Inhoudsopgave

I Verzamelingen en afbeeldingen ... 2
I.1 Notatie .. 3
I.2 Operaties op verzamelingen .. 7
I.3 Functies ... 10
I.4 Aftelbare en overaftelbare verzamelingen 17

II Getallen ... 20
II.1 Natuurlijke en gehele getallen .. 20
II.2 Delingseigenschappen in \(\mathbb{Z} \) 25
II.3 Volledige induktie ... 30
II.4 Equivalentierelaties en quotiënten 34
II.5 Algebraïsche structuur van reële getallen 42
II.6 Een fundamentele eigenschap van \(\mathbb{R} \) 45

III Ongelijkheden ... 49
III.1 Driehoeksongelijkheid en werken met ongelijkheden 49
III.2 Twee belangrijke ongelijkheden 52

IV Reële rijen en reeksen ... 57
IV.1 Rijen, deelrijen, convergentie en limiet 57
IV.2 Eigenschappen van convergente rijen 61
IV.3 Volledigheid van \(\mathbb{R} \) .. 67
IV.4 Reeksen, of beter, oneindige sommen 70

V Continuïteit ... 74
V.1 Continue functies ... 74
V.2 Limieten van functies ... 77
V.3 Uniforme continuïteit ... 80
V.4 Eigenschappen van continue functies 82

VI Afgeleide ... 86
VI.1 Differentiëren ... 86
VI.2 De Middelwaardestelling ... 90
VI.3 De Inverse Functiestelling ... 93

VII Riemann-integraal ... 97
VII.1 Definitie en basis-eigenschappen 97
VII.2 De Hoofdstelling van de Integraalrekening 102

VIII Puntsgewijze en uniforme convergentie 105
VIII.1 Convergentie van rijen van functies 105
IX Appendix .. 109
IX.1 De Axioma’s van Zermelo en Fraenkel .. 109
IX.2 Axioma’s van Peano ... 111
IX.3 De recursiestelling .. 112

Antwoorden en Uitwerkingen .. 114

Index ... 123
Voorwoord

Dit dictaat is sterk gebaseerd op Eva Coplakova’s dictaat dat in de voorgaande paar jaren in Delft werd gebruikt.

Het doel van dit college is niet zozeer het leren van rekenvaardigheden in de analyse, maar meer het begrijpen van de theorie daarachter, in het bijzonder het leren omgaan met definities, stellingen en bewijzen. Hiermee hopen we een stevig fundament te leggen voor de verdere studie in de wiskunde.

De naam “Wiskundige structuren” is een erfenis uit het verleden, en is nu misschien aan herbescanning toe. In dit college worden, na enig voorbereiden over verzamelingen en afbeeldingen, de getalsystemen van natuurlijke, gehele, rationale en reële getallen axiomatisch ingevoerd, en dus exact beschreven. Daarna worden reële rijen, limieten en reeksen bestudeerd, en vervolgens reële functies, limieten, continuïteit, differentieerbaarheid, de Riemann-integraal, en tot slot puntsgewijze en uniforme convergentie van rijen van reële functies.

Het dictaat eindigt met een index. Daarvoor staan er antwoorden en uitwerkingen van sommige opgaven (de uitgewerkte sommen zijn aangegeven met het symbool \mathbb{C}). De uitwerkingen zijn soms beknopt tot een aantal aanwijzingen.

Alle commentaar, maar liefst wel constructief, is welkom (liefst per email aan één van de auteurs).

Actuele informatie over de twee colleges zal te vinden zijn op blackboard, respectievelijk in Delft en in Leiden.

Eva Coplakova
Bas Edixhoven
Het begrip verzameling kennen we uit het dagelijks leven: een bibliotheek bevat een verzameling van boeken, een museum een verzameling van kunstvoorwerpen.

We kennen verzamelingen ook uit de wiskunde: de verzameling van alle getallen, de verzameling van alle punten in het platte vlak, de verzameling van alle oplossingen van een vergelijking; in feite kunnen we zeggen dat de hele wiskunde opgebouwd is uit verzamelingen. Versamelingen en hun eigenschappen zijn onderwerp van een breed wiskundig gebied — de verzamelingenleer.

Ongeveer honderd jaar geleden begonnen wiskundigen met een groot enthousiasme verzamelingen overal te gebruiken: het was heel handig elementen die een bepaalde eigenschap hadden als een geheel, een verzameling, te beschouwen. Maar heel snel ontstonden problemen: sommige groepen elementen leidden tot tegenspraken: men stuitte op paradoxen. Blijkbaar kunnen niet alle eigenschappen gebruikt worden om nieuwe verzamelingen te vormen.

We zullen twee van die tegenspraken bekijken.

I.0.1 Voorbeeld. Paradox van Russell

In een dorp woont kapper Hans die allemaal mannen uit het dorp scheert die zichzelf niet scheren. Wie scheert kapper Hans?

Het is duidelijk dat er twee mogelijkheden zijn: kapper Hans scheert zichzelf of hij scheert zichzelf niet. Als hij zichzelf scheert dan scheert de kapper hem niet, maar hij zelf is de kapper, dus hij kan zichzelf niet scheren. Aan de andere kant, als hij zichzelf niet scheert dan moet hij, de kapper, zichzelf toch scheren. We zien dat geen van de mogelijkheden mogelijk is, we krijgen een paradox.

I.0.2 Voorbeeld. Paradox van Berry

Een van de basiseigenschappen van natuurlijke getallen is dat elke niet-lege verzameling natuurlijke getallen een kleinste element bevat. Beschouw nu alle natuurlijke getallen die beschreven kunnen worden in het Nederlands met behulp van ten hoogste honderd letters. Het Nederlandse alfabet heeft 26 letters, dus met behulp van honderd letters of minder kunnen we ten hoogste $26 + 26^2 + 26^3 + \cdots + 26^{100}$ getallen beschrijven (niet elke lettercombinatie is zinvol, en ook niet elke zinvolle combinatie van letters beschrijft een natuurlijk getal). Er zijn oneindig veel natuurlijke getallen, dus de verzameling getallen die niet met honderd letters of minder te beschrijven zijn is ook oneindig en dus zeker niet leeg. Deze verzameling moet dus een kleinste element bevatten. Zij n het kleinste natuurlijke getal dat niet met honderd letters of minder te beschrijven is. Maar we hebben n net met minder dan honderd letters beschreven!

Om paradoxen te vermijden moeten we voorzichtig zijn met wat we verzameling zullen noemen: niet elke collectie mag een verzameling zijn.
Er zijn vaste axioma’s (grondregels) ingevoerd die het bestaan van sommige verzamelingen garanderen en beschrijven hoe we nieuwe verzamelingen uit oude kunnen maken, welke operaties met verzamelingen zijn toegestaan en welke eigenschappen ze hebben. Uitgaande van de axioma’s en met behulp van logica kunnen we verdere eigenschappen van verzamelingen bewijzen. We zullen nu niet diep in de axioma’s duiken, we zullen ons concentreren op het werken met verzamelingen. We zullen operaties met verzamelingen definiëren en de belangrijkste eigenschappen afleiden. Een volledige lijst van axioma’s voor de verzamelingenleer is te vinden in Appendix IX.1.

I.1 Notatie

Verzamelingen bevatten elementen; als A een verzameling is en x een element van A dan schrijven we

$$x \in A.$$

Om aan te geven dat y geen element van A is schrijven we

$$y \notin A.$$

We gebruiken de notatie $\{1\}$ voor de verzameling die alleen het getal 1 bevat, $\{1, 2\}$ is een verzameling die twee elementen bevat, namelijk de getallen 1 en 2. De verzameling $\{a, b, c, d, e\}$ heeft minstens één en hoogstens vijf elementen: het hangt ervan af hoeveel gelijkheden er gelden tussen de niet gesignificeerde elementen a, b, c, d, e. De verzameling die geen elementen bevat heet de lege verzameling en wordt genoteerd als \emptyset.

Elementen van een verzameling kunnen ook verzamelingen zijn, bijvoorbeeld $A = \{3, \{2\}, \{4, 5\}\}$ heeft elementen 3, $\{2\}$ en $\{4, 5\}$. Er geldt dus $3 \in A$ maar $2 \notin A$; er geldt echter $\{2\} \in A$.

In de wiskunde zijn verzamelingen die getallen als elementen bevatten van groot belang. We gebruiken de letter \mathbb{N} voor de verzameling van alle natuurlijke getallen: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$. $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ voor de verzameling van alle gehele getallen, \mathbb{Q} voor de verzameling van alle breuken $\frac{p}{q}$ met $p, q \in \mathbb{Z}$ en $q \neq 0$, \mathbb{R} voor de verzameling van alle reële getallen en \mathbb{C} voor de verzameling van alle complexe getallen. Uiteindelijk zullen we deze getalsystemen (behalve \mathbb{C}) exact beschrijven door middel van gegevens en eigenschappen, en, uitgaande van \mathbb{N}, constructies schetsen van \mathbb{Z}, \mathbb{Q} en \mathbb{R}. Tot het zover is gaan we op een informele manier met deze getalsystemen om.

Als A een verzameling is dan wordt de verzameling van alle elementen uit A die een eigenschap E hebben als volgt genoteerd: $\{x \in A : E(x)\}$.

I.1.1 Voorbeeld.

(i) De verzameling $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$ is de verzameling van alle positieve reële getallen. Deze verzameling is niet leeg want $5 \in \mathbb{R}_{>0}$. Daarentegen is $\{x \in \mathbb{R} : x > 5$ en $x < 2\}$ leeg; er is geen reëel getal te vinden dat tegelijk groter dan 5 en kleiner dan 2 is.

(ii) De verzameling van alle reële oplossingen van de vergelijking $\sin(\pi x) = 0$ kunnen we kort als volgt schrijven: $A = \{x \in \mathbb{R} : \sin(\pi x) = 0\}$. Analoog, de verzameling $B = \{x \in \mathbb{R} : \cos(\pi x/2) = 0\}$ is de verzameling van alle oplossingen van de vergelijking $\cos(\pi x/2) = 0$.

1Verzamelingen worden vaak, maar niet altijd, met behulp van hoofdletters genoteerd en hun elementen met behulp van kleine letters. We zullen ook verzamelingen tegenkomen waarvan de elementen weer verzamelingen zijn.

2Pas op, er zijn auteurs die \mathbb{N} anders definiëren, namelijk $\{1, 2, 3, \ldots\}$. Een goede alternatieve notatie voor \mathbb{N} is $\mathbb{Z}_{\geq 0}$; deze maakt meteen duidelijk dat $0 \in \mathbb{N}$.

I.1.2 Definitie.
(i) Twee verzamelingen zijn aan elkaar gelijk als ze dezelfde elementen hebben, dat wil zeggen, \(A = B \) als ieder element van \(A \) element van \(B \) is, en ieder element van \(B \) element van \(A \).

(ii) Als elk element van \(A \) element van \(B \) is zeggen we dat \(A \) een deelverzameling van \(B \) is.

Notatie: \(A \subseteq B \).

Hieruit volgt dat \(A = B \) dan en slechts dan als \(A \subseteq B \) en \(B \subseteq A \).

I.1.3 Voorbeeld.
(i) De verzamelingen \(A = \{1, 2, 3\} \) en \(B = \{3, 3, 2, 2, 1\} \) hebben dezelfde elementen en zijn dus aan elkaar gelijk. We kunnen schrijven: \(A = B \).

(ii) Beschouw de verzamelingen \(A \) en \(B \) uit Voorbeeld I.1.1 (ii). Als \(x \) een geheel getal is dan is \(\sin(\pi x) = 0 \); dit betekent dat \(\mathbb{Z} \subseteq A \). Aan de andere kant, als \(\sin(\pi x) = 0 \) dan moet \(x \) een geheel getal zijn; dit betekent dat \(A \subseteq \mathbb{Z} \). We hebben bewezen \(A = \mathbb{Z} \): de verzameling van alle oplossingen van de vergelijking \(\sin(\pi x) = 0 \) is de verzameling van alle gehele getallen.

(iii) Analoog kunnen we bewijzen dat alle oplossingen van \(\cos(\pi x/2) = 0 \) de verzameling van alle oneven gehele getallen is: \(B = \{2k + 1 : k \in \mathbb{Z}\} \).

(iv) De verzamelingen \(A = \{0, \{1, 2, 3\}, 4\} \) en \(B = \{0, 1, \{2, 3\}, 4\} \) zijn niet aan elkaar gelijk. Immers \(1 \notin A \) en \(1 \in B \).

I.1.4 Voorbeeld. Belangrijke deelverzamelingen van de reële rechte (de verzameling van alle reële getallen) zijn intervallen. We onderscheiden begrensde en onbegrensde intervallen.

(i) Begrensde intervallen: Voor \(a, b \in \mathbb{R} \) is \((a, b) = \{x \in \mathbb{R} : a < x < b\} \) een open interval, \([a, b] = \{x \in \mathbb{R} : a \leq x \leq b\} \) een gesloten interval, en \((a, b) = \{x \in \mathbb{R} : a < x < b\} \) en \((a, b] = \{x \in \mathbb{R} : a < x \leq b\} \) zijn halfopen (of halffgesloten) intervallen. Als nodig, dan kunnen we \((a, b) \) links-open en rechts-gesloten noemen, enzovoorts.

(ii) Onbegrensde intervallen: Zij \(a \in \mathbb{R} \), dan zijn \((a, \infty) = \{x \in \mathbb{R} : x > a\} \) en \((-\infty, a) = \{x \in \mathbb{R} : x < a\} \) open intervallen, en \([a, \infty) = \{x \in \mathbb{R} : x \geq a\} \) en \((-\infty, a] = \{x \in \mathbb{R} : x \leq a\} \) gesloten intervallen. Ook de hele reële rechte kan beschouwd worden als een onbegrens interval: \(\mathbb{R} = (-\infty, \infty) \), dat zowel open als gesloten is.

I.1.5 Voorbeeld.
(i) Er geldt \((0, 1) \subseteq (0, 1) \) want elk element van \((0, 1) \) is ook een element van \((0, 1) \), maar \((0, 1) \not\subseteq (0, 1) \) omdat \(1 \) een element van \((0, 1) \) is maar niet van \((0, 1) \).

(ii) \(\emptyset \) is een deelverzameling van elke verzameling, want voor iedere \(x \in \emptyset \) geldt \(x \in A \) (immers, er is geen \(x \in \emptyset \), dus er is niets te controleren).

\(^3\)Voor strikte inclusie wordt vaak “\(\subsetneq \)” gebruikt, en “\(\subset \)” is ook een gebruikelijke notatie voor “deelverzameling”.

\(^4\)Strikt genomen is deze notatie niet toegelaten in het door ons gebruikte systeem van axiomatische verzamelingstheorie, maar de betekenis is duidelijk. Een correcte notatie zou zijn: \(\{x \in \mathbb{Z} : \text{er is een } k \in \mathbb{Z} \text{ zodat } x = 2k + 1\} \).

\(^5\)Het hier gebruikte symbool \(\infty \) is geen element van \(\mathbb{R} \), het staat slechts voor het begrip ‘oneindig’.
Het open interval \((0, -1)\) is leeg, en gelijk aan het gesloten interval \([0, -1]\).

Het volgende begrip wordt vaak gebruikt.

I.1.6 Definitie. Het Cartesisch product van twee verzamelingen \(A\) en \(B\) is de verzameling geordende paren

\[
A \times B = \{(a, b) : a \in A \text{ en } b \in B\}. \tag{6}
\]

De volgorde van elementen van een geordend paar is belangrijk: als \(a \neq b\) dan \((a, b) \neq (b, a)\). Twee geordende paren \((a, b)\) en \((a', b')\) zijn aan elkaar gelijk dan en slechts dan als \(a = a'\) en \(b = b'\).

I.1.7 Voorbeeld.

(i) Zij \(A = \{0, 1, 2\}\) en \(B = \{0, 3\}\). Het Cartesisch product van \(A\) en \(B\) is de volgende verzameling

\[
A \times B = \{(0, 0), (0, 3), (1, 0), (1, 3), (2, 0), (2, 3)\}\.
\]

(ii) Zij \(\mathbb{R}\) de reële rechte. Dan is \(\mathbb{R} \times \mathbb{R}\) de verzameling van alle punten in het platte vlak. \(^7\)

Opgaven

1. Zij \(V = \{-3, -2, -1, 0, 1, 2, 3\}\). Vind een eigenschap \(P\) zó dat elke van de volgende verzamelingen is te schrijven in de vorm \(\{x \in V : P(x)\}\) en bewijs dat deze twee verzamelingen aan elkaar gelijk zijn.
 (a) \(A = \{1, 2, 3\}\);
 (b) \(B = \{0, 1, 2, 3\}\);
 (c) \(C = \{-2, -1\}\);
 (d) \(D = \{-2, 0, 2\}\);
 (e) \(E = \emptyset\).

2. Vind alle elementen van de volgende verzamelingen:
 (a) \(A = \{0, 2, 4, \ldots, 22\}\);
 (b) \(B = \{1, \{2\}, \{\{2\}\}\}\);
 (c) \(C = \{\{1\}\}\);
 (d) \(D = \emptyset\);
 (e) \(E = \{1, \{1, 2, 3, 4, 5\}\}\).

3. (a) Vind alle deelverzamelingen van \(\{0, 1\}\).
 (b) Vind alle deelverzamelingen van \(\{0, 1, 2\}\).
 (c) Vind alle deelverzamelingen van \(\{0, 1, 2, 3\}\).
 (d) Zij \(A\) een eindige verzameling, d.w.z., een verzameling die maar eindig veel elementen bevat. \(^8\) Vind een verband tussen het aantal elementen van \(A\) en het aantal deelverzamelingen van \(A\), en bewijs je vermoeden.

\(^5\)Helaas zijn onze notaties voor een geordend paar \((a, b)\) van reële getallen en het open interval \((a, b)\) gelijk. De lezer zal iedere keer de juiste keuze moeten maken op grond van de context.

\(^6\)In plaats van \(\mathbb{R} \times \mathbb{R}\) schrijven we vaak \(\mathbb{R}^2\).

\(^7\)Voor de duidelijkheid: het reële interval \((0, 1)\) heet dan misschien wel eens een eindig interval, maar het is géén eindige verzameling.

8\(^{11}\) NOTATIE

4. Laat A de verzameling van alle even natuurlijke getallen, B de verzameling van alle natuurlijke getallen die deelbaar door 3 zijn en C de verzameling van alle natuurlijke getallen die deelbaar door 6 zijn. Bewijs of weergel:
(a) $A \subseteq B$;
(b) $A \subseteq C$;
(c) $B \subseteq C$;
(d) $B \subseteq A$;
(e) $C \subseteq A$;
(f) $C \subseteq B$.

5. Bewijs: voor elke verzameling A geldt dat $\emptyset \subseteq A$ en $A \subseteq A$.

(a) $A = \{n \in \mathbb{Z} : |n| < 2\}$;
(b) $B = \{n \in \mathbb{Z} : n^3 = n\}$;
(c) $C = \{n \in \mathbb{Z} : n^2 \leq n\}$;
(d) $E = \{-1, 0, 1\}$.

7. Geef de precieze voorwaarden op de verzamelingen A en B opdat $A \times B = B \times A$.

8. Voor elke verzameling A zijn $\mathcal{P}(A)$ de verzameling van alle deelverzamelingen van A (deze heet de machtverzameling van A). Geef de lijst van elementen van $\mathcal{P}(A) \times \mathcal{P}(B)$, waarbij $A = \{0, 1\}$ en $B = \{\emptyset\}$.
De basisoperaties op verzamelingen zijn als volgt gedefinieerd.

I.2.1 Definitie. Zij Ω een verzameling. Voor deelverzamelingen A en B van Ω definiëren we

(i) het *complement* van A in Ω door

$$\Omega \setminus A = \{x \in \Omega : x \notin A\}$$

(we schrijven vaak A^c als duidelijk is wat de verzameling Ω is);

(ii) de *vereniging* van A en B door

$$A \cup B = \{x \in \Omega : x \in A \, \text{of} \, x \in B\};$$

(iii) de *doorsnede* van A en B door

$$A \cap B = \{x \in \Omega : x \in A \, \text{en} \, x \in B\}.$$

(iv) het *verschil* van A en B door

$$A \setminus B = \{x \in \Omega : x \in A \, \text{en} \, x \notin B\}.$$

I.2.2 Opmerking. In de bovenstaande definitie hangen $A \cup B$, $A \cap B$ en $A \setminus B$ niet af van de verzameling Ω waarin dit alles gebeurt. We zullen dan ook in deze gevallen deze Ω niet meer altijd noemen.

I.2.3 Voorbeeld. Beschouw weer de verzamelingen A en B uit Voorbeeld I.1.1(ii). Dan is $A \cap B$ de verzameling van alle getallen die oplossingen zijn van beide vergelijkingen $\sin(\pi x) = 0$ en $\cos(\pi x/2) = 0$, en $A \cup B$ is de verzameling van alle getallen die oplossingen zijn van tenminste één van die twee vergelijkingen. Omdat $A = \mathbb{Z}$ en $B = \{2k + 1 : k \in \mathbb{Z}\}$ is het niet moeilijk in te zien dat $A \cap B = \emptyset$ en $A \cup B = A$.

Om doorsnede en vereniging van A en B te illustreren kunnen we Venn-diagrammen tekenen. In Figuur 1.1 zijn de doorsnede $A \cap B$ en de vereniging $A \cup B$ getekend. De Venn-diagrammen zijn ook handig om allerlei eigenschappen van de basisoperaties te vinden; zie bijvoorbeeld Opgaven I.2.1 en I.2.2.

I.2.4 Definitie. Twee verzamelingen A en B heten *disjunct* als $A \cap B = \emptyset$.

I.2.5 Voorbeeld.

