Results and open problems related to Schmidt’s Subspace Theorem

Jan-Hendrik Evertse
Universiteit Leiden

BIRS workshop on Vojta’s conjectures
September 30, 2014, Banff

Slides can be downloaded from http://pub.math.leidenuniv.nl/~evertsejh/lectures.shtml
Define

\[H(\xi) = \max(|p|, |q|), \text{ where } \xi = p/q, \ p, q \in \mathbb{Z}, \ \gcd(p, q) = 1. \]

Theorem (Roth, 1955)

Let \(\alpha \) be a real algebraic number and \(\delta > 0 \). Then the inequality

\[|\alpha - \xi| \leq H(\xi)^{-2-\delta} \text{ in } \xi \in \mathbb{Q} \]

has only finitely many solutions.

Roth’s proof, and later proofs of his Theorem, are ineffective, i.e., they do not give a method to determine the solutions.
A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha) = 0$. We define the height $H(\alpha) := \max |\text{coeff. of } F|$.

Theorem (Bombieri, van der Poorten, 1987)

Let $\delta > 0$, $K = \mathbb{Q}(\alpha)$, $[K : \mathbb{Q}] = d$. Then for the solutions $\xi \in \mathbb{Q}$ of

$$|\alpha - \xi| \leq H(\xi)^{-2-\delta}$$

we have $H(\xi) \leq \max (B_{\text{ineff}}(\delta, K), H(\alpha)^{c_{\text{eff}}(\delta, d)})$.

Here c_{eff}, B_{ineff} are constants, effectively, resp. not effectively computable from the method of proof, depending on the parameters between the parentheses.
A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha) = 0$.

We define the height $H(\alpha) := \max |\text{coeff. of } F|$.

Theorem (Bombieri, van der Poorten, 1987)

*Let $\delta > 0$, $K = \mathbb{Q}(\alpha)$, $[K : \mathbb{Q}] = d$. Then for the solutions $\xi \in \mathbb{Q}$ of

$\mid \alpha - \xi \mid \leq H(\xi)^{-2-\delta}$

we have $H(\xi) \leq \max (B^{\text{ineff}}(\delta, K), H(\alpha)^{c\text{eff}}(\delta,d))$."

Equivalent formulation, ’Roth’s theorem with moving targets’

*Let K be a number field of degree d and $\delta > 0$. Then there are only finitely many pairs $(\xi, \alpha) \in \mathbb{Q} \times K$ such that

$\mid \alpha - \xi \mid \leq H(\xi)^{-2-\delta}$, $H(\xi) > H(\alpha)^{c\text{eff}}(\delta,d)$."
A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible polynomial $F \in \mathbb{Z}[X]$ with coprime coefficients such that $F(\alpha) = 0$.

We define the height $H(\alpha) := \max |\text{coeff. of } F|$.

Theorem (Bombieri, van der Poorten, 1987)

Let $\delta > 0$, $K = \mathbb{Q}(\alpha)$, $[K : \mathbb{Q}] = d$. Then for the solutions $\xi \in \mathbb{Q}$ of

$$|\alpha - \xi| \leq H(\xi)^{-2-\delta}$$

we have $H(\xi) \leq \max \left(B^{\text{ineff}}(\delta, K), H(\alpha)^{\text{eff}(\delta,d)} \right)$.

Similar results follow from work of Vojta (1995), Corvaja (1997), McQuillan ($c^{\text{eff}}(\delta, d) = O(d(1 + \delta^{-2}))$, published ?).
Let $\overline{\mathbb{Q}}$ denote the field of algebraic numbers in \mathbb{C} and let

$$L_i(X) = \alpha_{i1}X_1 + \cdots + \alpha_{in}X_n \ (i = 1, \ldots, n)$$

be linearly independent linear forms with coefficients $\alpha_{ij} \in \overline{\mathbb{Q}}$.

For $x = (x_1, \ldots, x_n) \in \mathbb{Z}^n$, put $\|x\| := \max_i |x_i|$.

