F,G)|_S^{1/rs}}{H_T(\alpha, \beta) H_T(\gamma, \delta)} \gg \left(\frac{|R(F,G)|_S}{H_S(F) H_S(F_U)} \right)^{1/rs} = \frac{|R(F,G)|_S^{1/rs}}{H} \gg (H^*)^{\frac{1}{3r}s} H^{-1}. \tag{4.11} \]

Completely similarly we get, in view of (1.11),
\[\prod_{w \in T} \Lambda_w^* \gg \frac{|R(F_U, G_U)|_S^{1/rs}}{H^*} = \frac{|R(F,G)|_S^{1/rs}}{H^*} \gg (H^*)^{\frac{1}{3r}s} -1. \tag{4.12} \]
Take \(\theta = \frac{1}{13(1+3W)} \). Then we obtain
\[
\prod_{w \in T} \Lambda_w \gg (H \cdot H^*)^{-3W \theta} \prod_{w \in T \setminus T_1} \left(\Lambda_w^{1-\theta} \Lambda_w^* \theta \right) \text{ by (4.10)}
\]
\[
\gg (H \cdot H^*)^{-3W \theta} \prod_{w \in T \setminus T_1} \left(\Lambda_w^{1-\theta} \Lambda_w^* \theta \right) \text{ since } \Lambda_w, \Lambda_w^* \ll 1 \text{ for } w \in T \setminus T_1
\]
\[
\gg (H \cdot H^*)^{-3W \theta} (H^*)^{(\frac{1}{13} - 1)} \theta \left((H^*)^{\frac{1}{13}} H^{-1} \right)^{(1-\theta)} \text{ by (4.11), (4.12)}
\]
\[
= H^{-1+(1-3W)\theta} (H^*)^{\frac{1}{13} - (1+3W)\theta} = H^{-1+\delta}
\]
\[
\gg (h(\xi)h(\eta))^{-1+\delta} \text{ by (4.9)}.
\]
This completes the proof of Theorem 4. \(\Box \)

References