(i) De verzamelingen $A = \{x \in \mathbb{R} : x > 9\}$ en $B = \{0, 1/2\}$ zijn disjunct: $A \cap B = \emptyset$ want alle elementen van A zijn reële getallen groter dan 9 en geen element van B is groter dan 9.
(ii) De verzamelingen $C = (-3, \pi)$ en $D = (1, 33]$ zijn niet disjunct; immers $2 \in C \cap D$ want $-3 < 2 < \pi$ en $1 < 2 \leq 33$. In feite bevat de doorsnede oneindig veel elementen: $C \cap D = (1, \pi)$.

In Figuur 1.2 zijn Venn-diagrammen voor drie respectievelijk vier deelverzamelingen van Ω getekend. Venn-diagrammen voor meer dan vier verzamelingen zijn lastig: het is niet makkelijk om in een overzichtelijke manier alle mogelijke doorsneden in één plaatje te krijgen.

![Figuur 1.2: Venn-diagrammen voor drie en vier verzamelingen](image)

In de wiskunde onderzoeken we vaak oneindige objecten: er zijn oneindig veel natuurlijke getallen, oneindig veel breuken, oneindig veel punten in het platte vlak, oneindig veel lijnen, oneindig veel functies. Daarvoor is de taal van de verzamelingenleer ook handig.

We kunnen ook de doorsnede en de vereniging van willekeurig veel verzamelingen definiëren:

I.2.6 Definitie. Laat Ω een verzameling zijn. Laat L een verzameling zijn, en voor elke $\lambda \in L$, A_λ een deelverzameling van Ω. Dan:

$$\bigcap_{\lambda \in L} A_\lambda = \{x \in \Omega : \text{voor elke } \lambda \in L \text{ geldt } x \in A_\lambda\}$$

en

$$\bigcup_{\lambda \in L} A_\lambda = \{x \in \Omega : \text{er is een } \lambda \in L \text{ met } x \in A_\lambda\}.$$

I.2.7 Voorbeeld. Beschouw de verzameling \mathbb{N} van alle natuurlijke getallen. Voor elke $n \in \mathbb{N}$ zijn $A_n = (0, 1/(n+1)]$. We bewijzen dat $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$. Immers, neem aan dat $\bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$. Dan is er een $x \in \mathbb{R}$ met $x \in \bigcap_{n \in \mathbb{N}} A_n$. Volgens Definitie 1.2.6 ligt x in elk interval $(0, 1/(n+1)]$, dat wil zeggen, voor elke $n \in \mathbb{N}$ geldt $0 < x \leq 1/(n+1)$. We krijgen een tegenspraak: voor alle $n \in \mathbb{N}$ met $n + 1 > 1/x$ geldt dat $1/(n+1) < x$.

Beschouw nu voor elke $n \in \mathbb{N}$ de verzameling $B_n = (0, n]$. We bewijzen nu dat $\bigcup_{n \in \mathbb{N}} B_n = (0, \infty)$. Volgens Definitie 1.1.2 moeten we laten zien dat $\bigcup_{n \in \mathbb{N}} B_n \subseteq (0, \infty)$ en $(0, \infty) \subseteq \bigcup_{n \in \mathbb{N}} B_n$. We bewijzen nu de eerste inclusie. Laat $x \in \bigcup_{n \in \mathbb{N}} B_n$. Volgens Definitie 1.2.6 is er een $n \in \mathbb{N}$ met $x \in (0, n]$. Hieruit volgt dat $x \in (0, \infty)$. Nu de tweede inclusie. Laat $x \in (0, \infty)$. Neem dan een $n \in \mathbb{N}$ met $x < n$, dan $x \in (0, n]$ en bijgevolg $x \in \bigcup_{n \in \mathbb{N}} B_n$.

9 Dit soort bewijs heet *bewijs uit het ongerijmd*. Het werkt als volgt: Om een bewering te bewijzen (in ons geval: $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$) kunnen we het tegengestelde veronderstellen ($\bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$) en laten zien dat dit tot een onjuiste bewering, een tegenspraak, leidt (er is een $x \in \mathbb{R}$ en er is een $n \in \mathbb{N}$ zó dat $x \leq 1/(n+1)$ én $x > 1/(n+1)$).
1. **(Wetten van de Morgan)** Zij Ω een verzameling. Bewijs met behulp van de Venn-diagrammen dat voor alle deelverzamelingen A en B van Ω geldt

(a) $\Omega \setminus (A \cap B) = (\Omega \setminus A) \cup (\Omega \setminus B)$;
(b) $\Omega \setminus (A \cup B) = (\Omega \setminus A) \cap (\Omega \setminus B)$.

2. Zij Ω een verzameling. Formuleer en bewijs de Wetten van de Morgan

(a) voor drie deelverzamelingen van Ω;
(b) voor vier deelverzamelingen van Ω.

3. Bewijs dat voor alle verzamelingen A, B en C geldt

(a) $B \setminus (B \setminus A) = A \cap B$;
(b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
(c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

4. (a) Zij $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Vind $A \cap A$, $A \cup A$ en $A \setminus A$.
(b) Zij A een willekeurige verzameling. Vind en bewijs een algemene regel voor $A \cap A$, $A \cup A$ en $A \setminus A$.

5. Beschouw de verzamelingen $A = \{x \in \mathbb{N} : x \geq 15\}$ en $B = \{x \in \mathbb{N} : x \leq 20\}$. Beschrijf nu $\mathbb{N} \setminus A$, $\mathbb{N} \setminus B$, $A \cap B$ en $A \cup B$ met soortgelijke formules.

6. Zij $K = \{1, 2, 4\}$. Vind $\bigcup_{k \in K} A_k$ en $\bigcap_{k \in K} A_k$ illustreer ze ook met behulp van Venn-diagrammen als gegeven is:

(a) $A_k = \{k^2\}$;
(b) $A_k = [k - 1, k + 1]$;
(c) $A_k = (k, \infty)$.

7. Beschouw voor elke $n \in \mathbb{N}$ de verzameling $A_n = \{x \in \mathbb{R} : 1/2^n \leq x < 2 + 1/2^n\}$.

(a) Vind $\bigcap_{n \in \mathbb{N}} A_n$.
(b) Vind $\bigcup_{n \in \mathbb{N}} A_n$.

8. Laat A, B en C deelverzamelingen zijn van Ω.

(a) Wat is het verband tussen $A \cup (B \setminus C)$ en $(A \cup B) \setminus (A \cup C)$?
(b) Wanneer geldt $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C)$?

9. Vereenvoudig de volgende uitdrukking met behulp van Venn-diagrammen:

$$(A \cap B \cap C^c) \cup (A \cap B \cap D^c) \cup (A \cap B \cap C \cap D).$$
I.3 Functies

Iedereen is ongetwijfeld in veel situaties het begrip *functie* tegengekomen; vaak als een voorschrift dat aan elk getal een ander getal toevoegt, bijvoorbeeld de functie \(f(x) = x^2 \) die aan elk getal zijn kwadraat toevoegt. Er zijn echter veel meer mogelijkheden, we hoeven ons niet tot getallen te beperken: het voorschrift dat aan elke auto zijn kenteken toevoegt, het voorschrift dat aan elke persoon zijn geboortedatum toevoegt, of de kleur van zijn ogen zijn ook functies. Een functie kan gegeven worden door een formule (bijvoorbeeld \(f(x) = x^2 \)), maar ook als een grafiek (bijvoorbeeld het verloop van de koers van aandelen in de tijd), of een tabel (bijvoorbeeld tentamencijfers van studenten die aan een tentamen hebben plaatsgenomen).

Om algemene eigenschappen van functies af te leiden en ze te kunnen gebruiken moeten we eerst afspreken welke voorschriften functies definiëren, en ook wat een functie precies is, zodat we bijvoorbeeld over gelijkheid kunnen praten. Informeel gesproken is een functie van \(A \) naar \(B \) een voorschrift dat aan elk element van \(A \) precies één element van \(B \) toevoegt. Een formele definitie gaat met behulp van Cartesisch product van \(A \) en \(B \).

I.3.1 Definitie

Een functie\(^{10}\) van \(A \) naar \(B \) is een tripel \((A, B, f) \) met \(f \) een deelverzameling van \(A \times B \) met de volgende eigenschap:

- voor iedere \(a \in A \) bestaat er precies een \(b \in B \) zodanig dat \((a, b) \in f \); deze \(b \) noteren we als \(f(a) \).

Notatie: \(f: A \rightarrow B \), en \(a \mapsto f(a) \).

De verzameling \(A \) heet het domein en \(B \) het codomein\(^{11}\) van \(f \). De verzameling van alle geordende paren \((a, b) \in f \) heet de grafiek van \(f \). In plaats van \('(a, b) \in f' \) schrijven we vaak ‘\(f(a) = b \)’. Als \((a, b) \in f \) dan noemen we \(b \) het beeld van \(a \) onder \(f \) en \(a \) een origineel van \(b \) onder \(f \). Merk op dat volgens deze definitie een functie gegeven wordt door haar domein, haar codomein en haar grafiek. Voor twee afbeeldingen \(f: A \rightarrow B \) en \(g: C \rightarrow D \) geldt dus dat \(f = g \) precies dan als geldt: \(A = C \), en \(B = D \), en voor alle \(a \in A \) geldt \(f(a) = g(a) \).

I.3.2 Voorbeeld

De afbeeldingen \(f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^2 \) en \(g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto |x|^2 \) zijn dus gelijk, ook al zijn ze gegeven door verschillende formules.

I.3.3 Voorbeeld

Laat \(A \) de verzameling zijn van alle studenten van TU Delft. Dan hebben we functies \(f: A \rightarrow \mathbb{N} \) en \(g: A \rightarrow \mathbb{R} \) die elk element van \(A \) naar hun studienummer sturen. Deze functies zijn niet gelijk, want de codomeinen zijn verschillend.

I.3.4 Opmerking

Volgens de definitie van een functie heeft elk element van het domein precies één beeld. Een element van het codomein kan echter géén origineel hebben, of één of meerdere originelen hebben.

Beschouw bijvoorbeeld \(f: \mathbb{R} \rightarrow [-1, 1] \) gegeven door \(f(x) = \sin(\pi x) \). Voor elke \(x \in \mathbb{R} \) is de waarde van \(x \) onder \(f \) uniek bepaald, maar het getal \(0 \in [-1, 1] \) heeft oneindig veel originelen: voor elke \(x \in \mathbb{Z} \) geldt \(f(x) = 0 \).

I.3.5 Definitie

Laat \(A \) en \(B \) twee verzamelingen zijn en zij \(f: A \rightarrow B \).

\(^{10}\)Functies worden vaak ook *afbeeldingen* genoemd.
\(^{11}\)Voor domein en codomein worden ook wel de namen bron(verbazing) en doel(verbazing) gebruikt.
(i) \(f \) heet \textit{injectief} als voor elke \(b \in B \) er ten hoogste één element \(a \in A \) bestaat met \(f(a) = b \). (Met andere woorden, verschillende elementen van \(A \) moeten verschillende beelden hebben.)

(ii) \(f \) heet \textit{surjectief} als voor elke \(b \in B \) ten minste één \(a \in A \) bestaat met \(f(a) = b \). (Met andere woorden, als de verzameling van beelden de hele verzameling \(B \) is.)

(iii) \(f \) heet \textit{bijectief} als \(f \) injectief en surjectief is, m.a.w., als er voor iedere \(b \in B \) er precies één \(a \in A \) is met \(f(a) = b \).

(iv) Het \textit{beeld} van \(f \) is de verzameling van \(b \in B \) waarvoor er een \(a \in A \) is met \(f(a) = b \). Het is een deelverzameling van \(B \). Notaties: \(f[A] \), \(\{ f(a) : a \in A \} \), \(\{ b \in B : \exists a \in A \text{ met } b = f(a) \} \).

\subsection*{I.3.6 Opmerking}
Voor \(A \) en \(B \) verzamelingen, en \(f : A \to B \) geldt dus dat \(f \) surjectief is precies dan als \(f[A] = B \).

Als \(A \) en \(B \) eindig zijn dan is het makkelijk functies van \(A \) naar \(B \) grafisch weer te geven: zie de volgende voorbeelden.

\textbf{I.3.7 Voorbeeld.} Zij \(A = \{1, 2\} \) en \(B = \{a, b, c\} \) met \(a, b \) en \(c \) verschillend. De functie \(f : A \to B \), gedefinieerd door \(f(1) = c \) en \(f(2) = b \), is injectief want verschillende elementen van \(A \) hebben verschillende beelden, maar niet surjectief omdat \(a \in B \) geen beeld is van een element van \(A \) (zie Figuur 1.3).

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{injectief_niet_surjectief.png}
\caption{Een injectieve, niet surjectieve functie \(f : A \to B \)}
\end{figure}

\subsection*{I.3.8 Voorbeeld.} Zij \(A = \{1, 2, 3\} \) en \(B = \{a, b\} \) met \(a \) en \(b \) verschillend. De functie \(f : A \to B \), gedefinieerd door \(f(1) = b \), \(f(2) = a \) en \(f(3) = b \), is surjectief want elk element van \(B \) is een beeld van een element van \(A \), maar niet injectief omdat de elementen 1 en 3 verschillend zijn en toch hetzelfde beeld hebben (zie Figuur 1.4).

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{surjectief_nietInjectief.png}
\caption{Een surjectieve, niet injectieve functie \(f : A \to B \)}
\end{figure}

\subsection*{I.3.9 Voorbeeld.} Zij \(A = \{1, 2, 3\} \) en \(B = \{a, b, c\} \) met \(a, b \) en \(c \) verschillend. De functie \(f : A \to B \), gedefinieerd door \(f(1) = b \), \(f(2) = c \) en \(f(3) = a \), is surjectief en injectief (zie Figuur 1.5).
Een functie $a : \mathbb{N} \to B$ noemen we soms ook een rij in B. We schrijven dan vaak a_n in plaats van $a(n)$; een gebruikelijke notatie is $(a_n)_{n \in \mathbb{N}}$ (merk wel op dat we dan eigenlijk het codomein niet meer noemen, er is dus al enige mate van slordigheid).

I.3.10 Voorbeeld. De functie $f : \mathbb{N} \to \mathbb{R}$ gegeven door $f(n) = 1/(n + 1)$ is dan de reële rij $(1/(n + 1))_{n \in \mathbb{N}}$. Deze functie is injectief (als $n \neq m$ dan $1/(n + 1) \neq 1/(m + 1)$), maar niet surjectief omdat (bijvoorbeeld) het getal 0 uit het codomein van f geen origineel heeft (er is geen natuurlijk getal n met $1/(n + 1) = 0$).

![Figuur 1.5: Een bijectieve functie $f : A \to B$](image)

![Figuur 1.6: De rij $(1/(n + 1))_{n \in \mathbb{N}}$ als een functie $f : \mathbb{N} \to \mathbb{R}$](image)

Laat $I \subseteq \mathbb{R}$ een interval zijn, en $f : I \to \mathbb{R}$. Om f grafisch weer te geven tekenen we meestal de grafiek als deelverzameling van $I \times \mathbb{R}$: zoals uit de definitie volgt is de grafiek de verzameling van alle punten van de vorm $(x, f(x))$ met $x \in I$.

I.3.11 Voorbeeld. De functie $f : \mathbb{R} \to [0, \infty)$ gegeven door $f(x) = x^2$ is niet injectief: de punten -1 en 1 horen tot het domein van f, er geldt $-1 \neq 1$ maar $f(-1) = (-1)^2 = 1^2 = f(1)$ (zie Figuur 1.7). Zij is wel surjectief: voor elke $y \in [0, \infty)$ is er een $x \in \mathbb{R}$ met $f(x) = y$; neem bijvoorbeeld $x = \sqrt{y}$.

![Figuur 1.7: Grafiek van de functie $f(x) = x^2$](image)

Door het domein of het codomein van een functie te veranderen krijgen we een nieuwe functie die geheel andere eigenschappen kan hebben. Bijvoorbeeld,
I.3 FUNCTIES

I.3.17 Opmerking. Als $f: A \rightarrow B$ een bijection is, betekent dit dat f surjectief is voor elke $b \in B$ een $a \in A$ met $f(a) = b$, en omdat f ook injectief is is deze a uniek. We kunnen dus definieren:

Inverse functies

$g: \mathbb{R} \rightarrow \mathbb{R}$ gegeven door $g(x) = x^2$ is niet surjectief, en $h: [0, \infty) \rightarrow [0, \infty)$ gegeven door $h(x) = x^2$ is injectief en surjectief.

I.3.12 Voorbeeld. Er bestaat geen functie van $\{0, 1, 2, 3\}$ naar \mathbb{N} die surjectief is. Immers, zij $f: \{0, 1, 2, 3\} \rightarrow \mathbb{N}$ een afbeelding. De verzameling \mathbb{N} is oneindig en dus is $X = \mathbb{N} \setminus \{f(0), f(1), f(2), f(3)\}$ niet leeg (X is zelfs oneindig). Kies een $b \in X$, dan heeft b geen origineel onder f.

Samenstelling van functies

Een van de mooie eigenschappen van bijectieve functies is dat ze een inverse hebben. We zullen later zien dat als f bepaalde ‘mooie’ eigenschappen heeft (bijvoorbeeld continu is) deze eigenschappen door de inverse van f geërfd worden. Het volgende begrip is essentieel voor het definiëren van inverse functies, maar zeker nog belangrijker op zichzelf.

I.3.13 Definitie. Laat $f: A \rightarrow B$ en $g: B \rightarrow C$ twee functies zijn. De samenstelling van f en g is de functie $g \circ f: A \rightarrow C$ gedefinieerd door

$$(g \circ f)(a) = g(f(a))$$

voor alle $a \in A$.

I.3.14 Voorbeeld. De functie $f: \mathbb{R} \rightarrow [-1, 1]$ is gegeven door $f(x) = \sin x$, en de functie $g: [-1, 1] \rightarrow \mathbb{R}$ door $g(x) = x^2$. Dan is $f \circ g: [-1, 1] \rightarrow [-1, 1]$ de functie gedefinieerd door $(f \circ g)(x) =\sin(x^2)$, en $g \circ f: \mathbb{R} \rightarrow \mathbb{R}$ is gedefinieerd door $(g \circ f)(x) = (\sin x)^2$.

Als $f: A \rightarrow B$ en $g: B \rightarrow A$ functies zijn die samengesteld kunnen worden tot $g \circ f$ en $f \circ g$ geldt niet altijd dat $f \circ g = g \circ f$. Als $A \neq B$ dan kan $f \circ g$ al zeker niet gelijk zijn aan $g \circ f$, want de domeinen verschillen.

I.3.15 Stelling. De samenstelling van functies is associatief, dat wil zeggen,

$$(h \circ g) \circ f = (h \circ g) \circ f$$

voor alle $f: A \rightarrow B$, $g: B \rightarrow C$ en $h: C \rightarrow D$.

Bewijs. Neem aan $f: A \rightarrow B$, $g: B \rightarrow C$ en $h: C \rightarrow D$ drie willekeurige functies zijn. De identiteit volgt uit het feit dat voor elke $a \in A$ geldt

$$(h \circ (g \circ f))(a) = h((g \circ f)(a)) = h(g(f(a)))$$

en

$$(h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a))).$$

I.3.16 Definitie. Voor A een verzameling definieeren we de functie $\text{id}_A: A \rightarrow A$, gegeven door $a \mapsto a$. Deze functie heet de identieke functie van A.

I.3.17 Opmerking. Als A en B verzamelingen zijn, en $f: A \rightarrow B$, dan geldt $f \circ \text{id}_A = f = \text{id}_B \circ f$. Zij $f: A \rightarrow B$ een bijection. Omdat f surjectief is bestaat voor elke $b \in B$ een $a \in A$ met $f(a) = b$, en omdat f ook injectief is is deze a uniek. We kunnen dus definieeren:
I.3.18 Definitie. Zij $f : A \to B$ een bijectie. De inverse van f is een functie $g : B \to A$ waarvoor geldt

$$g(b) = a \iff f(a) = b.$$

voor elke $a \in A$ en elke $b \in B$. Formeel $g = \{(b, a) \in B \times A : (a, b) \in f\}$.

Een functie kan niet meer dan één inverse hebben, zie Opgave I.3.14. Merk ook op dat voor elke $a \in A$ geldt $f^{-1}(f(a)) = a$ en voor elke $b \in B$ geldt $f(f^{-1}(b)) = b$.

Notatie: $g = f^{-1}$.

I.3.19 Voorbeeld. De functie $f : \mathbb{R} \to \mathbb{R}$ gedefinieerd door $f(x) = 2 - 3x$ is bijectief (ga zelf na dat f injectief en surjectief is). Om haar inverse te vinden beschouw een willekeurige $y \in \mathbb{R}$. Er geldt, voor alle $x \in \mathbb{R}$,

$$2 - 3x = y \iff x = \frac{2 - y}{3}.$$

De inverse $f^{-1} : \mathbb{R} \to \mathbb{R}$ is dus gegeven door het voorschrift12 $f^{-1}(x) = (2 - x)/3$.

I.3.20 Definitie. Laat $f : A \to B$ een afbeelding zijn, en C een deelverzameling van B. Dan noemen we de verzameling $\{a \in A : f(a) \in C\}$ het inverse beeld van C onder f. Deze deelverzameling van A noteren we ook als $f^{-1}(C)$.

Merk op dat $f^{-1}(C)$ bestaat ook als f geen inverse heeft.

I.3.21 Lemma. Zij $f : A \to B$ een bijectie. De inverse f^{-1} is ook een bijectie en er geldt: $(f^{-1})^{-1} = f$.

Bewijs. Opgave I.3.16.

Opgaven

1. Laat $f : \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ gegeven zijn door $f(x) = (1 - x)/(1 + x)$. Vind $f(0)$ en voor alle $x \in \mathbb{R} \setminus \{-1\}$ vind $f(1/x)$ en $1/f(x)$.