Theorem (W.M. Schmidt, 1972)

Let $\delta > 0$. Then the set of solutions of

$$|L_1(x) \cdots L_n(x)| \leq \|x\|^{-\delta} \text{ in } x \in \mathbb{Z}^n$$

is contained in finitely many proper linear subspaces of \mathbb{Q}^n.

There are generalizations where the unknowns are taken from a number field and various archimedean and non-archimedean absolute values are involved. (Schmidt, Schlickewei)
By a combinatorial argument, the inequality (2) $|L_1(x) \cdots L_n(x)| \leq \|x\|^{-\delta}$ can be reduced to finitely many systems of inequalities of the shape

$$(3) \quad |L_1(x)| \leq \|x\|^{c_1}, \ldots, |L_n(x)| \leq \|x\|^{c_n} \quad \text{in} \ x \in \mathbb{Z}^n,$$

where $c_1 + \cdots + c_n < 0$.
By a combinatorial argument, the inequality (2) $|L_1(x) \cdots L_n(x)| \leq \|x\|^{-\delta}$ can be reduced to finitely many systems of inequalities of the shape

$$\left| L_1(x) \right| \leq \|x\|^{c_1}, \ldots, \left| L_n(x) \right| \leq \|x\|^{c_n} \quad \text{in } x \in \mathbb{Z}^n,$$

where $c_1 + \cdots + c_n < 0$.

Idea.

Let $x \in \mathbb{Z}^n$ be a solution of (2). Then

$$\left| L_1(x) \right| \leq \|x\|^{c_1(x)}, \ldots, \left| L_n(x) \right| \leq \|x\|^{c_n(x)}$$

with

$$c(x) := (c_1(x), \ldots, c_n(x)) \in \text{bounded set } S.$$ Cover S by a very fine, finite grid. Then x satisfies (3) with $c = (c_1, \ldots, c_n)$ a grid point very close to $c(x)$.

\[\square \]
By a combinatorial argument, the inequality (2) \(|L_1(x) \cdots L_n(x)| \leq \|x\|^{-\delta} \) can be reduced to finitely many systems of inequalities of the shape

\[
(3) \quad |L_1(x)| \leq \|x\|^{c_1}, \ldots, |L_n(x)| \leq \|x\|^{c_n} \quad \text{in } x \in \mathbb{Z}^n,
\]

where \(c_1 + \cdots + c_n < 0 \).

Thus, the following is equivalent to the Subspace Theorem:

Theorem

The solutions of (3) lie in finitely many proper linear subspaces of \(\mathbb{Q}^n \).
A refinement of the Subspace Theorem

Let again L_1, \ldots, L_n be linearly independent linear forms in X_1, \ldots, X_n with coefficients in $\overline{\mathbb{Q}}$ and c_1, \ldots, c_n reals with $c_1 + \cdots + c_n < 0$. Consider again

$$
(3) \quad |L_1(x)| \leq \|x\|^c_1, \ldots, |L_n(x)| \leq \|x\|^c_n \quad \text{in } x \in \mathbb{Z}^n.
$$

Theorem (Vojta (1989), Schmidt (1993), Faltings-Wüstholz (1994))

There is an effectively computable, proper linear subspace T^{exc} of \mathbb{Q}^n such that (3) has only finitely many solutions outside T^{exc}.

The space T^{exc} belongs to a finite collection, depending only on L_1, \ldots, L_n and independent of c_1, \ldots, c_n.

This refinement can be deduced from Schmidt’s basic Subspace Theorem, so it is in fact equivalent to Schmidt’s basic Subspace Theorem.
About the exceptional subspace

Assume for simplicity that L_1, \ldots, L_n have real algebraic coefficients.

For a linear subspace T of \mathbb{Q}^n, we say that a subset $\{L_{i_1}, \ldots, L_{i_m}\}$ of $\{L_1, \ldots, L_n\}$ is linearly independent on T if no non-trivial \mathbb{R}-linear combination of L_{i_1}, \ldots, L_{i_m} vanishes identically on T.

For a linear subspace T of \mathbb{Q}^n, define $c(T)$ to be the minimum of the quantities $c_{i_1} + \cdots + c_{i_m}$, taken over all subsets $\{L_{i_1}, \ldots, L_{i_m}\}$ of $\{L_1, \ldots, L_n\}$ of cardinality $m = \dim T$ that are linearly independent on T.