2. (a) Laat $f : \mathbb{R} \to \mathbb{R}$ een functie zijn en neem aan dat voor alle $x \in \mathbb{R}$ geldt $f(x + 1) = x^2 - 5x + 1$. Vind $f(x)$.
 (b) Laat $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ een functie zijn en neem aan dat voor alle $x \in \mathbb{R} \setminus \{0\}$ geldt $f(1/x) = x + \sqrt{1 + x^2}$. Vind $f(x)$.

3. Zij $f : \mathbb{R} \to \mathbb{R}$ gegeven door $f(x) = \sin(x^2)$; vind alle originelen van 0, -1 en π.

 (a) $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ en $g : \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto x^2$.
 (b) $f : \mathbb{R} \to \mathbb{R}, x \mapsto (x + 1)^2$ en $g : \mathbb{R} \to \mathbb{R}, x \mapsto 2x(\frac{x}{2} + 1) + 1$.
 (c) $f : [0, 2\pi] \to \mathbb{R}, x \mapsto \sin(x)$ en $g : \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x)$.
 (d) $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto x + 1$ en $g : \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{x^2}{x-1}$.

12Het maakt natuurlijk niets uit of we de variabele x of y noemen.
1.3 Functies

5. (a) Laat $A = \{1, 2\}$ en $B = \{1, 2, 3\}$. Hoeveel afbeeldingen $A \to B$ zijn er?
(b) Laat B een verzameling zijn. Hoeveel functies $f : \emptyset \to B$ zijn er?
(c) Laat A een verzameling zijn. Hoeveel functies $f : A \to \emptyset$ zijn er?

6. Geef voorbeelden van eindige verzamelingen A en B en een functie $f : A \to B$ die
(a) bijectief is,
(b) surjectief maar niet injectief is,
(c) injectief maar niet surjectief is,
(d) niet surjectief en niet injectief is.
Bewijs in elk van de onderdelen dat je voorbeeld de gewenste eigenschappen heeft.

7. Zij A een eindige verzameling. Voor het aantal elementen van A gebruiken we de notatie $\#A$.
Neem aan dat A en B eindige verzamelingen zijn en zij $f : A \to B$.
(a) Laat zien dat als f injectief is dan geldt $\#A \leq \#B$.
(b) Laat zien dat als f surjectief is dan geldt $\#A \geq \#B$.

8. Zij A een eindige verzameling. Voor het aantal elementen van A gebruiken we de notatie $\#A$.
Geef voorbeelden van eindige verzamelingen A en B en een functie $f : A \to B$.
(a) Laat zien dat als f injectief is dan geldt $\#A \leq \#B$.
(b) Laat zien dat als f surjectief is dan geldt $\#A \geq \#B$.

9. Laat $f : A \to B$ en $g : B \to C$ twee functies zijn. Bewijs of weerleg:
(a) Als $g \circ f$ injectief is dan is f injectief.
(b) Als $g \circ f$ injectief is dan is g injectief.
(c) Als $g \circ f$ surjectief is dan is f surjectief.
(d) Als $g \circ f$ surjectief is dan is g surjectief.

10. Bewijs of weerleg: samenstelling van functies is commutatief, dat wil zeggen, voor alle verzamelingen A en B, en voor alle $f : A \to B$ en $g : B \to A$ geldt $g \circ f = f \circ g$.
Geldt deze bewering als $A = B$?

11. Bewijs dat elke van de volgende functies een inverse heeft en vind zijn voorschrift.
(a) $f : [0, 1, 2] \to \{3, 5, 15\}$ gegeven door $f(0) = 3, f(1) = 15$ en $f(2) = 5$.
(b) $f : \mathbb{R} \to \mathbb{R}$ gegeven door $f(x) = 4x + 5$.
(c) $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ gegeven door $f(x) = 1/x$.

12. Beschouw $f : [1, \infty) \to \mathbb{R}$ gegeven door $f(x) = (1 - 5x)/x$.
(a) Bewijs dat f injectief is.
(b) Vind het beeld B van f. Laat zien dat de afbeelding $g : [1, \infty) \to B$ gedefiniëerd door $x \mapsto f(x)$ bijjectief is en bereken de inverse van g.

13. Voor elke van de onderstaande injectieve functies $f : A \to \mathbb{R}$, bepaal het beeld B, en bepaal de afbeelding $g : B \to A$ met $g \circ f = \text{id}_A$.
(a) $A = \mathbb{R}$ en $f(x) = 7x - 3$;
(b) $A = (-\infty, 0]$ en $f(x) = x^2$;
(c) $A = \mathbb{R} \setminus \{-2\}$ en $f(x) = (1 - x)/(2 + x)$;
(d) $A = [-1, 0]$, $f(x) = \sqrt{1 - x^2}$.

1.3 Functies

15

15. Laat A en B verzamelingen zijn, en $f: A \to B$ en $g: B \to A$.
 (a) Bewijs dat f en g inversen van elkaar zijn precies dan als $g \circ f = \text{id}_A$ en $f \circ g = \text{id}_B$.
 (b) Geef een voorbeeld waar $g \circ f = \text{id}_A$ en $f \circ g \neq \text{id}_B$.

17. Zij $f: A \to A$ een functie. Bewijs: als voor elke $a \in A$ geldt $f(f(a)) = a$ dan is f een bijection en $f^{-1} = f$.

18. Laat $f: A \to B$ een bijection zijn en $C \subseteq B$. Bewijs of weerleg: $f^{-1}(C) = f^{-1}[C]$.
 (Zie Definitie I.3.5(iv) en Definitie I.3.20.)

19. Laat $f: \mathbb{R} \to \mathbb{R}$ de afbeelding gegeven door $f(x) = x^2$.
 (a) Beschrijf de elementen van $f^{-1}(\mathbb{Z}) \cap \mathbb{Q}$.
 (b) Bewijs of weerleg: $f^{-1}(\mathbb{Z}) \cap \mathbb{Q} = \mathbb{Z}$.

20. Geef de afbeelding die uitdrukt dat $[0,1]$ een deelverzameling is van \mathbb{R}.

21. Zij A een verzameling en $\mathcal{P}(A)$ zijn machtsverzameling.
 (a) Geef een injectie $f: A \to \mathcal{P}(A)$.
 ✡ (b) Voor welke verzamelingen A bestaat een bijection $g: A \to \mathcal{P}(A)$?

22. Formeel is een functie een deelverzameling van een Cartesisch product. Neem eens aan dat we $(a,b) \in f$ niet hadden afgekort met $b = f(a)$. Laat $f: A \to B$ en $g: B \to C$ functies zijn. Geef een definitie van $g \circ f$ in termen van geordende paren, dat wil zeggen, vul de volgende zin aan:

 $(a,c) \in g \circ f$ dan en slechts dan als

 en bewijs dat dit dezelfde afbeelding oplevert als Definitie I.3.13.

23. Laat A en B verzamelingen zijn, en $f: A \to B$ een bijection.
 (a) Geef een simpel verband tussen de grafieken van f en van f^{-1}.
 (b) Als $A = B = \mathbb{R}$ zijn beide grafieken deelverzamelingen van \mathbb{R}^2. Wat zegt het in het vorige onderdeel gevonden verband in dit geval?

24. Probeer eens de interactieve opgaven over inverse functies op de WIMS systeem (zoek onder ‘inverse’): http://wims.math.leidenuniv.nl/wims/
I.4 Aftelbare en overaftelbare verzamelingen

Stel we hebben twee verzamelingen A en B en we willen bepalen welke verzameling meer elementen bevat. Hoe kunnen we twee verschillende verzamelingen vergelijken? Als de verzamelingen eindig zijn (dat wil zeggen, als ze beide uit eindig veel elementen bestaan) dan is het geen groot probleem: tel de elementen van A, tel de elementen van B en vergelijk die twee natuurlijke getallen.

Maar wat moeten we doen als beide verzamelingen oneindig zijn? We kunnen de elementen niet meer tellen. Er is echter nog een methode om bij eindige verzamelingen te bepalen welke verzameling meer elementen bevat waarbij het tellen van het aantal elementen niet nodig is.

Neem aan dat je twee dozen hebt. In de eerste doos zijn moeren en in de tweede doos bevinden zich bouten. Je wilt bepalen of er meer bouten of meer moeren zijn. Het is niet noodzakelijk het aantal moeren en bouten te bepalen: je kunt ook telkens een bout en een moer pakken en deze op elkaar draaien. Als uiteindelijk de doos met de moeren leeg is terwijl er nog bouten over zijn weet je dat er meer bouten zijn dan moeren. En omgekeerd, zijn er moeren over dan heb je meer moeren dan bouten.

Dit idee kunnen we wel gebruiken om de grootte van oneindige verzamelingen te vergelijken: we proberen een correspondentie te vinden tussen telkens één element van de eerste en één element van de tweede verzameling.

Nu gaan we dit alles netjes wiskundig definiëren. We zullen definiëren wanneer twee verzamelingen even veel elementen hebben.

I.4.1 Definitie. Twee verzamelingen A en B heten gelijkmachtig als een bijectie $f : A \rightarrow B$ bestaat.

I.4.2 Voorbeeld. De verzamelingen $A = \{a, b, c, d\}$ met a, b, c, d verschillend en $B = \{1, 2, 3, 4\}$ zijn gelijkmachtig: een bijectie $f : A \rightarrow B$ is gedefinieerd door $f(a) = 1$, $f(b) = 2$, $f(c) = 3$ en $f(d) = 4$.

I.4.3 Voorbeeld.

(i) De intervallen $[0, 1]$ en $[0, 2]$ zijn gelijkmachtig: de afbeelding $f : [0, 1] \rightarrow [0, 2]$ gegeven door $f(x) = 2x$ is een bijectie.

(ii) Het interval $(-\pi/2, \pi/2)$ en de verzameling \mathbb{R} zijn gelijkmachtig: de afbeelding $\tan : (-\pi/2, \pi/2) \rightarrow \mathbb{R}$ is een bijectie, en bijvoorbeeld ook de afbeelding $x \mapsto -1/(x + \pi/2) - 1/(x - \pi/2)$.

Met behulp van het begrip gelijkmachtig kunnen we een nette definitie van eindige verzameling geven.

I.4.4 Definitie. Zij A een verzameling.

(i) A heet eindig als een natuurlijk getal n bestaat zó dat $\{1, 2, \ldots, n\}$ en A gelijkmachtig zijn (voor $n = 0$ betekent dit dat $A = \emptyset$).

(ii) A heet aftelbaar oneindig als A en \mathbb{N} gelijkmachtig zijn.

(iii) A heet aftelbaar als A eindig of aftelbaar oneindig is.

(iv) A heet overaftelbaar als A niet aftelbaar is.

Oneindige verzamelingen zijn dus aftelbaar als ze even veel elementen als \mathbb{N} hebben. Het zou duidelijk moeten zijn dat \mathbb{N} zelf aftelbaar is: de identieke afbeelding $\text{id}_\mathbb{N} : \mathbb{N} \rightarrow \mathbb{N}$ is een bijectie. Omdat \mathbb{N} niet eindig is, is er tenminste één aftelbaar oneindige verzameling.
I.4.5 Voorbeeld. Intuïtief zijn er meer gehele getallen dan natuurlijke getallen maar toch is de verzameling \mathbb{Z} aftelbaar: een bijectie van \mathbb{N} naar \mathbb{Z} is gedefinieerd bijvoorbeeld door

$$f(n) = \begin{cases} \frac{n}{2} & \text{als } n \text{ even is,} \\ -\frac{n+1}{2} & \text{als } n \text{ oneven is.} \end{cases}$$

We kunnen ook bewijzen dat de verzameling \mathbb{Q} van alle rationale getallen aftelbaar is.

I.4.6 Stelling. De verzameling \mathbb{Q} is aftelbaar.

Bewijs. Om te laten zien dat \mathbb{Q} aftelbaar is moeten we een bijectie vinden tussen \mathbb{N} en \mathbb{Q}.

Voor elk natuurlijk getal k beschouwen we alle breuken p/q met $|p| + |q| = k + 1$, waarbij p en q gehele getallen zijn. Voor elke k zijn er slechts eindig veel van zulke breuken: voor $k = 0$ is er één zo’n breuk: $0/1$ ($-0/1$ laten we weg want $-0/1 = 0/1 = 0$), voor $k = 1$ vinden we twee nieuwe breuken, voor $k = 2$ zijn er vier nieuwe breuken (we laten telkens breuken weg die al op onze lijst staan), enzovoort.

Schrijf al die verschillende breuken in rijen onder elkaar zoals in het plaatje.

Een exacte formule voor zo’n bijectie te geven is niet eenvoudig, maar ook niet nodig: uit onze constructie zou duidelijk moeten zijn dat de beschreven afbeelding injectief en surjectief is.

\begin{align*}
0 \\
-\frac{1}{2} & \frac{1}{2} \\
-\frac{2}{3} & -\frac{1}{3} & \frac{1}{3} & \frac{2}{3} \\
-\frac{3}{4} & -\frac{1}{4} & \frac{1}{4} & \frac{3}{4} \\
-\frac{4}{5} & -\frac{3}{5} & -\frac{2}{5} & -\frac{1}{5} & \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5}
\end{align*}

Enzovoorts

Begin nu links boven naar rechts te lopen, ga als je aan het einde van een rij komt, naar de volgende rij links, enzovoorts.

We kunnen uit het plaatje de gewenste bijectie $f: \mathbb{N} \to \mathbb{Q}$ aflezen: $f(0) = 0$, $f(1) = -\frac{1}{2}$, $f(2) = \frac{1}{2}$, $f(3) = -\frac{2}{3}$, $f(4) = -\frac{1}{4}$, $f(5) = \frac{1}{4}$, $f(6) = \frac{2}{4}$, $f(7) = -\frac{3}{4}$, enzovoorts.

Niet elke verzameling is aftelbaar. Cantor heeft bewezen dat als A oneindig is dan is zijn machtsverzameling overaftelbaar. We zullen dit hier niet bewijzen; een bewijs is in de literatuur te vinden; zie ook Opgave I.3.21(b). We bewijzen slechts dat er tenminste één overaftelbare verzameling bestaat, de verzameling van alle reële getallen.

I.4.7 Stelling. De verzameling \mathbb{R} is overaftelbaar.
Bewijs. Neem aan dat \(\mathbb{R} \) aftelbaar is. Dan is ook het interval (0, 1) aftelbaar. Daar (0, 1) oneindig is moet er een bijectie \(f : \mathbb{N} \to (0, 1) \) bestaan. Neem zo’n bijectie. Voor elke \(n \in \mathbb{N} \) is het beeld \(f(n) \) een reëel getal; beschouw zijn decimale ontwikkeling (zie Sectie IV.4 voor details):

\[
f(n) = 0.a_0(n)a_1(n)a_2(n)\ldots,
\]

met, voor \(i \in \mathbb{N}, a_i(n) \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \), niet eindigend met allemaal negens.

Zij, voor \(n \in \mathbb{N}, b_n = 4 \) als \(a_n(n) = 2 \), anders zij \(b_n = 2 \). Het getal \(0.b_1b_2b_3b_4\ldots \) is verschillend van alle \(f(n) \). Dus \(f \) is niet surjectief. We krijgen een tegenspraak.

Opgaven

1. Hoeveel verschillende bijecties kun je vinden tussen \(A = \{a, b, c, d\} \) (met \(a, b, c, d \) verschillend) en \(B = \{1, 2, 3, 4\} \)?

2. Bewijs dat de afbeelding \(f \) die gedefinieerd is in Voorbeeld I.4.5 een bijectie is.

3. Laat zien dat de intervallen (−1, 1) en (2, 5) gelijkmachtig zijn.

4. Laat zien dat (0, 1) en \(\mathbb{R} \) gelijkmachtig zijn.

5. Zij \(2\mathbb{N} \) de verzameling van alle even natuurlijke getallen. Bewijs dat \(2\mathbb{N} \) aftelbaar is.

6. Laat zien dat de intervallen [0, 1) en (2,5] gelijkmachtig zijn.

7. Beschouw \(A = \{2^{-n} : n \in \mathbb{N}\} \) en \(B = \{3^{n} : n \in \mathbb{N}\} \). Laat zien dat \(A \cup B \) aftelbaar is.

8. Laat zien dat de afbeelding \(f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}_{\geq 1} \) gegeven door \(f(n, m) = 2^n(2m + 1) \) een bijectie is.

9. (a) Laat zien dat de vereniging van twee aftelbare verzamelingen aftelbaar is.
 (b) Laat zien dat de vereniging van aftelbaar veel aftelbare verzamelingen aftelbaar is.
 (c) Lees de wikipedia pagina ‘Hilbert’s paradox of the Grand Hotel’.

☆10. Bewijs of weerleg:
 (a) de intervallen (0, 1) en [0,1) zijn gelijkmachtig.
 (b) de intervallen [0, 1) en [0,1] zijn gelijkmachtig.
 (c) de intervallen (0, 1) en [0,1] zijn gelijkmachtig.

11. Bewijs dat elke deelverzameling van een aftelbare verzameling aftelbaar is.
Iedereen kent getallen: de natuurlijke getallen, \(\mathbb{N} = \{0, 1, 2, 3, \ldots\} \), gebruiken we om te tellen, om getallen van elkaar af te kunnen trekken hebben we de gehele getallen, \(\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \), nodig, derationele getallen \(\mathbb{Q} \) zijn nodig om bijvoorbeeld delen van een geheel te meten. Dat we bij het meten ook getallen tegenkomen die geen breuken zijn was al aan oude Grieken bekend: de lengte van de schuine zijde van een gelijkbenige rechthoekige driehoek met beide benen van lengte 1 is geen breuk. We hebben een grotere verzameling dan \(\mathbb{Q} \) nodig, de verzameling \(\mathbb{R} \) van alle reele getallen. Ook met reële getallen kunnen we niet alles: een simpele vergelijking als \(x^2 + 1 = 0 \) heeft geen reele oplossing. Om zulke vergelijkingen op te kunnen lossen is weer een grotere getallenverzameling dan \(\mathbb{R} \) nodig: de verzameling van alle complexe getallen \(\mathbb{C} \).

In dit hoofdstuk zullen we de basiseigenschappen van de getallen en hun gevolgen bestuderen. We zullen ook aandacht aan de vraag besteden welke eigenschappen de getalsystemen \(\mathbb{N}, \mathbb{Z}, \mathbb{Q} \) en \(\mathbb{R} \) van elkaar onderscheiden.

II.1 Natuurlijke en gehele getallen

Axioma’s

Alhoewel we allemaal weten, of misschien denken te weten, wat natuurlijke en gehele getallen zijn, en wat de gebruikelijke operaties als optelling en vermenigvuldiging daarop zijn, is het goed om een korte lijst eigenschappen, ofwel axioma’s, te geven die deze getalsystemen precies karakteriseren. Het doel hiervan is dat er dan geen dubbelzinnigheid is over wat we wel en niet mogen aannemen. Een ander gevolg van de axiomatische benadering is dat het er niet meer toe doet wat ieder onder ons denkt dat natuurlijke getallen precies zijn, zolang ze maar aan de axioma’s voldoen (denk hierbij maar aan de vele manieren waarop natuurlijke getallen geïmplementeerd kunnen worden in computers, als die een oneindig geheugen zouden hebben). De axioma’s worden dan als uitgangspunt genomen in het bewijzen van weer andere beweringen over de getalsystemen \(\mathbb{N} \) en \(\mathbb{Z} \).

Axioma’s voor \(\mathbb{N} \)

We beginnen met de eigenschappen van de natuurlijke getallen, optelling en vermenigvuldiging. De gegevens zijn:

- (a) een verzameling \(\mathbb{N} \);
- (b) elementen 0 en 1 in \(\mathbb{N} \);
- (c) een afbeelding \(+ : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \), de optelling;
- (d) een afbeelding \(\cdot : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \), de vermenigvuldiging.
De vermenigvuldiging \((a, b) \mapsto ab\) wordt ook wel als \((a, b) \mapsto ab\) genoteerd. Deze gegevens voldoen aan de volgende *eigenschappen*:

- **(N0)** de elementen 0 en 1 zijn verschillend;
- **(N1)** het element 0 is het *kleinste*: er is geen \(a \in \mathbb{N}\) met \(1 + a = 0\);
- **(N2)** *axioma van inductie*: als \(A \subseteq \mathbb{N}\) voldoet aan de eigenschappen \(0 \in A\) en \(a \in A \Rightarrow 1 + a \in A\), dan \(A = \mathbb{N}\);
- **(N3)** de optelling is *commutatief*; voor alle \(a, b \in \mathbb{N}\) geldt \(a + b = b + a\);
- **(N4)** de optelling is *associatief*; voor alle \(a, b, c \in \mathbb{N}\) geldt \((a + b) + c = a + (b + c)\);
- **(N5)** 0 is *neutral* voor de optelling, d.w.z., voor alle \(a \in \mathbb{N}\) geldt \(0 + a = a\);
- **(N6)** de *vermenigvuldiging* geldt voor de optelling, d.w.z., voor alle \(a, b, c \in \mathbb{N}\) geldt \(a + b = a + c \Rightarrow b = c\);
- **(N7)** de vermenigvuldiging is *commutatief*; voor alle \(a, b \in \mathbb{N}\) geldt \(ab = ba\);
- **(N8)** de vermenigvuldiging is *associatief*; voor alle \(a, b, c \in \mathbb{N}\) geldt \((ab)c = a(bc)\);
- **(N9)** 1 is *neutral* voor de vermenigvuldiging, d.w.z., voor alle \(a, b \in \mathbb{N}\) geldt \(1 \cdot a = a\);
- **(N10)** de *vermenigvuldiging* geldt voor de vermenigvuldiging, d.w.z., voor alle \(a, b, c \in \mathbb{N}\) met \(a \neq 0\) geldt \(ab = ac \Rightarrow b = c\);
- **(N11)** de *distributieve* eigenschap: voor alle \(a, b, c \in \mathbb{N}\) geldt \(a(b + c) = ab + ac\).