T^exc is the unique proper linear subspace T of \mathbb{Q}^n such that

$$\frac{c(\mathbb{Q}^n) - c(T)}{n - \dim T}$$

is minimal, subject to this condition, $\dim T$ is minimal.
About the exceptional subspace
Lemma (E., Ferretti, 2013)

Suppose that the coefficients of L_1, \ldots, L_n have heights $\leq H$.

Then T^{exc} has a basis $\{x_1, \ldots, x_m\} \subset \mathbb{Z}^n$ with

$$\|x_i\| \leq (\sqrt{n}H^n)^{4n} \quad (i = 1, \ldots, m).$$

Open problem

Is there an efficient method to determine T^{exc} in general?

Easy combinatorial expression of T^{exc} in terms of L_1, \ldots, L_n, c_1, \ldots, c_n?
Remarks

With the present methods of proof it is not possible to determine effectively the solutions of

\[(3) \quad |L_1(x)| \leq \|x\|^{c_1}, \ldots, |L_n(x)| \leq \|x\|^{c_n} \quad \text{in } x \in \mathbb{Z}^n \]

outside T^{exc}.

It is possible to give an explicit upper bound for the minimal number of proper linear subspaces of \mathbb{Q}^n whose union contains all solutions of (3). This bound depends on n, $\delta := -(c_1 + \cdots + c_n)$ and on the heights and degrees of the coefficients of L_1, \ldots, L_n (Schmidt (1989), \ldots, E. and Ferretti (2013)).

With the present methods it is not possible to estimate from above the number of solutions of (3) outside T^{exc}.
A semi-effective version of the Subspace Theorem

Let L_1, \ldots, L_n be linearly independent linear forms in X_1, \ldots, X_n and c_1, \ldots, c_n reals such that:

- the coefficients of L_1, \ldots, L_n have heights $\leq H$ and generate a number field K of degree d;
- $c_1 + \cdots + c_n = -\delta < 0$.

Theorem

For every solution x of

\begin{equation}
|L_1(x)| \leq \|x\|^{c_1}, \ldots, |L_n(x)| \leq \|x\|^{c_n} \quad \text{with} \quad x \in \mathbb{Z}^n \setminus T^{exc}
\end{equation}

we have $\|x\| \leq \max \left(B^{ineff}(n, \delta, K), H^{eff}(n, \delta, d) \right)$.

Proof.

Small modification in the proof of the Subspace Theorem. \qed
A semi-effective version of the Subspace Theorem

Let L_1, \ldots, L_n be linearly independent linear forms in X_1, \ldots, X_n and c_1, \ldots, c_n reals such that:

- the coefficients of L_1, \ldots, L_n have heights $\leq H$ and generate a number field K of degree d;
- $c_1 + \cdots + c_n = -\delta < 0$.

Theorem

For every solution x of

\[
|L_1(x)| \leq \|x\|^{c_1}, \ldots, |L_n(x)| \leq \|x\|^{c_n} \quad \text{with} \quad x \in \mathbb{Z}^n \setminus T^{\text{exc}}
\]

we have \[
\|x\| \leq \max \left(B^{\text{ineff}}(n, \delta, K), H^{\text{eff}}(n, \delta, d) \right).
\]

We may take \[
c^{\text{eff}}(n, \delta, d) = \exp \left(10^6 n (1 + \delta^{-3}) \log 4d \log \log 4d \right).
\]
A semi-effective version of the Subspace Theorem

Let L_1, \ldots, L_n be linearly independent linear forms in X_1, \ldots, X_n and c_1, \ldots, c_n reals such that:

- the coefficients of L_1, \ldots, L_n have heights $\leq H$ and generate a number field K of degree d;
- $c_1 + \cdots + c_n = -\delta < 0$.

Theorem

For every solution x of

\begin{equation}
|L_1(x)| \leq ||x||^{c_1}, \ldots, |L_n(x)| \leq ||x||^{c_n} \quad \text{with } x \in \mathbb{Z}^n \setminus T^{\text{exc}}
\end{equation}

we have $||x|| \leq \max \left(B^{\text{ineff}}(n, \delta, K), H^{\text{eff}}(n, \delta, d) \right)$.

This may be viewed as a version of the Subspace Theorem with moving targets, where we have only finitely many tuples (x, L_1, \ldots, L_n) with (4), such that the coefficients of L_1, \ldots, L_n lie in a given number field K and have small heights with respect to x.

(How to compare this with a result of Ru and Vojta?)
Keep the assumptions

- L_1, \ldots, L_n are linearly independent linear forms, whose coefficients have heights $\leq H$ and generate a number field of degree d;
- $c_1 + \cdots + c_n = -\delta < 0$.

Conjecture 1

*There are an effectively computable constant $c_{\text{eff}}^{\text{eff}}(n, \delta, d) > 0$ and a constant $B'(n, \delta, d) > 0$ such that for every solution x of

\[(4) \quad |L_1(x)| \leq \|x\|^{c_1}, \ldots, |L_n(x)| \leq \|x\|^{c_n} \quad \text{with} \quad x \in \mathbb{Z}^n \setminus T^{\text{exc}}\]

we have $\|x\| \leq \max \left(B'(n, \delta, d), H^{c_{\text{eff}}^{\text{eff}}(n, \delta, d)} \right)$.*

(In moving targets terms: there are only finitely many tuples (x, L_1, \ldots, L_n) with (4) such that the coefficients of L_1, \ldots, L_n have bounded degree and have heights small compared with x).
A conjectural improvement

Keep the assumptions

• L_1, \ldots, L_n are linearly independent linear forms, whose coefficients have heights $\leq H$ and generate a number field of degree d;

• $c_1 + \cdots + c_n = -\delta < 0$.

Conjecture 1

There are an effectively computable constant $c^\text{eff}(n, \delta, d) > 0$ and a constant $B'(n, \delta, d) > 0$ such that for every solution x of

\[
|L_1(x)| \leq \|x\|^{c_1}, \ldots, |L_n(x)| \leq \|x\|^{c_n} \quad \text{with } x \in \mathbb{Z}^n \setminus T^{\text{exc}}
\]

we have $\|x\| \leq \max \left(B'(n, \delta, d), H^{c\text{eff}}(n, \delta, d) \right)$.

This is hopeless with B' effective. But what if we allow B' to be ineffective?
Let K be an algebraic number field of degree d and discriminant D_K. Let a, b, c be non-zero elements of O_K with $a + b = c$. Put $H_K(a, b, c) := \prod_{\sigma:K \hookrightarrow \mathbb{C}} \max(|\sigma(a)|, |\sigma(b)|, |\sigma(c)|)$.

Theorem 1 (Effective abc-inequality, Győry, 1978)

We have $H_K(a, b, c) \leq (2|N_{K/\mathbb{Q}}(abc)|)^{c_1(d)}|D_K|^{c_2(d)}$ with $c_1(d), c_2(d)$ effectively computable in terms of d.

Proof.

Baker-type logarithmic forms estimates.
abc-type inequalities

Let K be an algebraic number field of degree d and discriminant D_K. Let a, b, c be non-zero elements of O_K with $a + b = c$. Put $H_K(a, b, c) := \prod\limits_{\sigma: K \hookrightarrow \mathbb{C}} \max(|\sigma(a)|, |\sigma(b)|, |\sigma(c)|)$.

Theorem 1 (Effective abc-inequality, Győry, 1978)

We have $H_K(a, b, c) \leq (2|N_{K/\mathbb{Q}}(abc)|)^{c_1(d)}|D_K|^{c_2(d)}$ with $c_1(d), c_2(d)$ effectively computable in terms of d.

Proof.

Baker-type logarithmic forms estimates.

Theorem 2 (Semi-effective abc-inequality, well-known)

For every $\delta > 0$ we have $H_K(a, b, c) \leq C_{\text{ineff}}(K, \delta)|N_{K/\mathbb{Q}}(abc)|^{1+\delta}$.

Proof.

Roth’s Theorem over number fields.
A very weak abc-conjecture

Let again K be a number field of degree d and discriminant D_K.