Men kan bewijzen (met behulp van Stelling IX.3.1) dat de bovenstaande lijst de gegevens \((\mathbb{N}, 0, 1, +, \cdot, \leq)\) uniek karakteriseert, in de zin dat als \((\mathbb{N}', 0', 1', +', \cdot', \leq')\) een unieke bijection \(f: \mathbb{N} \rightarrow \mathbb{N}'\) is zodat \(f(0) = 0'\), \(f(1) = 1'\), en zodat voor alle \(a, b \in \mathbb{N}\) geldt dat \(f(a + b) = f(a) + f(b)\) en dat \(f(ab) = f(a) f(b)\). Uit (N2) volgt dat ieder element van \(\mathbb{N}\) een eindige som \(1 + \cdots + 1\) is (waarbij de som met nul termen per definitie 0 is). Dus inderdaad volgt dat \(\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}\), waarbij \(2 = 1 + 1, 3 = 1 + 1 + 1, 4 = 1 + 1 + 1 + 1, \ldots\)

Terecht kan men opmerken dat de lijst eigenschappen toch nog vrij lang is. Een veel kortere karakterisering van de natuurlijke getallen is gegeven door Peano’s axioma’s, zie Appendix IX.2.

Ongelijkheden in \(\mathbb{N}\)

Uitgaande van wat we nu al hebben kunnen we de ordening ‘\(\leq\)’ op \(\mathbb{N}\) definieren.

II.1.1 Definitie

Voor \(a, b \in \mathbb{N}\) *zeggen* we dat \(a \leq b\) (*a* is kleiner dan *of* gelijk aan *b*) *als* er een \(c \in \mathbb{N}\) is met \(b = a + c\). We zeggen dat \(a < b\) (*a* is kleiner dan *b*) als \(a \leq b\) en \(a \neq b\). We zeggen dat \(a \geq b\) als \(b \leq a\).

De ordening \(\leq\) voldoet aan de volgende eigenschappen:

- **(N12)** voor alle \(a, b \in \mathbb{N}\) geldt \((a \leq b) \land (b \leq a) \Rightarrow a = b\);
- **(N13)** voor alle \(a, b, c \in \mathbb{N}\) geldt \((a \leq b) \land (b \leq c) \Rightarrow a \leq c\);
- **(N14)** voor alle \(a, b \in \mathbb{N}\) geldt \((a \leq b) \lor (b \leq a)\);
- **(N15)** voor alle \(a, b, c \in \mathbb{N}\) geldt \(a < b \Rightarrow ((a + c) \leq (b + c))\);
- **(N16)** voor alle \(a, b, c \in \mathbb{N}\) geldt \((a \leq b) \Rightarrow (ac \leq bc)\).

Het bewijzen van al deze eigenschappen is zeker niet makkelijk, maar we laten het toch achterwege.

Axioma’s voor \(\mathbb{Z}\)

We geven nu een stel gegevens en axioma’s voor \(\mathbb{Z}\), met optelling en vermenigvuldiging. De gegevens zijn:

- (a) een verzameling \(\mathbb{Z}\);
- (b) elementen 0 en 1 in \(\mathbb{Z}\);
- (c) een afbeelding \(+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}\);

II.1 NATUURLIJKE EN GEHELE GETallen

21
(d) een afbeelding \(\cdot : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \).

Deze gegevens voldoen aan de volgende axioma's:

(Z0) de optelling is commutatief: voor alle \(a, b \in \mathbb{Z} \) geldt \(a + b = b + a \);
(Z1) de optelling is associatief: voor alle \(a, b, c \in \mathbb{Z} \) geldt \(a + (b + c) = a + b + c \);
(Z2) 0 is neutraal voor de optelling, d.w.z., voor alle \(a \in \mathbb{Z} \) geldt \(a + 0 = a \);
(Z3) additieve inversen bestaan: voor iedere \(a \in \mathbb{Z} \) is er een \(b \in \mathbb{Z} \) met \(a + b = 0 \)
(deze \(b \) is uniek, en wordt genoteerd als \(-a\));
(Z4) de vermenigvuldiging is commutatief: voor alle \(a, b \in \mathbb{Z} \) geldt \(ab = ba \);
(Z5) de vermenigvuldiging is associatief: voor alle \(a, b, c \in \mathbb{Z} \) geldt \((ab)c = a(bc) \);
(Z6) 1 is neutraal voor de vermenigvuldiging, d.w.z., voor alle \(a \in \mathbb{Z} \) geldt
\[1 \cdot a = a; \]
(Z7) de distributieve eigenschap geldt: voor alle \(a, b, c \in \mathbb{Z} \) geldt \(a(b + c) = ab + ac \);
(Z8) als \(A \subseteq \mathbb{Z} \) aan \(0 \in \mathbb{Z} \), \(1 \in \mathbb{A} \), en
\[(a, b \in A) \Rightarrow ((-a \in A) \land (a + b \in A) \land (ab \in A)), \]
voldoet dan \(A = \mathbb{Z} \);
(Z9) de verzameling \(\mathbb{Z} \) is niet eindig.

Men kan bewijzen dat de bovenstaande lijst eigenschappen het gegeven \((\mathbb{Z}, 0, 1, +, \cdot)\)
uniek bepaalt, in dezelfde zin als we dat voor de natuurlijke getallen hebben ge-
zen. Het is niet zo moeilijk te bewijzen dat ieder element van \(\mathbb{Z} \) een eindige som
van de vorm \(1 + \cdots + 1 \) is, of \(-1\) maal zo'n som. Dus inderdaad is \(\mathbb{Z} \) gelijk aan \(\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \), en \(Z9 \) impliceer dat de elementen \(0, 1, 2, 3, \ldots \)
verschillend zijn. We vinden dus \(\mathbb{N} \) terug als deelverzameling van \(\mathbb{Z} \). Later in het
college zullen we een rigoureuze constructie geven van \(\mathbb{Z} \), uitgaande van \(\mathbb{N} \) (zie
pagina 39).

Aftrukken

De reden om \(\mathbb{N} \) uit te breiden tot \(\mathbb{Z} \) is dat we voor gehele getallen \(a \) en \(b \) nu het
verschil kunnen definiëren als:
\[a - b = a + (-b). \]

We hebben hiermee een nieuwe operatie op \(\mathbb{Z} \) gedefinieerd, aftrekken:
\[- : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}, \quad (a, b) \mapsto a - b. \]

Ongelijkheden in \(\mathbb{Z} \)

We kunnen nu ook de ordening op \(\mathbb{N} \) uitbreiden tot \(\mathbb{Z} \).

II.1.2 Definitie. Voor \(a, b \in \mathbb{Z} \) zeggen we dat \(a \leq b \) als er een \(c \in \mathbb{N} \) bestaat met
\(b = a + c \), en we zeggen dat \(a < b \) als \((a \leq b) \land (a \neq b) \).

We gaan hier nu niet een lange lijst eigenschappen van ongelijkheden in \(\mathbb{Z}
\)
afleiden. We geven alleen de volgende, en hopen dat de lezer zelf zijn of haar best
zal doen om alle gebruikte eigenschappen zelf uit de definitie en de bovenstaande
axioma's af te leiden.

(Z10) Voor alle \(a, b \in \mathbb{Z} \) geldt: \((a < b) \iff (−a > −b) \).

Axioma's voor \(\mathbb{Q} \)

We geven nu een stel gegevens en axioma's voor \(\mathbb{Q} \), de verzameling van rationale
getallen, met optelling en vermenigvuldiging. De gegevens zijn:

(a) een verzameling \(\mathbb{Q} \);
(b) elementen 0 en 1 in \(\mathbb{Q} \);
(c) een afbeelding $+: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$;
(d) een afbeelding $\cdot: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$.

Deze gegevens voldoen aan de volgende axioma's:

(Q0) de optelling is commutatief: voor alle $a, b \in \mathbb{Q}$ geldt $a + b = b + a$;
(Q1) de optelling is associatief: voor alle $a, b, c \in \mathbb{Q}$ geldt $(a + b) + c = a + (b + c)$;
(Q2) 0 is neutraal voor de optelling, d.w.z., voor alle $a \in \mathbb{Q}$ geldt $0 + a = a$;
(Q3) additieve inversen bestaan: voor iedere $a \in \mathbb{Q}$ is er een $b \in \mathbb{Q}$ met $a + b = 0$ (deze b is dan uniek, en wordt genoteerd als $-a$);
(Q4) de vermenigvuldiging is commutatief: voor alle $a, b \in \mathbb{Q}$ geldt $ab = ba$;
(Q5) de vermenigvuldiging is associatief: voor alle $a, b, c \in \mathbb{Q}$ geldt $(ab)c = a(bc)$;
(Q6) 1 is neutraal voor de vermenigvuldiging, d.w.z., voor alle $a, b \in \mathbb{Q}$ geldt $1 \cdot a = a$;
(Q7) multiplicatieve inversen bestaan: voor iedere $a \in \mathbb{Q}$ met $a \neq 0$ is er een $b \in \mathbb{Q}$ met $ab = 1$ (deze b is dan uniek, en wordt genoteerd als $1/a$ en ook a^{-1});
(Q8) de distributieve eigenschap geldt: voor alle $a, b, c \in \mathbb{Q}$ geldt $a(b+c) = ab + ac$;
(Q9) als $A \subseteq \mathbb{Q}$ de voldoet aan $0 \in A$, $1 \in A$, $(a \in A) \Rightarrow (-a \in A)$, $(0 \neq a \in A) \Rightarrow (1/a \in A)$, $(a, b \in A) \Rightarrow ((a+b \in A) \land (ab \in A))$, dan geldt $A = \mathbb{Q}$;
(Q10) de verzameling \mathbb{Q} is niet eindig.

Men kan bewijzen dat de bovenstaande eigenschappen het gegeven $(\mathbb{Q},0,1,+,\cdot)$ uniek bepalen, in dezelfde zin als we dat voor de natuurlijke getallen hebben gezien. Het is niet zo moeilijk te bewijzen (met behulp van Stelling IX.3.1) dat er een unieke afbeelding $f: \mathbb{Z} \to \mathbb{Q}$ is met de eigenschappen dat $f(0) = 0$, dat $f(1) = 1$, en dat voor alle $a, b \in \mathbb{Z}$ geldt dat $f(a + b) = f(a) + f(b)$. Deze afbeelding is injectief, en we zullen normaliter geen verschil maken tussen $a \in \mathbb{Z}$ en zijn beeld $f(a) \in \mathbb{Q}$. Verder ziet men dan dat ieder element van \mathbb{Q} van de vorm a/b is met $a, b \in \mathbb{Z}$ en $b \neq 0$.

Delen in \mathbb{Q}

De reden om \mathbb{Z} uit te breiden tot \mathbb{Q} is dat we voor rationale getallen a en b met $b \neq 0$ nu a door b kunnen delen, en een nieuwe operatie, namelijk dit delen, kunnen definiëren als:

\[
/ : \mathbb{Q} \times \mathbb{Q} \setminus \{0\} \to \mathbb{Q}, \quad (a, b) \mapsto a \cdot b^{-1}.
\]

Notatie: $a \cdot b^{-1} = a/b$.

Ongelijkheden in \mathbb{Q}

We kunnen nu de ordening op \mathbb{Z} uitbreiden tot \mathbb{Q}.

II.1.3 Definitie. Voor $a, b \in \mathbb{Q}$ zeggen we dat $a \leq b$ als er een $c, d \in \mathbb{N}$ bestaan, met $d \neq 0$, zó dat $b = a + c/d$, en we zeggen dat $a < b$ als $(a \leq b) \land (a \neq b)$.

We gaan hier nu een lange lijst eigenschappen van ongelijkheden in \mathbb{Q} afleiden. We geven alleen de volgende, en hopen dat de lezer zelf zijn of haar best zal doen om alle gebruikte eigenschappen zelf uit de definitie en de bovenstaande axioma’s af te leiden.

(Q11) Voor alle $a, b \in \mathbb{Q}$ geldt $(0 < a < b) \Rightarrow (0 < 1/b < 1/a)$.

II.1 NATUURLIJKE EN GEHELE GETALLEN
Opgaven

1. Laat zien, direct uit de axioma’s voor \mathbb{N}, dat, voor alle $a \in \mathbb{N}$, $0 \cdot a = 0$.

2. Laat $a \in \mathbb{N}$ met $a \neq 0$. Bewijs dat er een unieke $b \in \mathbb{N}$ is met $a = b + 1$.

3. Laat zien dat als $a, b \in \mathbb{N}$ met $a \neq 0 \neq b$, dan $b \leq ab$.

4. Bewijs direct uit de axioma’s voor \mathbb{Z}, dat:

 (a) $(-1) \cdot (-1) = 1$;

 (b) voor $a, b \in \mathbb{Z}$ geldt dat $(a \leq 0 \land b \leq 0) \Rightarrow (ab \geq 0)$;

 (c) voor $a, b \in \mathbb{Z}$ geldt dat $(ab = 0) \Rightarrow (a = 0 \lor b = 0)$.

5. Laat zien dat de verzameling \mathbb{F}_2 met twee verschillende elementen $\{0, 1\}$, en met de operaties $+$ en \cdot gedefinieerd door de gebruikelijke regels, plus de regel $1 + 1 = 0$, voldoet aan de axioma’s $(Q0)$–$(Q9)$ voor \mathbb{Q}.

6. Laat zien, uit de axioma’s van \mathbb{Q}, dat

 (a) voor $a, b, c, d \in \mathbb{Z}$ met $b \neq 0 \neq d$, geldt: $a/b + c/d = (ad + bc)/bd$;

 (b) voor $a, b \in \mathbb{Z}$ met $a \neq 0 \neq b$, geldt: $(a/b)^{-1} = (b/a)$.
II.2 Delingseigenschappen in \(\mathbb{Z} \)

Zoals bekend is deling in \(\mathbb{Z} \) niet altijd mogelijk: er is geen \(x \in \mathbb{Z} \) die aan de vergelijking \(5x = 13 \) voldoet. Daarentegen heeft de vergelijking \(2x = 6 \) wel een oplossing binnen \(\mathbb{Z} \): neem \(x = 3 \). Dit leidt tot de volgende definitie:

II.2.1 Definitie. Als de vergelijking \(bx = a \) met \(a, b \in \mathbb{Z} \) een oplossing \(x \in \mathbb{Z} \) heeft dan zeggen we dat \(a \) deelbaar is door \(b \) of dat \(b \) een deler van \(a \) is en schrijven we \(b \mid a \). Als \(b \) geen deler van \(a \) is schrijven we \(b \not\mid a \).

Als \(a \) niet deelbaar is door \(b \), en \(b \neq 0 \), dan kunnen we toch proberen \(a \) door \(b \) te delen, we houden dan wel een rest over. In het bewijs van dit feit hebben we de volgende fundamentele eigenschap van \(\mathbb{N} \) nodig.

II.2.2 Stelling (Wel-ordening van \(\mathbb{N} \)). Elke niet-lege deelverzameling van \(\mathbb{N} \) bevat een uniek kleinste element.

Bewijs. Opgave II.2.8

II.2.3 Definitie. Voor \(a \in \mathbb{Z} \) definiëren we \(|a| \) in \(\mathbb{Z} \) door: \(|a| = a \) als \(a \geq 0 \), en \(|a| = -a \) als \(a < 0 \).

II.2.4 Stelling. Voor alle \(a, b \in \mathbb{Z} \) met \(b \neq 0 \) bestaan unieke \(q \) en \(r \) in \(\mathbb{Z} \) zodat

\[
a = q \cdot b + r \quad \text{en} \quad 0 \leq r < |b|.
\]

Het getal \(q \) heet het quotiënt en \(r \) heet de rest bij deling van \(a \) door \(b \). Als \(r = 0 \) dan schrijven we \(q = a/b \).

*Bewijs. Laat \(a, b \in \mathbb{Z} \) met \(b \neq 0 \). We definiëren \(A \subseteq \mathbb{N} \) door:

\[
A = \{ n \in \mathbb{N} : \text{er is een } q \in \mathbb{Z} \text{ met } a = q \cdot b + n \}.
\]

In Opgave II.2.3 wordt bewezen dat \(A \) niet leeg is (dit is duidelijk als \(a \geq 0 \), want \(a = q \cdot 0 + a \), dus \(a \in A \)). Volgens Stelling II.2.2 bevat \(A \) een kleinste element; we noemen het \(r \).

We bewijzen dat \(0 \leq r < |b| \). Neem eens aan dat \(r \geq |b| \), dan is \(s = r - |b| \in \mathbb{N} \) en \(a \) is te schrijven als

\[
a = q \cdot b + r = q \cdot b + b + s = (q + 1) \cdot b + s.
\]

Hieruit volgt dat \(s \in A \) en omdat \(s < r \) kregen we een tegenspraak met de minimaliteit van \(r \).

Dat de getallen \(q \) en \(r \) uniek zijn wordt aangetoond in Opgave II.2.4.

Merk op dat als bij deling van \(a \) door \(b \) de rest gelijk aan 0 is dan is \(a \) deelbaar door \(b \), en omgekeerd, als \(b \mid a \) en \(b \neq 0 \), dan is de rest bij deling van \(a \) door \(b \) gelijk aan nul.

II.2.5 Voorbeeld. Beschouw \(a = -31 \) en \(b = 5 \), dan geldt \(-31 = -7 \cdot 5 + 4 \); het quotiënt bij deling van \(-31 \) door 5 is \(q = -7 \) en de rest \(r = 4 \). En, bijvoorbeeld, \(12 = (-2) \cdot (-5) + 2 \), dus quotiënt en rest bij deling van 12 door \(-5 \) zijn \(-2\) en 2, respectievelijk.

De lezer wordt hierbij aangeraden over de hem/haar gebruikte programmeertalen na te gaan of deze definitie, toch echt de enige goede, ook daar van kracht is. Eén van de auteurs heeft eens een hoop tijd verloren doordat in Pascal de rest na deling van \(-7 \) door 5 gelijk bleek aan \(-2\) in plaats van 3.
II.2.6 Voorbeeld. Beschouw deling door 2; de verzameling \mathbb{Z} valt dan in twee disjuncte deelverzamelingen uiteen: in de verzameling $2\mathbb{Z}$ van alle gehele getallen die deelbaar door 2 zijn, en in de verzameling $2\mathbb{Z}+1$ van alle gehele getallen die niet deelbaar door 2 zijn (en dus bij deling door 2 de rest 1 hebben)2.

Analoog, bij deling door $n \in \mathbb{N} \setminus \{0\}$ valt \mathbb{Z} in n disjuncte deelverzamelingen uiteen:

$$Z = \bigcup_{k=0}^{n-1} n\mathbb{Z} + k,$$

waarbij $n\mathbb{Z} + k$ de verzameling van alle gehele getallen is die bij deling door n de rest k hebben.

Een **priemgetal** is een natuurlijk getal $n > 1$ dat alleén 1 en zichzelf als positieve delers heeft. M.a.w., $n \in \mathbb{N}$ is priem precies dan als n precies twee delers heeft. Bijvoorbeeld 2 en 13 zijn priemgetallen maar 15 is geen priem getal omdat $3 \mid 15$.

II.2.7 Lemma. Elk natuurlijk getal groter dan 1 is deelbaar door een priemgetal.

Bewijs. Zij $k \in \mathbb{N} \setminus \{0, 1\}$ en beschouw de verzameling

$$A = \{n \in \mathbb{N} : n > 1 \text{ en } n \mid k\}.$$

Omdat $k > 1$ en $k \mid k$ is $k \in A$ en volgens Stelling II.2.2 bevat A een minimaal element m. Dan moet m een priemgetal zijn want anders is m te schrijven als $m = s \cdot t$ met $s > 1$ en $t > 1$. Hieruit volgt dat $s, t \in A$ en $s, t < m$ wat in tegenspraak is met de minimaliteit van m.

Als n een klein natuurlijk getal is dan is het niet moeilijk om na te gaan of n een priemgetal is: we kunnen bijvoorbeeld controlleren dat geen natuurlijk getal kleiner dan of gelijk aan \sqrt{n} en groter dan 1 een deler is. Naarmate n groter is wordt het steeds moeilijker want zo’n controle kost, ook met ‘supersnelle’ computers, te veel tijd. Het komt daarom misschien als een verrassing dat het makkelijk is de grootste elementen van \mathbb{N} bestaan.

II.2.8 Stelling. Er zijn oneindig veel priemgetallen.

Bewijs. Neem aan dat p_1, p_2, \ldots, p_N alle priemgetallen zijn. Beschouw het getal

$$K = p_1 \cdot p_2 \cdot \ldots \cdot p_N + 1.$$

We bewijzen eerst dat geen $p_i, i \leq N$ een deler van K is. Dit volgt uit het feit dat, voor elke i, de rest na deling van K door p_i gelijk is aan 1, en niet aan 0.

Omdat 2 één van de p_i is, geldt $K \geq 3$. Volgens Lemma II.2.7 is K deelbaar door een priemgetal p. Maar dan moet p ongelijk zijn aan elk van de p_i. Dit is een tegenspraak: we hebben aangenomen dat p_1, p_2, \ldots, p_N alle priemgetallen waren.

Grootste gemene deler

Laat $a, b \in \mathbb{Z}$. Als a en b niet beiden nul zijn, dan heeft de verzameling gemeenschappelijke delers van a en b een grootste element, genaamd de **grootste gemene deler** van a en b; dit element van \mathbb{N} wordt genoteerd door $\text{ggd}(a, b)$. We definiëren ook $\text{ggd}(0, 0) = 0$. Als $\text{ggd}(a, b) = 1$ dan zeggen we dat de getallen a en b relatief priem zijn. Het is duidelijk dat voor $a, b \in \mathbb{Z}$ geldt: $\text{ggd}(a, b) = \text{ggd}(|a|, |b|)$, en $\text{ggd}(a, 0) = |a|$.

We beschrijven nu een methode, het Euclidische algoritme genoemd, om de grootste gemene deler van twee natuurlijke getallen te vinden.