Conjecture 2 (Very weak abc-conjecture)

There are a constant $C(d, \delta) > 0$ and an effectively computable constant $c_{\text{eff}}(d, \delta) > 0$ with the following property: for every non-zero $a, b, c \in O_K$ with $a + b = c$ and every $\delta > 0$ we have

$$H_K(a, b, c) \leq C(d, \delta)|D_K|^{c_{\text{eff}}(d, \delta)}|N_{K/\mathbb{Q}}(abc)|^{1+\delta}.$$
A very weak abc-conjecture

Let again K be a number field of degree d and discriminant D_K.

Conjecture 2 (Very weak abc-conjecture)

There are a constant $C(d, \delta) > 0$ and an effectively computable constant $c^\text{eff}(d, \delta) > 0$ with the following property:

for every non-zero $a, b, c \in O_K$ with $a + b = c$ and every $\delta > 0$ we have

$$H_K(a, b, c) \leq C(d, \delta)|D_K|^{c^\text{eff}(d, \delta)}|N_K/\mathbb{Q}(abc)|^{1+\delta}.$$

Conjecture 1 \Rightarrow Conjecture 2 (idea).

Choose a \mathbb{Z}-basis $\{\omega_1, \ldots, \omega_d\}$ of O_K with conjugates bounded from above in terms of D_K. Write $a = \sum_{i=1}^d x_i \omega_i$, $b = \sum_{i=1}^d y_i \omega_i$ with $x_i, y_i \in \mathbb{Z}$. Then $x = (x_1, \ldots, y_d)$ satisfies one of finitely many systems of inequalities of the type

$$|L_i(x)| \leq \|x\|^{c_i} \quad (i = 1, \ldots, 2d)$$

where the L_i are linear forms whose coefficients lie in the Galois closure of K and have heights bounded above in terms of $|D_K|$.
Discriminants of binary forms

Definition

The discriminant of a binary form

\[F = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y) \]

is given by

\[D(F) = \prod_{1 \leq i < j \leq n} (\alpha_i \beta_j - \alpha_j \beta_i)^2. \]

This is a homogeneous polynomial in \(\mathbb{Z}[a_0, \ldots, a_n] \) of degree \(2n - 2 \).
Discriminants of binary forms

Definition

The discriminant of a binary form

\[F = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n = \prod_{i=1}^{n} (\alpha_i X - \beta_i Y) \]

is given by

\[D(F) = \prod_{1 \leq i < j \leq n} (\alpha_i \beta_j - \alpha_j \beta_i)^2. \]

This is a homogeneous polynomial in \(\mathbb{Z}[a_0, \ldots, a_n] \) of degree \(2n - 2 \).

For a matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) we define \(F_A(X, Y) = F(aX + bY, cX + dY) \).

Two binary forms \(F, G \in \mathbb{Z}[X, Y] \) are called equivalent if \(G = \pm F_A \) for some \(A \in \text{GL}(2, \mathbb{Z}) \).

Equivalent binary forms have the same discriminant.
A finiteness result for binary forms of given discriminant

Theorem (Lagrange \((n = 2, 1773)\), Hermite \((n = 3, 1851)\), Birch and Merriman \((n \geq 4, 1972)\))

For every \(n \geq 2\) and \(D \neq 0\), there are only finitely many equivalence classes of binary forms \(F \in \mathbb{Z}[X, Y]\) of degree \(n\) and discriminant \(D\).

The proofs of Lagrange and Hermite are effective (in that they allow to compute a full system of representatives for the equivalence classes), that of Birch and Merriman is ineffective.
An effective finiteness result

Define the height of \(F = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n \in \mathbb{Z}[X, Y] \) by \(H(F) := \max_i |a_i| \).

Theorem 3 (E., Győry, recent improvement of result from 1991)

Let \(F \in \mathbb{Z}[X, Y] \) be a binary form of degree \(n \geq 4 \) and discriminant \(D \neq 0 \). Then \(F \) is equivalent to a binary form \(G \) for which

\[
H(G) \leq \exp \left((16n^3)^{25n^2} |D|^{5n-3} \right).
\]
An effective finiteness result

Define the height of $F = a_0X^n + a_1X^{n-1}Y + \cdots + a_nY^n \in \mathbb{Z}[X, Y]$ by $H(F) := \max_i |a_i|$.