We hebben eerst het volgende lemma nodig.

2Elementen van 2Z heten *even* en elementen van 2Z+1 heten *oneven* getallen.
II.2.9 Lemma. Laat $a, b \in \mathbb{N}_{>0}$ met $a > b$. Laat r de rest bij deling van a door b zijn. Dan geldt
\[\text{ggd}(a, b) = \text{ggd}(b, r). \]

Bewijs. Zij $A = \{d \in \mathbb{N} : d | a \text{ en } d | b\}$ en $B = \{d \in \mathbb{N} : d | b \text{ en } d | r\}$. We bewijzen dat $A = B$; dan volgt onmiddellijk dat $\text{ggd}(a, b) = \text{ggd}(b, r)$.

Neem aan dat $d \in A$, dan zijn er $n, m \in \mathbb{N}$ met $a = nd$ en $b = md$. Omdat
\[r = a - qb = nd - qmd = (n - qm)d \]
zie n we dat $d | r$ en dus $d \in B$. We lieten zien dat $A \subseteq B$.

Het *Euclidische algoritme* kan nu als volgt beschreven worden. Laat $m, n \in \mathbb{N}_{>0}$, met $m \geq n$. Om $\text{ggd}(m, n)$ te vinden doen we het volgende:

Zet $a := m$ en $b := n$. Bepaal de rest r bij deling van a door b:
\[a = q \cdot b + r. \]

Dan geldt $\text{ggd}(a, b) = \text{ggd}(b, r)$. Als $r = 0$ dan is $\text{ggd}(a, b) = b$. Als $r \neq 0$ zet dan $a := b$ en $b := r$ en herhaal de vorige stap.

De resten vormen een dalende rij natuurlijke getallen. Wegens de Wel-ordening van \mathbb{N} is deze rij eindig. De laatste rest is 0 en de voorlaatste rest is dan $\text{ggd}(m, n)$.

II.2.10 Voorbeeld. We vinden de grootste gemene deler van 35 en 16. Laat $a = 35$ en $b = 16$; deling van 35 door 16 geeft
\[35 = 2 \cdot 16 + 3. \]
Omdat de rest $r = 3$ ongelijk aan 0 is geldt $\text{ggd}(35, 16) = \text{ggd}(16, 3)$. We zetten $a = 16$ en $b = 3$ en delen weer a door b:
\[16 = 5 \cdot 3 + 1. \]
Ook hier is de rest $r = 1$ ongelijk aan 0, dus $\text{ggd}(16, 3) = \text{ggd}(3, 1)$. We zetten nu $a = 3$ en $b = 1$ en delen nog een keer a door b:
\[3 = 3 \cdot 1 + 0. \]
Omdat de laatste rest gelijk aan 0 is geldt $\text{ggd}(3, 1) = 1$. We kunnen concluderen dat $\text{ggd}(35, 16) = 1$; de getallen 35 en 16 zijn relatief priem.

We kunnen het algoritme ook kort opschrijven:
\[
\begin{align*}
35 &= 2 \cdot 16 + 3 \\
16 &= 5 \cdot 3 + 1 \\
3 &= 3 \cdot 1 + 0.
\end{align*}
\]

De grootste gemene deler van 35 en 16 is de laatste rest ongelijk aan 0:
\[\text{ggd}(35, 16) = 1. \]

II.2.11 Stelling (Euclides). De grootste gemene deler van twee gehele getallen a en b is te schrijven als een *lineaire combinatie* van a en b, dat wil zeggen, er zijn $k, l \in \mathbb{Z}$ zó dat $\text{ggd}(a, b) = ka + lb$.

We leggen dit uit aan de hand van het volgende voorbeeld.
II.2.12 Voorbeeld. We vinden eerst de grootste gemene deler van 5705 en 470:

\[
\begin{align*}
5705 &= 12 \cdot 470 + 65 \quad \text{dus} \quad 65 &= 5705 - 12 \cdot 470 \\
470 &= 7 \cdot 65 + 15 \quad \text{dus} \quad 15 &= 470 - 7 \cdot 65 \\
65 &= 4 \cdot 15 + 5 \quad \text{dus} \quad 5 &= 65 - 4 \cdot 15 \\
15 &= 3 \cdot 5 + 0
\end{align*}
\]

De laatste rest ongelijk aan 0 is 5; we concluderen dat \(\text{ggd}(5705, 470) = 5 \).

Nu geldt er:

\[
\begin{align*}
\text{ggd}(5705, 470) &= 5 \\
&= 65 - 4 \cdot 15 \\
&= 65 - 4 \cdot (470 - 7 \cdot 65) \\
&= 29 \cdot 65 - 4 \cdot 470 \\
&= 29 \cdot (5705 - 12 \cdot 470) - 4 \cdot 470 \\
&= 29 \cdot 5705 - 352 \cdot 470.
\end{align*}
\]

Opgaven

1. Bewijs dat voor alle \(a, b, c \in \mathbb{Z} \) geldt
 (a) als \(a \mid b \) en \(a \mid c \) dan \(a \mid (b + c) \);
 (b) als \(a \mid b \) en \(b \mid a \) dan \(a = \pm b \);
 (c) als \(a \mid b \) dan \(ac \mid bc \);
 (d) als \(a \mid b \) dan \(a \mid bc \);
 (e) als \(a \mid b \) en \(b \mid c \) dan \(a \mid c \).

2. Bewijs of weerleg: voor alle \(a, b, c \in \mathbb{Z} \) geldt dat als \(a \mid bc \), dan \(a \mid b \) of \(a \mid c \).

3. Bewijs, onder de aannamen van Stelling II.2.4, dat er een \(q \) in \(\mathbb{Z} \) is met \(a - qb \geq 0 \).

4. Bewijs dat de getallen \(q \) en \(r \) in Stelling II.2.4 uniek zijn.

5. Laat \(a \) en \(b \) natuurlijke getallen zijn en neem aan dat \(a = qb + r \) met \(q, r \in \mathbb{Z} \) en \(0 \leq r < b \). Vind het quotiënt en de rest bij deling van \(-a \) door \(b \) en verklaar je antwoord.

6. Bewijs dat voor alle \(a, b, c \in \mathbb{N} \) geldt
 (a) als \(a \mid b \) en \(a \mid c \) dan \(a \mid \text{ggd}(b, c) \);
 (b) als \(a \mid bc \) en \(\text{ggd}(a, b) = 1 \) dan \(a \mid c \);
 (c) als \(a \mid c \), \(b \mid c \) en \(\text{ggd}(a, b) = 1 \) dan \(ab \mid c \).

7. Bewijs dat voor alle \(a, b, c \in \mathbb{N} \) geldt
 (a) als \(d = \text{ggd}(a, b) \neq 0 \) dan \(\text{ggd}(a/d, b/d) = 1 \);
 (b) \(\text{ggd}(ac, bc) = c \cdot \text{ggd}(a, b) \).

8. Bewijs Stelling II.2.2.
9. Vind de grootste gemene delers van de volgende paren getallen en schrijf in elk geval de gevonden grootste gemene deler als een lineaire combinatie van de gegeven getallen:
 (a) 9163 en 3230;
 (b) 3025 en 1296;
 (c) 654321 en 123456.

 (a) 7655 en 1001;
 (b) 6643 en 2873.

II.3 Volledige inductie

We beschrijven nu een belangrijke techniek om beweringen over natuurlijke getallen te bewijzen. Deze bewijstechniek is gerechtvaardigd door het axioma van inductie, (N2) in de lijst van axioma’s voor N.

Stel je voor dat we een uitspraak van het type ‘Voor alle $n \in \mathbb{N}$ geldt …’ willen bewijzen. We kunnen als volgt aan het werk gaan: we gaan eerst na dat de uitspraak juist is voor 0, en daarna laten we zien dat voor alle $n \in \mathbb{N}$ geldt dat als de uitspraak waar is voor n, dan ook voor $n + 1$. Het axioma van inductie (ook wel Principe van Volledige Inductie geheten) garandeert nu dat de uitspraak juist is voor elk natuurlijk getal, want de deelverzameling $V \subseteq \mathbb{N}$ van alle natuurlijke getallen waarvoor de uitspraak juist is voldoet aan de twee eisen van het axioma van inductie, zodat $V = \mathbb{N}$. Een bewijs van zo’n type heet een bewijs met volledige inductie.

We illustreren de techniek aan de hand van een paar voorbeelden.

II.3.1 Voorbeeld. We gaan bewijzen dat voor alle $n \in \mathbb{N}$ geldt:

$$\sum_{k=0}^{n} 2k = n(n + 1).$$

We gebruiken inductie naar n.

Stap 1: Voor $n = 0$ volgt dit uit $2 \cdot 0 = 0 = 0 \cdot (0 + 1)$.

Stap 2: Laat $n \in \mathbb{N}$. Neem aan dat $\sum_{k=0}^{n} 2k = n(n + 1)$ (dit heet de inductieveronderstelling). Dan geldt:

$$\sum_{k=0}^{n+1} 2k = \sum_{k=1}^{n} 2k + 2(n + 1) \overset{(IV)}{=} n(n + 1) + 2(n + 1) = (n + 1)(n + 2).$$

De tweede gelijkheid op de regel hierboven volgt op grond van de inductieveronderstelling.

Algemener kunnen we zo uitspraken van het type ‘Voor alle $n \geq N$ geldt …’ bewijzen. We controleren dan de bewering voor $n = N$ en laten daarna weer zien dat voor alle $n \geq N$ geldt dat als de bewering voor n, dan ook voor $n + 1$. Het axioma van inductie is dan van toepassing op de verzameling $V \subseteq \mathbb{N}$ van alle natuurlijke getallen waarvoor de bewering juist is voor $n = N + k$.

II.3.2 Voorbeeld. Zij $x \neq 1$ een reëel getal. We bewijzen dat voor elk natuurlijk getal $n \geq 1$ geldt

$$\frac{x^n - 1}{x - 1} = x^{n-1} + x^{n-2} + \cdots + x^2 + x + 1.$$

Stap 1: De bewering is waar voor $n = 1$:

$$\frac{x^1 - 1}{x - 1} = \frac{x - 1}{x - 1} = 1.$$

Stap 2: Laat $n \geq 1$. Neem aan dat $(x^n - 1)/(x - 1) = x^{n-1} + x^{n-2} + \cdots + x^2 + x + 1$ (dit heet de inductieveronderstelling). Dan geldt:

$$\frac{x^{n+1} - 1}{x - 1} = \frac{x^{n+1} - x^n + x^n - 1}{x - 1} = \frac{x^n(x - 1) + x^n - 1}{x - 1} = \frac{x^n + x^n - 1}{x - 1} \overset{(IV)}{=} x^n + x^{n-1} + x^{n-2} + \cdots + x^2 + x + 1.$$
De laatste gelijkheid geldt op grond van de inductieveronderstelling.

We besluiten deze paragraaf met een stelling die zegt dat voor de coëfficiënten in de uitdrukking \((a + b)^n\), waarbij \(n \in \mathbb{N}\) positief is, een mooie formule bestaat. We merken op dat voor alle \(x \in \mathbb{R}\) geldt \(x^0 = 1\). Voor de definities, voor \(n\) en \(k\) in \(\mathbb{N}\), van \(n!\) (spreek uit “n-faculteit”) en de binomiaalcoëfficiënt \(\binom{n}{k}\) (spreek uit “n boven k”), zie Definities IX.3.3 en IX.3.4.

II.3.3 Stelling (Binomium van Newton). Voor alle reële getallen \(a\) en \(b\) en elke \(n \in \mathbb{N}\) geldt

\[
(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k.
\]

Bewijs. Laat \(a, b \in \mathbb{R}\). StaP 1: De bewering is waar voor \(n = 0\):

\[
(a + b)^0 = 1 \quad \text{en} \quad \binom{0}{0} a^0 b^0 = 1.
\]

StaP 2: Laat \(n \in \mathbb{N}\). Neem aan dat \((a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\) (dit heet de inductieveronderstelling). Dan geldt

\[
(a + b)^{n+1} = (a + b)(a + b)^n = (a + b) \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} a^{n+1-k} b^k + \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k+1}
\]

\[
= a^{n+1} + \sum_{k=1}^{n} \binom{n}{k} a^{n+1-k} b^k + \sum_{k=0}^{n-1} \binom{n}{k} a^{n-k} b^{k+1} + b^{n+1}.
\]

Door verschuiven van de sommatieindex in de tweede som krijgen we

\[
\sum_{k=0}^{n-1} \binom{n}{k} a^{n-k} b^{k+1} = \sum_{k=1}^{n} \binom{n}{k-1} a^{n-(k-1)} b^k = \sum_{k=1}^{n} \binom{n}{k-1} a^{n+1-k} b^k.
\]

We gebruiken nu de identiteit uit Opgave II.3.14:

\[
(a + b)^{n+1} = a^{n+1} + \sum_{k=1}^{n} \binom{n}{k} a^{n+1-k} b^k + \sum_{k=1}^{n} \binom{n}{k-1} a^{n+1-k} b^k + b^{n+1}
\]

\[
= a^{n+1} + \sum_{k=1}^{n} \left(\binom{n}{k} + \binom{n}{k-1} \right) a^{n+1-k} b^k + b^{n+1}
\]

\[
= a^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^{n+1-k} b^k + b^{n+1}
\]

\[
= \sum_{k=0}^{n+1} \binom{n+1}{k} a^{n+1-k} b^k.
\]

II.3 VOLLEDIGE INDUCTIE
1. Bewijs met behulp van volledige inductie dat voor alle natuurlijke getallen \(n \geq 1 \) de volgende formules gelden:
 (a) \(1 - 3 + 5 - 7 + \cdots + (-1)^{n-1}(2n - 1) = (-1)^{n-1}n; \)
 (b) \(1^2 + 2^2 + 3^2 + \cdots + n^2 = n(n + 1)(2n + 1)/6. \)

2. Verzin zelf een formule voor
 \[1 + 3 + 5 + \cdots + (2n + 1) \]
 en bewijs met behulp van volledige inductie dat je formule juist is voor elk natuurlijk getal \(n \).

3. Bewijs met behulp van volledige inductie dat voor alle natuurlijke getallen \(n \geq 1 \) de volgende formules gelden:
 (a) \[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots + \frac{1}{n \cdot (n + 1)} = \frac{n}{n + 1}; \]
 (b) \[\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n - 1)(2n + 1)} = \frac{n}{2n + 1}. \]

4. Bewijs met behulp van volledige inductie: voor alle \(n \geq 1 \) geldt:
 \[\sum_{k=1}^{n} 4k^3 = n^2(n + 1)^2. \]

5. Bewijs met behulp van volledige inductie dat voor elke \(n \in \mathbb{N} \) geldt \(2^n > n \).

6. Bewijs met behulp van volledige inductie dat voor elk natuurlijk getal \(n \geq 4 \) geldt \(n! > 2^n \).

7. Bewijs met behulp van volledige inductie dat voor elk natuurlijk getal \(n \) het getal \(11^n - 4^n \) deelbaar is door 7.

8. Bewijs met behulp van volledige inductie dat de som van de derde machten van drie opeenvolgende natuurlijke getallen deelbaar is door 9.

9. Gegeven zijn \(n \) punten in \(\mathbb{R}^2 \), \(n \geq 3 \), met de eigenschap dat geen drie punten op een lijn liggen. Bewijs met behulp van volledige inductie dat de punten door \(n(n-1)/2 \) verschillende lijnen te verbinden zijn, en niet door minder lijnen.

10. Bewijs met behulp van volledige inductie dat \(n \) verschillende lijnen in het platte vlak die door de oorsprong gaan het vlak in \(2n \) gebieden verdelen.

11. Zij \(x \) een reëel getal. Laat zien met behulp van volledige inductie dat voor elke \(n \in \mathbb{N} \) geldt
 \[|\sin nx| \leq n|\sin x|. \]

12. Zij \(P(n) \) de bewering ‘\(n^2 + 3n + 1 \) is een even getal’. Laat zien dat voor elke \(n \in \mathbb{N} \) geldt
 als \(P(n) \) waar is dan is \(P(n + 1) \) waar.
 Geldt \(P(n) \) voor elke \(n \in \mathbb{N} \)? Verklar je antwoord.
13. Vind de fout in het volgende ‘bewijs met volledige inductie’ dat alle mensen op dezelfde dag jarig zijn:
Voor \(n \in \mathbb{N} \) met \(n \geq 1 \), zij \(P_n \) de bewering: ‘in elke verzameling van \(n \) mensen is iedereen op dezelfde dag jarig.’

\textbf{STAP 1:} Als we slechts één mens beschouwen is de bewering \(P_1 \) duidelijk juist.

\textbf{STAP 2:} Laat \(n \geq 1 \), en neem aan dat in elke verzameling van \(n \) mensen iedereen op dezelfde dag jarig is. Stel dat we nu \(n+1 \) mensen hebben. We kunnen ze nummeren: \(m_1, m_2, \ldots, m_{n+1} \). Beschouw nu de verzamelingen \(A = \{m_1, m_2, \ldots, m_n\} \) en \(B = \{m_2, \ldots, m_n, m_{n+1}\} \). Beide verzamelingen hebben \(n \) elementen en dus volgens de inductieveronderstelling is iedereen in \(A \) op dezelfde dag jarig, maar ook iedereen in \(B \) heeft de verjaardag op dezelfde dag. Hieruit volgt dat iedereen in \(A \cup B \) ook op dezelfde dag jarig is.

Volgens het Principe van Volledige Inductie kunnen we concluderen dat \(P_n \) juist is voor elke \(n \geq 1 \), en dus zijn alle mensen op dezelfde dag jarig.

(a) Laat zien dat voor alle \(1 \leq m \leq n \) de volgende identiteit geldt:
\[
\binom{n}{m-1} + \binom{n}{m} = \binom{n+1}{m}.
\]

(b) Laat zien dat voor alle \(1 \leq m \leq n \) de volgende identiteit geldt:
\[
\sum_{k=m}^{n} \binom{k}{m} = \binom{n+1}{m+1}.
\]

(c) Toon aan: voor alle \(n \in \mathbb{N} \) geldt
\[
\sum_{m=0}^{n} \binom{n}{m} = 2^n.
\]

(d) Toon aan: voor alle \(n \in \mathbb{N}, n \geq 1 \) geldt
\[
\sum_{m=0}^{n} \binom{n}{m}(-1)^m = 0.
\]

(e) Toon aan dat \(\binom{n}{m} \in \mathbb{N} \) voor alle \(n, m \in \mathbb{N} \) met \(n \geq m \).

(f) Bewijs dat als \(n \) een priemgetal is dan is \(\binom{n}{m} \) deelbaar door \(n \) voor elke \(m \in \mathbb{N} \) met \(1 \leq m \leq n-1 \).

\(\star\) 15. Toon aan dat \(\binom{n}{k} \) het aantal manieren is om \(k \) mensen uit een groep van \(n \) mensen te kiezen.
II.4 Equivalentierelaties en quotiënten

Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde in het algemeen van belang is: als we de relatie ‘kleiner dan’ op \(\mathbb{R} \) beschouwen dan betekent \(x < y \) iets anders dan \(y < x \).

In het dagelijks leven komen relaties ook voor: twee mensen A en B kunnen bijvoorbeeld in relatie met elkaar zijn als ‘A van B houdt’. Ook hier is de volgorde belangrijk; als A van B houdt hoeft B helemaal niet van A te houden.

We zullen nu het begrip relatie op een wiskundige manier formaliseren en de belangrijkste eigenschappen afleiden. We zullen ook een paar voorbeelden bestuderen die van belang in de wiskunde zijn.

II.4.1 Definitie. Zij \(A \) een verzameling. Een relatie \(\sim \) op \(A \) is een deelverzameling van het Cartesisch product \(A \times A \).

We zeggen dat twee elementen \(a \) en \(b \) uit \(A \) in relatie \(\sim \) zijn als \((a, b) \in \sim \).

Notatie: \(a \sim b \).

II.4.2 Voorbeeld. We bekijken de verzameling \(\sim = \{(x, y) \in \mathbb{R}^2 : x < y\} \).

Omdat \(\sim \) een deelverzameling van het Cartesisch product \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \) is, is \(\sim \) een relatie op \(\mathbb{R} \). Blijkbaar \(\sqrt{2} \sim 5 \) want \(\sqrt{2} < 5 \), maar \(2/3 \not\sim -\pi \) omdat \(2/3 \not< -\pi \).

Het is gebruikelijk \(x < y \) in plaats van \(x \sim y \) te schrijven en we kunnen eenvoudig zeggen dat \(\sim \) de relatie \(< \) op \(\mathbb{R} \) is.

II.4.3 Voorbeeld. We beschouwen nu de verzameling \(\mathbb{Z} \) van alle gehele getallen. Het begrip ‘deelbaarheid door 3’ definieert een relatie op \(\mathbb{Z} \): het getal \(a \) is in relatie met het getal \(b \) als hun verschil \(a - b \) deelbaar is door 3. Deze relatie kunnen we \(\sim \) noemen en we kunnen schrijven

\[
a \sim b \quad \text{dan en slechts dan als} \quad 3 \mid (a - b).
\]

Er geldt dus 14 \(\sim \) 5 want 3 \mid 9 = (14 - 5), maar 14 \(\not\sim \) 6 omdat 3 \not\mid 8 = (14 - 6).

Equivalentierelaties

Een van de relaties die we dagelijks tegenkomen is de gelijkheid \(= \); zijn basis-eigenschappen zijn in de volgende definitie beschreven. Relaties die aan deze eigenschappen voldoen zijn bijzonder belangrijk in de wiskunde want ze helpen ons verzamelingen in delen met onderling equivalente elementen te verdelen.

II.4.4 Definitie. Een relatie \(\sim \) op een verzameling \(A \) heet een equivalentierelatie als zij aan de volgende eisen voldoet:

(i) \(\sim \) is *reflexief*, dat wil zeggen,

\[
\text{voor alle } x \in A \text{ geldt } x \sim x;
\]

(ii) \(\sim \) is *symmetrisch*, dat wil zeggen,

\[
\text{voor alle } x, y \in A \text{ geldt } (x \sim y) \Rightarrow (y \sim x);
\]

(iii) \(\sim \) is *transitief*, dat wil zeggen,

\[
\text{voor alle } x, y, z \in A \text{ geldt } ((x \sim y) \land (y \sim z)) \Rightarrow (x \sim z).
\]
II.4.5 Voorbeeld.

(i) We bewijzen dat de relatie \sim uit Voorbeeld II.4.3 een equivalentierelatie is. Het is makkelijk in te zien dat \sim reflexief is. Immers, voor alle $a \in \mathbb{Z}$ geldt $a - a = 0$ en $3 | 0$, dus $a \sim a$.

Neem nu aan dat $a \sim b$, dat wil zeggen, $3 | (a - b)$. Maar dan ook $3 | (b - a)$ en dus $b \sim a$. We hebben aangetoond dat \sim symmetrisch is.

Om ook de transitiviteit te bewijzen laat $a, b, c \in \mathbb{Z}$ zijn met $a \sim b$ en $b \sim c$. Dan $3 | (a - b)$ en $3 | (b - c)$, en omdat $(a - b) + (b - c) = a - c$ volgt er $3 | (a - c)$. Maar $3 | (a - c)$ betekent $a \sim c$; het bewijs is dus voltooid.

(ii) Een ander voorbeeld van een equivalentierelatie is ‘gelijkheid = (ga zelf na dat aan alle eisen voldaan is).

(iii) De relatie \leq op \mathbb{R} is geen equivalentierelatie. Zij is wel reflexief (voor elke x geldt $x \leq x$) en transitief (als $x \leq y$ en $y \leq z$ dan ook $x \leq z$) maar \leq is niet symmetrisch: $2 \leq 3$ maar $3 \nleq 2$.

II.4.6 Definitie. Zij $n \in \mathbb{Z}$. Twee gehele getallen k en l heten congruent modulo n alsn het verschil $k - l$ deelt.

Notatie: $k \equiv l \pmod{n}$.

II.4.7 Voorbeeld. Voor $n, m \in \mathbb{Z}$ geldt $n \equiv m \pmod{2}$ precies dan als n en m beide even zijn, of beide oneven.

Een equivalentierelatie op een verzameling verdeelt die verzameling in disjuncte deelverzamelingen, zoals we hierboven hebben gezien voor de congruentie relatie ‘\mod{n}’ op \mathbb{Z}.

II.4.8 Definitie. Laat A een verzameling zijn, en \sim een equivalentierelatie op A. Voor $x \in A$ heet de verzameling $\overline{x} = \{y \in A : y \sim x\}$ de equivalentielklasse van x, voor \sim.

Als nodig zullen we de equivalentierelatie ook in deze notatie \overline{x} betrekken. Een equivalentielklasse is per definitie niet leeg.

II.4.9 Voorbeeld. Laat $n \in \mathbb{Z}$. Laat x in \mathbb{Z}. De equivalentielklasse van x voor de equivalentierelatie ‘\mod{n}’ is $x + n\mathbb{Z}$. Als de afhankelijkheid van n expliciet moet worden aangegeven schrijven we \overline{x}_n voor de equivalentielklasse van x.

II.4 EQUIVALENTIERELATIES EN QUOTIËNTEN 35
II.4.10 Stelling. Laat A een verzameling zijn, en \sim een equivalentierelatie op A. Voor alle $x, y \in A$ geldt:

$$x \sim y \Leftrightarrow \overline{x} = \overline{y}, \quad x \not\sim y \Leftrightarrow \overline{x} \cap \overline{y} = \emptyset$$

De verzameling A is dus de disjuncte vereniging van zijn equivalentieklassen, ofwel: A is gepartitioneerd door de equivalentieklassen.

Bewijs. Laat x en y in A zijn. Stel dat $x \sim y$. Voor iedere $z \in \overline{x}$ geldt per definitie dat $z \sim x$, en dus dat $z \sim y$ vanwege de transitiviteit van \sim. Dus geldt dat $\overline{x} \subseteq \overline{y}$. Maar dan geldt net zo goed dat $\overline{y} \subseteq \overline{x}$, want de situatie is symmetrisch in x en y (symmetrie van \sim) en dus dat $\overline{x} = \overline{y}$.

Stel nu dat $\overline{x} = \overline{y}$. Natuurlijk geldt dat $x \in \overline{x}$ (reflexiviteit), en dus $x \in \overline{y}$, en dus ook dat $x \sim y$. De eerste equivalentie is nu bewezen.

Stel nu dat $\overline{x} \cap \overline{y} = \emptyset$. Dan is x geen element van \overline{y}, en dus $x \not\sim y$. Als daarentegen $\overline{x} \cap \overline{y} \neq \emptyset$, dan neem $z \in \overline{x} \cap \overline{y}$ en constateer dat $z \sim x$, en dus ook $x \sim z$, en $z \sim y$, en dus (transitiviteit) $x \sim y$.

Quotiëntafbeelding

Het belangrijkste wat met een equivalentierelatie \sim op een verzameling X gebeurt kan worden is het vormen van een quotiëntafbeelding. In Opgeve II.4.5 zien we dat voor $f: A \rightarrow B$ een afbeelding de relatie \sim op A gegeven door $x \sim y \Leftrightarrow f(x) = f(y)$ een equivalentierelatie is. We kunnen ons nu afvragen of er, omgekeerd, voor iedere equivalentierelatie er zo'n afbeelding is, en hoe uniek zo'n afbeelding is. De volgende definitie en stelling maken dit alles duidelijk.

II.4.11 Definitie. Zij A een verzameling, en \sim een equivalentierelatie op A. Een afbeelding $q: A \rightarrow B$ heet een quotiënt voor \sim als:

1. q is surjectief;
2. voor alle $x, y \in A$ geldt $x \sim y \Leftrightarrow q(x) = q(y)$.

II.4.12 Stelling. Zij A een verzameling, en \sim een equivalentierelatie op A.

1. Laat $q: A \rightarrow B$ en $q': A \rightarrow B'$ quotiëntafbeeldingen zijn. Dan is er een unieke afbeelding $f: B \rightarrow B'$ met $q' = f \circ q$. Deze afbeelding f is een bijection.
2. Laat $\overline{A} = \{ \overline{x} : x \in A \}$, en laat $q: A \rightarrow \overline{A}$ gegeven zijn door $q(x) = \overline{x}$. Dan is q een quotiëntafbeelding.

Bewijs. 1. Laat $q: A \rightarrow B$ en $q': A \rightarrow B'$ quotiëntafbeeldingen zijn. Laat

$$f = \{(q(x), q'(x)) : x \in A\} \subseteq B \times B'.$$

We bewijzen nu eerst dat f de grafiek van een functie van B naar B' is. Laat $b \in B$. Neem een $x \in A$ met $q(x) = b$ (surjectiviteit van q). Dan $(b, q'(x)) \in f$, dus er is minstens één $b' \in B'$ zodat $(b, b') \in f$. Stel nu dat (b, b') en (b, b'_1) allebei in f zitten. Neem $x_1 \in A$ en $x_2 \in A$ met $(b, b'_1) = (q(x_1), q'(x_1))$ en $(b, b'_2) = (q(x_2), q'(x_2))$ (gebruik de definitie van f). Dan geldt $q(x_1) = b = q(x_2)$, en dus $x_1 \sim x_2$ (want q is een quotiëntafbeelding). Maar dan geldt ook dat $b'_1 = q'(x_1) = q'(x_2) = b'_2$, want q' is ook een quotiëntafbeelding. Vanwege de symmetrie in de situatie is f ook de grafiek van een functie van B' naar B, en dus de grafiek van een bijection. Voor $x \in A$ geldt dan dat $f(q(x)) = q'(x)$, want $(q(x), q'(x)) \in f$. Omdat q een surjectie is, kan er hoogstens één $f: B \rightarrow B'$ zijn met $f \circ q = q'$.

2. De afbeelding $q: A \rightarrow \overline{A}$ heeft overduidelijk de gewenste eigenschappen. ■
II.4.13 Opmerking. Onderdeel 1 van de bovenstaande stelling zegt dat alle
quotiëntafbeeldingen voor een vaste equivalentierelatie alleen op een administratieve
wijze verschillen. Iedereen kan zijn/haar eigen favoriete quotiëntafbeeldingen kie-
zen. Laten we dit illustreren met een flauw voorbeeld. Laat ~ de equivalentie-
relatie ‘mod 0’ op \(\mathbb{Z} \) zijn. Dan is id\(_\mathbb{Z} \) : \(\mathbb{Z} \to \mathbb{Z} \) een quotiënt, maar ook q : \(\mathbb{Z} \to \mathbb{Z} \),
met \(\overline{Z} = \{ \{x\} : x \in \mathbb{Z}\} \), en q : \(x \mapsto \{x\} \).

II.4.14 Definitie. Laat \(n \in \mathbb{Z} \). Laat ~ de equivalentierelatie ‘mod \(n \)’ op \(\mathbb{Z} \) zijn.
We schrijven \(\mathbb{Z}/n\mathbb{Z} \) voor de quotiëntverzameling \(\{\overline{x} : x \in \mathbb{Z}\} \) van \(\mathbb{Z} \) naar ~.

II.4.15 Voorbeeld. Laat \(n \in \mathbb{Z} \) met \(n > 0 \). Dan geldt \(\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \ldots, \overline{n-1}\} \).
Maar ook geldt: \(\mathbb{Z}/n\mathbb{Z} = \{\overline{[n/2]}, \ldots, \overline{[n/2]}\} \). Hier is, voor \(x \in \mathbb{R}, [x] \) de
grootste \(n \in \mathbb{Z} \) met \(n \leq x \) (het ‘gehele deel’ van \(x \)).

II.4.16 Stelling. Laat \(n \in \mathbb{Z} \). Laat ~ de equivalentierelatie ‘mod \(n \)’ op \(\mathbb{Z} \) en
\(x, x', y, y' \in \mathbb{Z} \) zijn, en neem aan dat \(\overline{x} = \overline{x'} \) en \(\overline{y} = \overline{y'} \). Dan geldt:
(a) \(\overline{x + y} = \overline{x} + \overline{y} \),
(b) \(\overline{x'y'} = \overline{x'y} \).

Bewijs. Aangezien \(\overline{x} = \overline{x'} \) en \(\overline{y} = \overline{y'} \) zijn er \(a \) en \(b \) met \(x' = x + an \) en \(y' = y + bn \).
Dan geldt:
\[x' + y' = x + an + y + bn = x + y + (a + b)n \]
en
\[x'y' = (x + an)(y + bn) = xy + xbn + any + anbn = xy + (xb + ay + ab)n \].

Dit betekent dat \(\overline{x + y} = \overline{x} + \overline{y} \) en \(\overline{x'y'} = \overline{x'y} \).

II.4.17 Voorbeeld. Beschouw het geval \(n = 12 \). Dan geldt \(8 + 6 = 14 \equiv 2 \)
(mod 12), dus \(8 + 6 = \overline{2} \in \mathbb{Z}/12\mathbb{Z} \). (Herken je zo’n berekening uit het dagelijkse
leven?) Analogisch, \(8 \cdot 6 = 48 \equiv 0 \) (mod 12), dus \(8\overline{6} = \overline{0} \in \mathbb{Z}/12\mathbb{Z} \).

We gaan nu nog een stap verder. Laat \(n \in \mathbb{Z} \), en ~ etc. zoals in Stelling II.4.16.
Vanwege die stelling kunnen we afbeeldingen + : \(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \) en
\(\cdot : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \) ‘definieren’ door: voor \(a \) en \(b \) in \(\mathbb{Z}/n\mathbb{Z} \), kies \(x \) en \(y \)
in \(\mathbb{Z} \) met \(a = \overline{x} \) en \(b = \overline{y} \) (m.a.w., we kiezen \(x \in a \) en \(y \in b \)),
en laat \(a + b = \overline{x+y} \), en \(ab = \overline{xy} \). Om deze ‘definitie’ een definitie te laten zijn, moeten we wel laten
zien dat er zulke \(x \) en \(y \) bestaan, en dat de resultaten \(\overline{x+y} \) en \(\overline{xy} \)
van de keuze van \(x \) en \(y \) afhangen. Het bestaan volgt uit het feit dat evenredigklassen
per definitie niet leeg zijn, en de rest volgt precies uit Stelling II.4.16. We hebben
uw de volgende stelling bewezen.

II.4.18 Stelling. Laat \(n \in \mathbb{Z} \). Er zijn unieke afbeeldingen
\[+ \text{ en } \cdot : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \]
met de eigenschap dat voor alle \(x, y \in \mathbb{Z} \) geldt:
\[\overline{x + y} = \overline{x} + \overline{y}, \quad \overline{xy} = \overline{xy} \).
Vanwege deze eigenschappen voldoen deze operaties op $\mathbb{Z}/n\mathbb{Z}$ aan de gebruikelijke axioma's van commutativiteit, associativiteit, bestaan en uniciteit van neutrale elementen, en de distributieve eigenschap geldt. Bijvoorbeeld: voor alle $x, y \in \mathbb{Z}$ geldt $x + y = y + x = y + x = y + x$.

II.4.19 Voorbeeld (De Negenproef). Een bekende regel over deelbaarheid door negen zegt dat een natuurlijk getal deelbaar is door negen als de som van zijn cijfers dat is. Bijvoorbeeld, het getal 531747 is deelbaar door negen want de som 5 + 3 + 1 + 7 + 4 + 7 = 27 = 3 · 9 is een veelvoud van 9.

Deze regel kunnen we als volgt bewijzen. Laat $n \in \mathbb{N}$. We kunnen n schrijven als

$$n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \cdots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0,$$

met de $a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Omdat $10 \equiv 1 \pmod{9}$ hebben we, in $\mathbb{Z}/9\mathbb{Z}$, $10 = 1$, en dus ook, voor alle $k \in \mathbb{N}$: $10^k = 1^k = 1$. En dus (nog steeds in $\mathbb{Z}/9\mathbb{Z}$):

$$n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \cdots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0 = a_k + a_{k-1} + \cdots + a_2 + a_1 + a_0.$$

We constateren dat n en $a_k + a_{k-1} + \cdots + a_2 + a_1 + a_0$ hetzelfde beeld hebben in $\mathbb{Z}/9\mathbb{Z}$, en we concluderen dat n deelbaar is door 9 precies dan als $a_k + a_{k-1} + \cdots + a_2 + a_1 + a_0$ deelbaar is door 9.

II.4.20 Stelling. Zij $n \in \mathbb{Z}$. Iedere $a \in \mathbb{Z}/n\mathbb{Z}$ heeft een unieke additieve inverse, $-a$. Voor elke $a, b, c \in \mathbb{Z}/n\mathbb{Z}$ geldt: $(a + b = a + c) \Rightarrow (b = c)$.

Bewijs. Laat $a \in \mathbb{Z}/n\mathbb{Z}$, en kies een $x \in \mathbb{Z}$ met $a = \overline{x}$. Dan geldt:

$$\overline{-x + a} = \overline{-x + \overline{x}} = \overline{-x} + \overline{x} = \overline{0}.$$

Laat $a, b, c \in \mathbb{Z}/n\mathbb{Z}$, en neem aan dat $a + b = a + c$. Dan geldt:

$$b = 0 + b = (-a + a) + b = -a + (a + b) = -a + (a + c) = (-a + a) + c = 0 + c = c.$$

Het volgend voorbeeld laat zien dat het met de schrapwet voor vermenigvuldiging moeilijker is gesteld.

II.4.21 Voorbeeld. In $\mathbb{Z}/6\mathbb{Z}$ geldt: $2 \overline{3} = \overline{6} = \overline{0}$, en $2 \overline{3} = \overline{4 \cdot 3}.$

De volgende stelling zegt precies welke elementen van $\mathbb{Z}/n\mathbb{Z}$ een multiplicatieve inverse hebben.

II.4.22 Stelling. Laat $n \in \mathbb{Z}$. Laat $x \in \mathbb{Z}$. Dan bestaat er een $b \in \mathbb{Z}/n\mathbb{Z}$ met $\overline{x} \cdot \overline{b} = \overline{1}$ precies dan als $\text{ggd}(x, n) = 1$. Deze b is uniek, en wordt als \overline{x}^{-1} genoteerd, of als $\overline{1/x}$.

Bewijs. Opgave II.4.8
II.4.23 Voorbeeld.

(i) We zoeken alle x in $\mathbb{Z}/5\mathbb{Z}$ die voldoen aan
$$\overline{3x + 3} = \overline{3}.$$
Aangezien $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ kunnen we die gewoon allemaal proberen. Er volgt dat $x = \overline{1}$ de unieke oplossing is.

(ii) We zoeken alle $x \in \mathbb{Z}/30\mathbb{Z}$ die voldoen aan
$$\overline{23x + 11} = \overline{29}.$$
Het aantal elementen van $\mathbb{Z}/30\mathbb{Z}$ is 30 en dus probeert een goed wiskundige liever niet al die gevallen af te lopen. We kunnen de volgende methode gebruiken die gebaseerd is op het Euclidische algoritme.

We vereenvoudigen eerst de vergelijking door bij beide kanten -11 op te tellen; we krijgen de equivalentie:
$$\overline{23x} = \overline{18}.$$
Aangezien $\text{ggd}(23, 30) = 1$ heeft 23 een unieke multiplicatieve inverse y (Stelling II.4.22). We kunnen y als volgt vinden met het Euclidische algoritme. Er geldt
$$
\begin{align*}
30 &= 1 \cdot 23 + 7 & \Rightarrow & 7 &= 30 - 1 \cdot 23 \\
23 &= 3 \cdot 7 + 2 & \Rightarrow & 2 &= 23 - 3 \cdot 7 \\
7 &= 3 \cdot 2 + 1.
\end{align*}
$$
Hieruit volgt
$$1 = 7 - 3 \cdot 2 = 7 - 3(23 - 3 \cdot 7) = 10 \cdot 7 - 3 \cdot 23 = 10(30 - 1 \cdot 23) - 3 \cdot 23 = 10 \cdot 30 - 13 \cdot 23$$
en dus, in $\mathbb{Z}/30\mathbb{Z}$,
$$\overline{1} = \overline{-13 \cdot 23}.$$
We hebben y gevonden: $y = \overline{-13}$ (en dus ook $\overline{17}$).

Vermenigvuldig nu beide kanten van onze vergelijking met $\overline{17}$; dan krijgen we de equivalentie:
$$x = \overline{17} \cdot \overline{18}.$$
Omdat $17 \cdot 18 = 306 = 10 \cdot 30 + 6$, hebben we alle oplossing gevonden:
$$x = \overline{6} \text{ in } \mathbb{Z}/30\mathbb{Z}.$$
Deze relatie is een equivalentierelatie. De quotiëntafbeelding noteren we dan als $q : \mathbb{N}^2 \to \mathbb{Z}$. Er zijn unieke afbeeldingen $+$ en $\cdot : \mathbb{Z}^2 \to \mathbb{Z}$ met de eigenschap dat voor alle (a, b) en (c, d) in \mathbb{N}^2 geldt dat $q(a, b) + q(c, d) = q(a + c, b + d)$ en $q(a, b) \cdot q(c, d) = q(ac + bd, ad + bc)$. Dan voldoet $(\mathbb{Z}, q(0, 0), q(1, 0), +, \cdot)$ aan alle axioma’s (Z0)–(Z10).

Constructie van \mathbb{Q}

Uit de axioma’s voor \mathbb{Q} volgt dat ieder rationaal getal te schrijven is als a/b met $a \in \mathbb{Z}$ en $b \in \mathbb{N}_{>0}$. We definieren dan ook de relatie \sim op $\mathbb{Z} \times \mathbb{N}_{>0}$ gegeven door:

$\left((a, b) \sim (a', b') \right) \Leftrightarrow (ab' = a'b)$.

Deze relatie is een equivalentierelatie. We noteren de quotiëntafbeelding als $q : \mathbb{Z} \times \mathbb{N}_{>0} \to \mathbb{Q}$. Er zijn unieke afbeeldingen $+$ en $\cdot : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ met de eigenschap dat voor alle (a, b) en (c, d) in $\mathbb{Z} \times \mathbb{N}_{>0}$ geldt dat $q(a, b) + q(c, d) = q(ad + bc, bd)$ en $q(a, b) \cdot q(c, d) = q(ac, bd)$. Dan voldoet $(\mathbb{Q}, q(0, 0), q(0, 1), +, \cdot)$ aan alle axioma’s (Q0)–(Q10).

Opgaven

1. Beschouw de volgende relaties op de verzameling \mathbb{Z} van alle gehele getallen:

 $a \mid b$ en $a^2 + a = b^2 + b$.

 Welke van deze twee relaties is
 (a) reflexief,
 (b) symmetrisch,
 (c) transitief?

2. Laat, voor $n \in \mathbb{N}$, $E(n)$ het aantal equivalentierelaties zijn op $\{ a \in \mathbb{N} : a < n \}$. Bereken $E(n)$ voor $0 \leq n \leq 5$.

3. Zij \sim de relatie op \mathbb{Z} gedefinieerd door $x \sim y$ dan en slechts dan als $x - y$ een veelvoud van 7 is. Is \sim een equivalentierelatie?

4. Laat zien dat de relatie \sim gedefinieerd op \mathbb{R} door

 $x \sim y$ dan en slechts dan als $|x| = |y|

 een equivalentierelatie is.

5. Laat A en B verzamelingen zijn, en $f : A \to B$ een afbeelding. Bewijs dat de relatie \sim op A gegeven door: $x \sim y \Leftrightarrow f(x) = f(y)$ een equivalentierelatie is.

6. Bewijs: als $n > 1$ geen priemgetal is dan bestaan er $a, b \in \mathbb{Z}/n\mathbb{Z}$ met $a \neq \overline{0}$, $b \neq \overline{0}$ en $ab = \overline{0}$.