Theorem 3 (E., Győry, recent improvement of result from 1991)

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant $D \neq 0$. Then F is equivalent to a binary form G for which

$$H(G) \leq \exp \left((16n^3)^{25n^2}|D|^{5n-3} \right).$$

More precise versions of the arguments of Lagrange and Hermite give a bound $H(G) \leq \text{constant} \cdot |D|$ in case that F has degree ≤ 3.
An effective finiteness result

Define the height of $F = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n \in \mathbb{Z}[X, Y]$ by $H(F) := \max_i |a_i|.$

Theorem 3 (E., Győry, recent improvement of result from 1991)

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant $D \neq 0.$ Then F is equivalent to a binary form G for which

$$H(G) \leq \exp \left((16n^3)^{25n^2} |D|^{5n-3} \right).$$

Proof (idea).

Let L be the splitting field of $F.$ Assume for convenience that $F = \prod_{i=1}^n (\alpha_i X - \beta_i Y)$ with $\alpha_i, \beta_i \in O_L \ \forall i.$ Put $\Delta_{ij} := \alpha_i \beta_j - \alpha_j \beta_i$ and apply an explicit version of the effective abc-inequality (Theorem 1) to the identities

$$\Delta_{ij} \Delta_{kl} + \Delta_{jk} \Delta_{il} = \Delta_{ik} \Delta_{jl} \ (1 \leq i, j, k, l \leq n).$$
A semi-effective finiteness result

Theorem 4 (E., 1993)

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$, discriminant $D \neq 0$ and splitting field L. Then F is equivalent to a binary form G for which

$$H(G) \leq C^{\text{ineff}}(n, L) \cdot |D|^{21/(n-1)}.$$

Proof (idea).

Apply the semi-effective abc-inequality Theorem 2 to the identities

$$\Delta_{ij}\Delta_{kl} + \Delta_{jk}\Delta_{il} = \Delta_{ik}\Delta_{jl} \quad (1 \leq i, j, k, l \leq n).$$
Conjecture 3

Let \(F \in \mathbb{Z}[X, Y] \) be a binary form of degree \(n \geq 4 \) and discriminant \(D \neq 0 \). Then \(F \) is equivalent to a binary form \(G \) for which

\[
H(G) \leq C_1(n)|D|^{c_2^{\text{eff}}(n)}.
\]

Conjecture 2 \(\implies \) Conjecture 3.

Let \(L \) be the splitting field of \(F \). Following the proof of Theorem 4 and using the very weak abc-conjecture, one obtains that there is \(G \) equivalent to \(F \) such that

\[
H(G) \leq C_3(n)|D_L|^{c_4^{\text{eff}}(n)}|D|^{21/(n-1)}.
\]

Use that \(D_L \) divides \(D^n \).
Conjecture 3

Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant $D \neq 0$. Then F is equivalent to a binary form G for which

$$H(G) \leq C_1(n)|D|^{c_2^{\text{eff}}(n)}.$$

Problem

What is the right value of the exponent on $|D|$?
A function field analogue

Let k be an algebraically closed field of characteristic 0, $K = k(t)$, $R = k[t]$.
Define $|·|$ on $k(t)$ by $|f/g| := e^{\text{deg} f - \text{deg} g}$ for $f, g \in R$.

Define the height of $F = a_0 X^n + a_1 X^{n-1} Y + \cdots + a_n Y^n \in R[X, Y]$ by $H(F) := \max_i |a_i|$.

Call two binary forms $F, G \in R[X, Y]$ equivalent if $G = uF_A$ for some $u \in k^*$, $A \in \text{GL}(2, R)$.

Theorem 5 (W. Zhuang)

Let $F \in R[X, Y]$ be a binary form of degree $n \geq 4$ and discriminant $D \neq 0$. Then F is equivalent to a binary form G for which

$$H(G) \leq e^{n^2 + 4n + 14} |D|^{20 + 7/(n-2)}.$$

Proof.

Follow the proof over \mathbb{Z} and apply Mason’s abc-theorem for function fields.
Thank you for your attention!