7. Zij $n > 0$ een natuurlijk getal. Laat zien dat voor elke $a, b \in \mathbb{Z}$ de vergelijking

 $a + x \equiv b \pmod{n}

 een unieke oplossing heeft in $\{0, 1, 2, \ldots, n - 1\}$.

9. **(De Drieproof)** Bewijs dat een natuurlijk getal deelbaar is door drie dan en slechts dan als de som van zijn cijfers dat is.

11. Los de volgende vergelijkingen op:

 (a) $7x + 3 = 1$ in $\mathbb{Z}/3\mathbb{Z}$

 (b) $7x + 2 = 0$ in $\mathbb{Z}/10\mathbb{Z}$

 (c) $6x + 3 = 1$ in $\mathbb{Z}/10\mathbb{Z}$

 (d) $6x + 3 = 1$ in $\mathbb{Z}/10\mathbb{Z}$

 (e) $323x + 117 = 103$ in $\mathbb{Z}/10\mathbb{Z}$

 (f) $13x + 40 = 5$ in $\mathbb{Z}/45\mathbb{Z}$

12. Bewijs de Kleine Stelling van Fermat: Voor elk priemgetal p, en voor alle a in $\mathbb{Z}/p\mathbb{Z}$:

 $$a^p = a.$$

13. Bewijs dat als p een priemgetal is, en $a, b, c \in \mathbb{Z}/p\mathbb{Z}$ met $a \neq 0$, dan is er een unieke $x \in \mathbb{Z}/p\mathbb{Z}$ met:

 $$ax + b = c.$$

14. Laat Ω een verzameling zijn, en R de verzameling van alle functies $f: \Omega \rightarrow \mathbb{Z}/2\mathbb{Z}$. Voor $f, g \in R$ definiëren we $f + g$ en fg in R door $(f + g): x \mapsto f(x) + g(x)$ en $fg: x \mapsto f(x)g(x)$. Voor iedere $A \subseteq \Omega$ definiëren we de *karakteristieke functie* 1_A van A door: $1_A(x) = 1$ als $x \in A$ en $1_A(x) = 0$ als $x \notin A$.

 (a) Laat zien dat de afbeelding $\mathcal{P}(A) \rightarrow R$, $A \mapsto 1_A$ een bijection is.

 (b) Laat zien dat voor alle $A, B \in \mathcal{P}(A)$ geldt dat $1_{A \cap B} = 1_A1_B$.

 (c) Laat zien dat voor alle $A, B \in \mathcal{P}(A)$ geldt dat $1_a + 1_B = 1_{(A \cup B) \setminus (A \cap B)}$.

 (d) Laat zien dat voor alle $A, B \in \mathcal{P}(A)$ geldt dat $1_{A \cup B} = 1_A + 1_B + 1_A1_B$, en $1_{\Omega \setminus A} = 1_\Omega + 1_A$.

 (e) Doe nu opnieuw de sommen in sectie I.2 waarin identiteiten tussen verzamelingen moeten worden bewezen, maar nu door te rekenen met de gebruikelijke regels voor optelling en vermenigvuldiging in R (merk op dat $f^2 = f$ voor alle f in R).

II.4 EQUIVALENTIERELATIES EN QUOTIËNTEN
II.5 Algebraïsche structuur van reële getallen

We vervolgen onze axiomatische karakterisering van getalsystemen. Nu zijn de reële getallen aan de beurt, met de operaties van optelling en vermenigvuldiging, en de ordeningsrelatie. De axioma’s geven we in drie delen, waarvan de eerste twee in deze sectie. Alle axioma’s samen karakteriseren de reële getallen met hun optelling, vermenigvuldiging en ordening. Een constructie van \mathbb{R} uit \mathbb{Q} zullen we nog later schetsen.

Axioma’s voor \mathbb{R}, deel 1

We geven nu een aantal gegevens en axioma’s voor \mathbb{R}, de verzameling van reële getallen, met optelling en vermenigvuldiging. De gegevens zijn:

(a) een verzameling \mathbb{R};
(b) twee verschillende elementen 0 en 1 in \mathbb{R};
(c) een afbeelding $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$;
(d) een afbeelding $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$;
(e) een relatie $>$ op \mathbb{R}.

Deze gegevens voldoen aan de volgende axioma’s, waarvan de eerste 9 precies zijn zoals voor \mathbb{Q}:

(R0) de optelling is commutatief: voor alle $a, b \in \mathbb{R}$ geldt $a + b = b + a$;
(R1) de optelling is associatief: voor alle $a, b, c \in \mathbb{R}$ geldt $(a + b) + c = a + (b + c)$;
(R2) 0 is neutraal voor de optelling, d.w.z., voor alle $a \in \mathbb{R}$ geldt $0 + a = a$;
(R3) additieve inversen bestaan: voor iedere $a \in \mathbb{R}$ is er een $b \in \mathbb{R}$ met $a + b = 0$ (deze b is dan uniek, en wordt genoteerd als $-a$);
(R4) de vermenigvuldiging is commutatief: voor alle $a, b \in \mathbb{R}$ geldt $ab = ba$;
(R5) de vermenigvuldiging is associatief: voor alle $a, b, c \in \mathbb{R}$ geldt $(ab)c = a(bc)$;
(R6) 1 is neutraal voor de vermenigvuldiging, d.w.z., voor alle $a, b \in \mathbb{R}$ geldt $1 \cdot a = a$;
(R7) multiplicatieve inversen bestaan: voor iedere $a \in \mathbb{R}$ met $a \neq 0$ is er een $b \in \mathbb{R}$ met $ab = 1$ (deze b is dan uniek, en wordt genoteerd als $1/a$ en ook a^{-1});
(R8) de distributieve eigenschap geldt: voor alle $a, b, c \in \mathbb{R}$ geldt $a(b+c) = ab + ac$;
(R9) voor alle $a, b \in \mathbb{R}$ geldt precies één van de volgende drie gevallen: $a = b$, of $a > b$, of $b > a$;
(R10) voor alle $a, b \in \mathbb{R}$ geldt: als $a > 0$ en $b > 0$, dan $a + b > 0$ en $ab > 0$;

Net als in \mathbb{Q} kunnen we nu ook voor $a, b \in \mathbb{R}$ het verschil definiëren: $a - b = a + (-b)$, en, als $b \neq 0$, het quotiënt $a/b = a \cdot b^{-1}$.

(R11) Voor elke $a, b \in \mathbb{R}$ geldt: $a > b$ dan en slechts dan als $a - b > 0$.

Uit de axioma’s (R0)-(R11) kunnen we alle bekende rekenregels voor de reële getallen met optellen, vermenigvuldigen en ongelijkheden afleiden; zie Opvragen II.5.1 en II.5.2 voor een aantal daarvan.

Als $a > 0$ noemen we a positief, en we schrijven $\mathbb{R}_{>0}$ voor de verzameling van positieve reële getallen.

We definiëren de relatie $<$ op \mathbb{R} als de deelverzameling $\{(a,b) \in \mathbb{R}^2 \mid b > a\}$. Voor a en b in \mathbb{R} geldt dus: $a < b \Leftrightarrow b > a$.

Als $a < 0$ noemen we a negatief is.

We gebruiken $a \geq b$ als een afkorting van a is groter dan of gelijk aan b; analogo definiëren we $a < b$ en $a \leq b$. We kunnen ook een aantal rekenregels voor de ongelijkheden afleiden.

II.5.1 Propositie. Voor alle $x, y, z \in \mathbb{R}$ geldt
(i) als \(x < y \) dan \(x + z < y + z \);
(ii) als \(x < y \) en \(z > 0 \) dan \(x \cdot z < y \cdot z \);
(iii) als \(x < y \) en \(z < 0 \) dan \(x \cdot z > y \cdot z \);
(iv) als \(x > 0 \) dan \(1/x > 0 \).

Bewijs. Opgave II.5.5.

Er is, vanwege Stelling IX.3.1, een unieke afbeelding \(f : \mathbb{N} \to \mathbb{R} \) met \(f(0) = 0 \) en, voor alle \(n \in \mathbb{N} \), \(f(n + 1) = 1 + f(n) \). Deze afbeelding is injectief (Opgave II.5.6). Dan is er een unieke uitbreiding van \(f \) tot \(\mathbb{Z} \) met de eigenschap dat voor alle \(a, b \in \mathbb{Z} \) met \(b \neq 0 \) geldt: \(f(a/b) = f(a)/f(b) \), en deze uitbreiding is ook injectief. Via deze \(f : \mathbb{Q} \to \mathbb{R} \) vatten we \(\mathbb{N} \), \(\mathbb{Z} \) en \(\mathbb{Q} \) op als deelverzamelingen van \(\mathbb{R} \). We kunnen nu het één na laatste axioma voor \(\mathbb{R} \) formuleren.

(A12) (Archimedes’ eigenschap) Voor iedere \(x \in \mathbb{R} \) is er een \(n \in \mathbb{N} \) met \(x < n \).

II.5.2 Opmerking. Een stel gegevens \((\mathbb{R}, 0, 1, +, \cdot)\) met \(1 \neq 0 \) dat aan \((R0)\) t/m \((R8)\) voldoet heet een lichaam. Een stel gegevens \((\mathbb{R}, 0, 1, +, \cdot, \lt)\) met \(1 \neq 0 \) dat aan \((R0)\) t/m \((R11)\) voldoet heet een geordend lichaam. De verzamelingen \(\mathbb{N} \) en \(\mathbb{Z} \), met hun optelling, vermenigvuldiging en ordening, zijn geordende lichamen. De verzameling van alle complexe getallen, met optelling en vermenigvuldiging, dat we hier niet bespreken, is wel een lichaam maar laat geen ordening toe (dit alleen ter informatie).

Opgaven

1. Bewijs slechts met behulp van de basiseigenschappen \((R0)\) t/m \((R8)\) de volgende rekenregels voor de reële getallen: voor alle \(a, b, c \in \mathbb{R} \) geldt

 (a) \(-(-a) = a\);
 (b) \(-(b - a) = a - b\);
 (c) \(a \cdot 0 = 0\);
 (d) \((-a) \cdot (-b) = a \cdot b\);
 (e) als \(a \neq 0 \) en \(b \neq 0 \) dan is \(a \cdot b \neq 0 \).

2. Bewijs slechts met behulp van de basiseigenschappen \((R0)\) t/m \((R8)\) dat voor alle \(a, b, c, d \in \mathbb{R} \) met \(b \neq 0 \) en \(d \neq 0 \) geldt

 (a) \(\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \);
 (b) \(\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d} \);
 (c) \(\frac{a}{b/d} = \frac{ad}{b} \).

3. Bewijs dat voor elk reëel getal \(x \neq 0 \) geldt \(x \cdot x > 0 \).

4. Bewijs de volgende beweringen:

 (a) Elke vergelijking \(a + x = b \) met \(a, b \in \mathbb{R} \) heeft precies één oplossing in \(\mathbb{R} \).
 (b) Elke vergelijking \(ax = b \) met \(a, b \in \mathbb{R} \) en \(a \neq 0 \) heeft precies één oplossing in \(\mathbb{R} \).

II.5 ALGEBRAISCHE STRUCTUUR VAN REËLE GETALLEN 43
5. Bewijs Proppositie II.5.1.

6. Laat zien dat de afbeelding \(f : \mathbb{N} \rightarrow \mathbb{R} \) met \(f(0) = 0 \) en, voor alle \(n \in \mathbb{N} \), \(f(n + 1) = 1 + f(n) \), injectief is.

\[\star \] 7. Bewijs dat er geen \(x \in \mathbb{Q} \) is met \(x^2 = 2 \).

\[\star \] 8. Bewijs dat tussen elk paar reële getallen \(x < y \) een rationaal getal ligt.
II.6 Een fundamentele eigenschap van \mathbb{R}

Zowel de reële getallen als de rationale getallen vormen geordende lichamen (zie Opmerking II.5.2). Deze geordende lichamen zijn echter principieel verschillend. De verzameling \mathbb{R} is bijvoorbeeld aanzienlijk groter dan de verzameling \mathbb{Q}. We hebben al gezien dat een bijectie tussen \mathbb{N} en \mathbb{Q} bestaat maar geen bijectie tussen \mathbb{N} en \mathbb{R}; de verzameling \mathbb{Q} is aftelbaar en de verzameling \mathbb{R} is overaftelbaar.

Het volgende voorbeeld illustreert een andere eigenschap van de reële rechte die de verzameling \mathbb{Q} niet heeft maar die in de Analyse heel belangrijk is.

II.6.1 Voorbeeld. Bekijk maar eens de verzameling van alle rationale getallen met de eigenschap dat ze of negatief zijn of dat hun kwadraat niet groter dan 2 is:

$$A = \{ x \in \mathbb{Q} : x < 0 \} \cup \{ x \in \mathbb{Q} : x \geq 0 \text{ en } x^2 \leq 2 \}.$$

Blijkbaar is elk rationaal getal $q < \sqrt{2}$ een element van A en het is ook niet moeilijk in te zien dat geen getal groter dan $\sqrt{2}$ element van A is. Het getal $\sqrt{2}$ markeert de overgang van A naar zijn complement $\mathbb{Q} \setminus A$: alle elementen van A liggen op de reële rechte links van $\sqrt{2}$, en alle elementen van $\mathbb{Q} \setminus A$ bevinden zich rechts van $\sqrt{2}$. Het 'grensgetal' $\sqrt{2}$ is echter geen rationaal getal, zie Opgave II.5.7; we zouden kunnen zeggen dat de verzameling \mathbb{Q} 'gaten' bevat.

De verzameling \mathbb{R} heeft geen 'gaten': om deze belangrijke eigenschap van \mathbb{R} te kunnen formuleren geven we eerst enkele definities.

II.6.2 Definitie. Een deelverzameling V van \mathbb{R} heet:

(i) **naar boven begrensd** als er een $x \in \mathbb{R}$ bestaat zodat $v \leq x$ voor alle $v \in V$. In deze situatie noemen we x een **bovengrens** voor V.

(ii) **naar beneden begrensd** als er een $x \in \mathbb{R}$ bestaat zodat $x \leq v$ voor alle $v \in V$. In deze situatie noemen we x een **ondergrens** voor V.

(iii) **begrensd** als V naar boven en naar beneden begrensd is.

II.6.3 Voorbeeld. De deelverzameling \mathbb{N} van \mathbb{R} is naar beneden begrensd (iedere $x \leq 0$ is een ondergrens) maar niet naar boven begrensd (dit is (R12)). De verzamelingen \mathbb{Z} en \mathbb{Q} zijn noch naar boven, noch naar beneden begrensd. De intervallen $(0,1) = \{ x \in \mathbb{R} : 0 < x < 1 \}$ en $[0,1] = \{ x \in \mathbb{R} : 0 \leq x \leq 1 \}$ zijn begrensd; in beide gevallen is iedere $x \geq 1$ een bovengrens en iedere $x \leq 0$ een ondergrens.

II.6.4 Definitie. Zij V een deelverzameling van \mathbb{R}.

supremum

(i) Een element $x \in \mathbb{R}$ heet een **supremum** van V als het een kleinste bovengrens van V is, dat wil zeggen,

- x is bovengrens voor V,
- als y een bovengrens voor V is, dan geldt $y \geq x$.

infimum

(ii) Een element $x \in \mathbb{R}$ heet een **infimum** van V als het een grootste ondergrens van V is, dat wil zeggen,

- x is ondergrens voor V,
- als y een ondergrens voor V is, dan geldt $y \leq x$.

II.6.5 Opmerking. Suprema en infima van verzamelingen zijn (als ze bestaan!!!) uniek, daarom zeggen we het supremum, de kleinste bovengrens, het infimum en de grootste ondergrens.

Notatie: inf V voor het infimum, en sup V voor het supremum.
II.6.6 Voorbeeld. We bekijken de verzameling $V = \{x \in \mathbb{R} : x^3 > 8\}$. Merk eerst op dat elk element van V groter is dan 2. Immers, als $x \in V$ dan $x^3 > 8 = 2^3$ en bijgevolg $x > 2$. Hieruit volgt dat 2 een ondergrens van V is. Om te laten zien dat 2 het infimum van V is moeten we nog aantonen dat geen grotere onderngrens bestaat.

Zij $y \in \mathbb{R}_{>2}$. Laat $h = (y - 2)/2$. Dan geldt $h > 0$, $y = 2 + 2h$. Laat $z = y - h$, dan $z < y$, en $z^3 = (2 + h)^3 = 8 + 12h + 6h^2 + h^3 > 8$, en dus $z \in V$. Omdat $z < y$ is y geen ondergrens van V.

We hebben aangetoond dat 2 een ondergrens van V is en dat er geen grotere ondergrens bestaat. Hieruit volgt dat $\inf V = 2$.

Axioma’s voor \mathbb{R}, deel 3

We kunnen nu eindelijk het allerlaatste axioma voor de reële getallen formuleren.

(R13) (Fundamentele eigenschap van \mathbb{R}) Iedere niet-lege naar boven begrensde deelverzameling van \mathbb{R} heeft een unieke kleinste bovengrens.

Deze eigenschap geldt niet voor de rationale getallen: neem bijvoorbeeld A uit Voorbeeld II.6.1. Dan is A naar boven begrens en niet-leeg maar A heeft geen kleinste bovengrens in \mathbb{Q}.

II.6.7 Opmerking. Men kan bewijzen dat de lijst axioma’s (R0)–(R13) het gegeven ($\mathbb{R}, 0, 1, +, \cdot, >$) karakteriseert, in dezelfde zin als we dat hebben geformuleerd voor \mathbb{N}, \mathbb{Z} en \mathbb{Q}. Ook kan men bewijzen dat er zo’n gegeven bestaat, door een constructie te geven. Een schets van zo’n constructie volgt later (zie pagina 68).

Door Axioma (R13) toe te passen op $-V = \{-v : v \in V\}$ zien we dat iedere niet-lege naar beneden begrensde deelverzameling van \mathbb{R} een grootste ondergrens heeft.

II.6.8 Gevolg. Iedere niet-lege naar beneden begrensde deelverzameling van \mathbb{R} heeft een unieke grootste ondergrens.

Bewijs. Zij $V \subseteq \mathbb{R}$ niet leeg en naar beneden begrens. Beschouw de verzameling $W = \{-v \in \mathbb{R} : v \in V\}$. Blijkbaar is W niet-leeg. We bewijzen nu dat W naar boven begrens is. Zij x een willekeurige ondergrens van V. Dan geldt $x \leq v$ voor elke $v \in V$, en bijgevolg $-x \geq -v$ voor elke $v \in V$. Het getal $-x$ is dus een bovengrens van W.

Volgens Axioma (R13) heeft W een unieke kleinste bovengrens b. Net als boven is makkelijk in te zien dat $-b$ een ondergrens van V is. We moeten nog laten zien dat er geen grotere ondergrens bestaat. Als $x > -b$ dan geldt $-x < b$ en dus is $-x$ geen bovengrens van W (het getal b was namelijk de kleinste bovengrens). Er is daarom een element van W dat groter is dan $-x$: zij $v \in V$ met $-v > -x$. Hieruit volgt $v < x$ en bijgevolg is x geen ondergrens van V.

Analog zijn kunnen we bewijzen dat $-b$ de enige grootste ondergrens van V is (doe het zelf).

II.6.9 Definitie. Zij V een niet-lege deelverzameling van \mathbb{R}. We noemen een element $v \in V$ een maximum van V als $v \geq u$ voor alle $u \in V$. We noteren dan $v = \max V$. Een minimum van V, notatie: $\min V$, wordt analog gedefinieerd.

Het verband tussen supremum en maximum is als volgt:

II.6.10 Stelling. Zij V een niet-lege deelverzameling van \mathbb{R}. De volgende uitspraken zijn equivalent:
(i) \(V \) heeft een maximum;
(ii) \(V \) is naar boven begrensd en \(\sup V \in V \).

In deze situatie geldt \(\max V = \sup V \).

Bewijs. (i) \(\Rightarrow \) (ii): Als \(V \) een maximum \(v \) heeft, dan is \(v \) een bovengrens voor \(V \). We laten zien dat \(v = \sup V \); dit geeft (ii). Stel eens dat \(w \) een bovengrens voor \(V \) is. Dan geldt \(u \leq w \) voor alle \(u \in V \), dus in het bijzonder \(v \leq w \), want \(v \in V \). Dit laat zien dat \(v \) de kleinste bovengrens van \(V \) is, dus \(v = \sup V \).

(ii) \(\Rightarrow \) (i): Zij \(v = \sup V \); volgens aanname is \(v \in V \). Omdat \(v \) een bovengrens voor \(V \) is, geldt \(u \leq v \) voor alle \(u \in V \). Dit laat zien dat \(v \) het maximum van \(V \) is.

II.6.11 Opmerking. Een analoge stelling geldt ook voor minima en infima.

Opgaven

1. Zij \(V = \{1/n : n \in \mathbb{N}_{\geq 1}\} \).
 (a) Laat zien dat 0 een ondergrens is voor \(V \).
 (b) Laat zien dat geen enkel reëel getal \(x > 0 \) een ondergrens is voor \(V \).

 Aanwijzing: Gebruik de Archimedesche eigenschap.
 (c) Concludeer dat \(\inf V = 0 \).
 (d) Laat zien dat \(V \) geen minimum heeft.

2. Bepaal het supremum, infimum, maximum en minimum van \(V \) in \(\mathbb{R} \) of laat zien dat ze niet bestaan; geef ook alle benodigde bewijzen:
 (a) \(V = \{0\} \);
 (b) \(V = \{(-1)^n : n \in \mathbb{N}\} \);
 (c) \(V = \{q \in \mathbb{Q} : q^3 < 27\} \);
 (d) \(V = \{\sin(n\pi/2) : n \in \mathbb{Z}\} \);
 (e) \(V = \{x \in \mathbb{R} : 1/x \geq 2\} \);
 (f) \(V = [-1, \sqrt{2}] \cap \mathbb{Q} \).

3. Zij \(V \) een niet-lege en naar boven begrensde deelverzameling van \(\mathbb{R} \), en zij \(W \) een niet-lege deelverzameling van \(V \).
 (a) Toon aan dat \(W \) naar boven begrensd is en dat \(\sup W \leq \sup V \).

 Aanwijzing: Iedere bovengrens voor \(V \) is ook een bovengrens voor \(W \).
 (b) Neem aan dat \(V \neq W \). Wanneer geldt \(\sup W = \sup V \)?

4. Zij \(V \) een niet-lege begrensde deelverzameling van \(\mathbb{R} \). Toon aan:
 (a) Voor alle \(v \in V \) geldt \(\inf V \leq v \leq \sup V \).
 (b) \(\inf V = \sup V \) dan en slechts dan als \(V \) uit één element bestaat.
5. Laat V en W niet-lege deelverzamelingen van \mathbb{R} zijn met maxima $\max V$ en $\max W$. Toon aan of weerleg:
 (a) De vereniging $V \cup W$ heeft een maximum;
 (b) Als $V \cap W \neq \emptyset$ dan heeft de doorsnede $V \cap W$ een maximum.
 Geef in beide gevallen een formule voor het maximum indien het bestaat; geef anders een tegenvoorbeeld.

6. Bewijs of weerleg:
 (a) Er is een $A \subseteq \mathbb{R}$ zó dat $\max A = \min A$.
 (b) Er is een $A \subseteq \mathbb{R}$ zó dat $\max A$ of $\min A$ niet bestaat maar $\inf A = \sup A$.

7. Bewijs dat elke niet lege eindige deelverzameling van \mathbb{R} een maximum en een minimum heeft.

8. Zij V een niet-lege, naar boven begrensde deelverzameling van \mathbb{R}. Laat zien dat de verzameling van alle bovengrenzen van V een minimum heeft. Wat is dit minimum?
Het werk in de Analyse bestaat voor een groot deel uit werken met en het af-
schatten van uitdrukkingen. Hierbij zijn ongelijkheden onmisbaar.

III.1 Driehoeksongelijkheid en werken met ongelijkheden

We laten eerst zien hoe we de rekenregels voor reële getallen kunnen toepassen
om ongelijkheden op te lossen.

III.1.1 Voorbeeld. We zoeken alle oplossingen in \(\mathbb{R} \setminus \{2\} \) van de ongelijkheid
\[
\frac{3x + 5}{2 - x} \geq 3.
\]
Omdat vermenigvuldiging met een negatief getal het ongelijkteken verandert on-
derscheiden we twee gevallen: \(x < 2 \) en \(x > 2 \).

Geval 1: \(x < 2 \). Omdat \(2 - x > 0 \), is vergelijking (*) equivalent met:
\[
3x + 5 \geq 3(2 - x) = 6 - 3x.
\]
Dit is equivalent met \(x \geq 1/6 \). Omdat \(x < 2 \) is de oplossingsverzameling in dit
geval \((-\infty, 2) \cap [1/6, \infty) = [1/6, 2)\).

Geval 2: \(x > 2 \). Nu is \(2 - x \) negatief en is (*) equivalent met:
\[
3x + 5 \leq 3(2 - x) = 6 - 3x,
\]
hetgeen weer equivalent is met \(x \leq 1/6 \). Omdat \((-\infty, 1/6] \cap (2, \infty) = \emptyset\) heeft de
ongelijkheid geen oplossing voor \(x > 2 \).

We concluderen: de verzameling van alle reële oplossingen van de
ongelijkheid is \((-\infty, 2/3) \cup (1, \infty)\).

III.1.2 Voorbeeld. We zoeken alle \(x \in \mathbb{R} \) met \((x - 1)(2 - 3x) < 0\). Het product
van twee reële getallen is negatief dan en slechts dan als er één positief is en de
andere negatief is. Dit leidt tot de volgende twee gevallen.

Geval 1: \(x - 1 > 0 \) en \(2 - 3x < 0 \). Dan moet gelden \(x > 1 \) en \(x > 2/3 \), ofwel
\(x \in (1, \infty) \).

Geval 2: \(x - 1 < 0 \) en \(2 - 3x > 0 \). Nu moet \(x < 1 \) en \(x < 2/3 \) zijn, dus
\(x \in (-\infty, 2/3) \).

We kunnen concluderen: de verzameling van alle reële oplossingen van de
ongelijkheid is \((-\infty, 2/3) \cup (1, \infty)\).
Iedere eindige niet-lege deelverzameling van \mathbb{R} heeft een maximum. In het bijzonder definíëren we, voor iedere $x \in \mathbb{R}$, de absolute waarde van x door

$$ |x| = x \text{ als } x \geq 0, \text{ en } |x| = -x \text{ als } x < 0. $$

III.1.3 Propositie. Voor iedere $x \in \mathbb{R}$ geldt:

$$ |x| = \max\{-x, x\}. $$

Bewijs. Opgave III.1.3.

III.1.4 Voorbeeld. We zoeken alle oplossingen in \mathbb{R} van de ongelijkheid

$$ |x| + 2| + x - 3| + 2x > |x|. $$

Voor $x \leq -2$ geldt $|x + 2| = -(x + 2)$, en voor $x \geq -2$ geldt $|x + 2| = x + 2$, en natuurlijk gedragen $|x - 5|$ en $|x|$ zich analoog in 5 en 0, respectievelijk. We verdeden daarom de reële rechte in vier intervalen: $(-\infty, -2)$, $[-2, 0)$, $[0, 5)$ en $[5, \infty)$, en lossen de ongelijkheid op elk interval apart.

Als $x \in (-\infty, -2)$ dan is $|x + 2| = -x - 2$, $|x - 5| = -x + 5$ en $|x| = -x$ en na invullen en vereenvoudigen krijgen we

$$ x > -3. $$

Hieruit volgt dat op $(-\infty, -2)$ de oplossing is het interval $(-\infty, -2) \cap (-3, \infty)$, hetgeen gelijk is aan $(-3, -2)$.

Analoog (zie Opgave III.1.2) vinden we dat de oplossingen op $[-2, 0)$ het hele interval $[-2, 0)$ is, op $[0, 5)$ weer het hele interval $[0, 5)$ en op $[5, \infty)$ ook het hele interval $[5, \infty)$. De oplossingsverzameling van de ongelijkheid is dan

$$ (-3, -2) \cup [-2, 0) \cup [0, 5) \cup [5, \infty) = (-3, \infty). $$

Driehoeksongelijkheid

De volgende ongelijkheid beschrijft een van de belangrijkste eigenschappen van de absolute waarde.

III.1.5 Stelling (Driehoeksongelijkheid). Voor alle $x, y \in \mathbb{R}$ geldt

$$ |x + y| \leq |x| + |y|. $$

Bewijs. Uit de propositie volgt dat $-x \leq |x|$ en $-y \leq |y|$, zodat

$$ -x - y \leq |x| + |y|. $$

Uit de propositie volgt eveneens dat $x \leq |x|$ en $y \leq |y|$, zodat

$$ x + y \leq |x| + |y|. $$

Dit laat zien dat $|x| + |y|$ een bovengrens is voor de verzameling $\{-x - y, x + y\}$. Aangezien $|x + y| \in \{x + y, -x - y\}$ geldt $|x + y| \leq |x| + |y|$.

III.1.6 Gevolg. Voor alle $x, y \in \mathbb{R}$ geldt:

$$ ||x| - |y|| \leq |x - y| \leq |x| + |y|. $$

Bewijs. Opgave III.1.5.
III.1.7 Opmerking. Als x en y reële getallen zijn dan stelt $|y - x|$ de afstand van x naar y op de reële rechte voor. Uit de driehoeksongelijkheid volgt dat de afstand tussen twee reële getallen niet groter kan zijn dan de som van hun absolute waarden. De naam ‘driehoeksongelijkheid’ heeft meer te maken met afstanden in \mathbb{R}^2 of in \mathbb{C}, waar ze ook geldt, en waar ze echt met driehoeken te maken heeft.

III.1.8 Voorbeeld. Als een eenvoudig voorbeeld van het gebruik van de driehoeksongelijkheid geven we snel een bovengrens van $|1 - x + 3x^2 - 5x^3|$, waarbij $|x| \leq 1/2$. Door de driehoeksongelijkheid een paar keer achter elkaar te gebruiken vinden we

$$|1 - x + 3x^2 - 5x^3| \leq |1| + |x| + |3x^2| + |5x^3|.$$ Omdat $|x| \leq 1/2$ vinden we hiermee dat er zeker geldt $|1 - x + 3x^2 - 5x^3| \leq 1 + 1/2 + 3/4 + 5/8 = 23/8$.

Het is niet gezegd dat $23/8$ het maximum van de uitdrukking hierboven is; we hebben slechts een bovengrens gevonden.

Opgaven

1. Vind alle oplossingen van de volgende ongelijkheden:
 (a) $(x + 1)(1 - 2x) > (x + 1)$ met $x \in \mathbb{R}$;
 (b) $\frac{(x + 1)^2}{x(x + 2)} \geq 0$ met $x \in \mathbb{R} \setminus \{0, -2\}$;
 (c) $4 + \frac{1}{x} \geq 0$ met $x \in \mathbb{R} \setminus \{0\}$;
 (d) $x < \frac{2x - 1}{x}$ met $x \in \mathbb{R} \setminus \{0\}$;
 (e) $\frac{1}{2 - x} \leq \frac{1}{2 + x}$ met $x \in \mathbb{R} \setminus \{-2, 2\}$.

2. Vul alle details van Voorbeeld III.1.4 in.

3. Bewijs Proppositie III.1.3.

4. Los de volgende ongelijkheden op:
 (a) $|2x - 3| + |2 - 3x| \geq x - |x + 5|$ met $x \in \mathbb{R}$;
 (b) $\frac{|x - 1|}{x + 1} \leq \frac{x + 2}{|x - 4|}$ met $x \in \mathbb{R} \setminus \{-1, 4\}$;
 (c) $|x^2 + 3x - 10| \leq 0$ met $x \in \mathbb{R}$;

6. Bewijs of weerleg:
 (a) als $|x - 5| < 2$ dan $3 < x < 7$;
 (b) als $|1 + 3x| \leq 1$ dan $x \geq -2/3$;
 (c) er is precies één reëel getal x waarvoor geldt $|x - 1| = |x - 2|$;
 (d) voor elk reëel getal $x > 9$ is er een reëel getal $y > 0$ zodanig dat $|2x + y| = 5$.

7. Toon aan:
 (a) Als $x \in \mathbb{R}$ en $|x| \leq 2$, dan $\frac{x^2 - 2x + 7}{x^2 + 1} \leq 11$.
 (b) Als $x \in \mathbb{R}$ en $|x| \leq 1$, dan $|x^4 + x^3/2 + x^2/4 + x/8 + 1/16| < 2$.

III.1 DRIEHOEKSONGELIJKHEID EN WERKEN MET ONGELIJKHEDEN 51
III.2 Twee belangrijke ongelijkheden

Het is niet moeilijk om te bewijzen dat een product van twee getallen — bij vaste som — maximaal is als de factoren even groot zijn, en een som van twee niet-negatieve getallen minimaal — bij vast product — als de termen even groot zijn, zie Opgave III.2.2 en Opgave III.2.3.

De vraag is nu of dit verschijnsel zich voortzet: Is het product van n getallen — bij vaste som — maximaal als alle factoren even groot zijn? Is de som van n niet-negatieve getallen — bij vast product — minimaal als alle termen even groot zijn?

Het antwoord wordt gegeven door de volgende stelling. In deze stelling komen wortels van reëel getal $x \geq 0$ voor; deze worden in Opgave III.2.1 gedefinieerd.

III.2.1 Stelling (Ongelijkheid van Rekenkundig en Meetkundig Gemiddelde)

Laat n een positief natuurlijk getal zijn. Dan geldt voor elk n-tal niet-negatieve reëel getallen a_1, a_2, \ldots, a_n de volgende ongelijkheid

$$\sqrt[n]{a_1 a_2 \cdots a_n} \leq \frac{a_1 + a_2 + \cdots + a_n}{n},$$

met gelijkheid dan en slechts dan als $a_1 = a_2 = \cdots = a_n$.

Bewijs. Opgave III.2.16.

III.2.2 Opmerking

Het getal $(a_1 + a_2 + \cdots + a_n)/n$ heet het rekenkundig gemiddelde van het n-tal a_1, a_2, \ldots, a_n, en het getal $\sqrt[n]{a_1 a_2 \cdots a_n}$ heet het meetkundig gemiddelde van het n-tal a_1, a_2, \ldots, a_n.

III.2.3 Voorbeeld

Dit voorbeeld laat zien dat de Ongelijkheid van Rekenkundig en Meetkundig Gemiddelde voor negatieve getallen niet geldt.

Bekijk het vlak in \mathbb{R}^3 gedefinieerd door de vergelijking $x + y + z = 1$. Door x en y negatief te nemen en z positief kunnen we het product xyz willekeurig groot maken; neem bijvoorbeeld $x = y = -10$ en $z = 21$, dan geldt

$$\sqrt[3]{xyz} = \sqrt[3]{2100} > \frac{1}{3} = \frac{x + y + z}{3}.$$

III.2.4 Voorbeeld

(Rente) Dit voorbeeld komt later terug bij de behandeling van de exponentiële functie. Iemand wil wat geld op de bank zetten en kijkt rond naar een voordelige rekening. Elke bank geeft hetzelfde rentepercentage. Er zijn verschillen tussen het uitbetalen van die rente. Bank 1 betaalt de rente één keer per jaar op 31 december. Bank 2 betaalt de helft van de rente op 30 juni en de andere helft op 31 december (over het bedrag dat dan op de rekening staat). De vraag is natuurlijk wat voordeliger is.

Noem $x =$ rentepercentage/100 > 0. Aan het eind van het jaar is het kapitaal bij bank 1 met $1 + x$ vermenigvuldigd en bij bank 2 met $(1 + x/2)(1 + x/2)$. Omdat $(1 + x/2)(1 + x/2) = 1 + (1 + x)$ geldt volgens de Ongelijkheid van Rekenkundig en Meetkundig Gemiddelde dat het product maximaal is dan en slechts dan als

4Een meer conceptueel bewijs kan gegeven worden door te gebruiken dat de functie $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}$ convex is. Deze convexiteit betekent dat voor alle $x, y \in \mathbb{R}_{>0}$ met $x < y$ het lijnstuk tussen de punten $(x, \ln x)$ en $(y, \ln y)$ onder de grafiek van \ln ligt. Deze eigenschap volgt uit het negatief zijn van de tweede afgeleide van \ln. De bovengenoemde opgave geeft een eenvoudiger bewijs.

Voor de functie \ln wordt soms ook de notatie \log gebruikt.
III.2 TWEE BELANGRIJKE ONGELIJKHEDEN

III.2.5 Voorbeeld. We hebben een vierkant stuk blik met zijden van 30 cm dat we willen gebruiken om een doos zonder deksel te maken. Om de doos te maken snijden we uit elke hoek een vierkant met zijden van \(x\) cm weg en buigen dan de zijkanten omhoog. De vraag is om het maximale volume te bepalen.

We gaan als volgt te werk. Het volume van de doos, in cm\(^3\), zal gelijk zijn aan

\[
x(30-2x)^2 = \frac{1}{4}(4x(30-2x)(30-2x)).
\]

Aangezien de som van de drie factoren niet van \(x\) afhangt, wordt volgens de Ongelijkheid van Rekenkundig en Meetkundig Gemiddelde wordt het maximum bereikt als \(4x = 30 - 2x\), d.w.z. als \(x = 5\). Om de doos met het maximale volume te krijgen moeten we dus vanaf de hoeken vierkantjes met zijden van 5 cm wegsnijden. Het volume is dan 2000 cm\(^3\).

III.2.6 Stelling (Ongelijkheid van Cauchy). Laat \(n \in \mathbb{N}_{\geq 1}\), en laat \(a_1, a_2, \ldots, a_n\) en \(b_1, b_2, \ldots, b_n\) twee \(n\)-tallen reële getallen zijn. Dan geldt

\[
\sqrt{a_1^2 + a_2^2 + \cdots + a_n^2} \cdot \sqrt{b_1^2 + b_2^2 + \cdots + b_n^2} \geq |a_1b_1 + a_2b_2 + \cdots + a_nb_n|.
\]

Er geldt gelijkheid dan en slechts dan als \(a_ib_j = a_jb_i\) voor elke \(i \neq j, i, j = 1, 2, \ldots, n\).

Bewijs. We bewijzen de stelling alleen voor \(n = 3\); het bewijs kan zonder veel moeite gegeneraliseerd worden voor een willekeurige \(n\). Bekijk de formule

\[
(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 =
\]

\[
= (a_1b_2 - a_2b_1)^2 + (a_1b_3 - a_3b_1)^2 + (a_2b_3 - a_3b_2)^2.
\]

Door beide kanten uit te werken is het niet moeilijk om te laten zien dat deze identiteit geldt. De rechterkant van (III.1) is de som van drie kwadraten en is daarom niet negatief. Maar dan is ook de linkerkant niet-negatief en we krijgen

\[
(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) \geq (a_1b_1 + a_2b_2 + a_3b_3)^2.
\]

De te bewijzen ongelijkheid wordt dan

\[
|a_1| \cdot |b_1| \geq |a_1b_1|.
\]

Maar dit is duidelijk: er geldt immers \(a_1b_1 = |a_1| \cdot |b_1| \cdot \cos \varphi\), waarbij \(\varphi\) de hoek tussen \(a_1\) en \(b_1\) is. Aangezien \(|\cos \varphi| \leq 1\) volgt de ongelijkheid meteen. Ook zien we wanneer de gelijkheid geldt: namelijk precies dan als \(\cos \varphi = \pm 1\), ofwel als \(a_1\) en \(b_1\) gelijk of tegengesteld gericht zijn, maar dit geldt dan weer precies als \(a_1b_1 = a_1b_2\).

Ongelijkheid van Cauchy

de factoren even groot zijn; er geldt dus \((1 + x/2)(1 + x/2) > 1(1 + x)\). Het is dus voordeliger om naar bank 2 te gaan.

Zo kunnen we natuurlijk voor elke \(n \in \mathbb{N}_{\geq 1}\) een bank bedenken waar \(n\) keer per jaar de rente wordt bijgeschreven. Als bank \(n\) de rente \(n\) keer bijschrijft en bank \(n + 1\) doet het \(n + 1\) keer per jaar hebben we aan het eind van het jaar meer geld bij bank \(n + 1\) gekregen:

\[
\left(1 + \frac{x}{n}\right)^n < \left(1 + \frac{x}{n + 1}\right)^{n+1}.
\]
De Ongelijkheid van Cauchy volgt nu onmiddellijk.

De gelijkheid geldt dan en slechts dan als de rechterkant van (III.1) gelijk aan 0 is, dus als $a_1b_2 = a_2b_1$, $a_1b_3 = a_3b_1$ en $a_2b_3 = a_3b_2$.

III.2.7 Voorbeeld. We zoeken het minimum en het maximum van $3x + 2y - z$ onder de nevenvoorwaarde dat $x^2 + y^2 + z^2 = 1$. Met andere woorden, we zoeken het minimum en het maximum op de sfeer gegeven door de vergelijking $x^2 + y^2 + z^2 = 1$ van de functie $f: \mathbb{R}^3 \to \mathbb{R}$, $(x, y, z) \mapsto 3x + 2y - z$. We passen de Ongelijkheid van Cauchy toe op de driehoek $(3, 2, -1)$ en (x, y, z). We krijgen

$$|3x + 2y - z| \leq \sqrt{9 + 4 + 1} \cdot \sqrt{x^2 + y^2 + z^2} = \sqrt{14},$$

en gelijkheid geldt dan en slechts dan als $2x = 3y$, $-x = 3z$ en $-y = 2z$. Wehun, invullen van $x = -3z$ en $y = -2z$ in $x^2 + y^2 + z^2 = 1$ geeft $14z^2 = 1$ en dus $z = \pm 1/\sqrt{14}$. Hieruit volgt dat het maximum aangenomen wordt in het punt $(3/\sqrt{14}, 2/\sqrt{14}, -1/\sqrt{14})$ en gelijk is aan $\sqrt{14}$, en het minimum aangenomen wordt in het punt $(-3/\sqrt{14}, -2/\sqrt{14}, 1/\sqrt{14})$ en gelijk is aan $-\sqrt{14}$.

III.2.8 Voorbeeld. We zoeken de extreme waarden van $x^2 + y^2 + z^2$ onder de nevenvoorwaarde $2x + 3y + 4z = -3$. Het is niet moeilijk in te zien dat het maximum niet bestaat. Om het minimum te vinden kunnen we de ongelijkheid van Cauchy gebruiken:

$$3 = |2x + 3y + 4z| \leq \sqrt{4 + 9 + 16} \cdot \sqrt{x^2 + y^2 + z^2},$$

ofwel na kwadrateren: $x^2 + y^2 + z^2 \geq 9/29$.

Gelijkheid geldt weer alleen als $3x = 2y$, $4x = 2z$ en $4y = 3z$. Na invullen van $z = 2x$ en $y = 3x/2$ in $2x + 3y + 4z = -3$ vinden we $x = -6/29$. Het minimum $9/29$ wordt dus aangenomen voor $(x, y, z) = (-6/29, -9/29, -12/29)^3$.

Opgaven

1. Laat $n \in \mathbb{N}$ met $n \geq 1$, en laat $x \in \mathbb{R}$ met $x \geq 0$. Laat $V = \{y \in \mathbb{R}_{\geq 0} : y^n \leq x\}$.
 (a) Laat zien dat V een supremum heeft.
 (b) Laat zien dat sup$(V)^n = x$.
 (c) Laat zien dat er een unieke $y \in \mathbb{R}_{\geq 0}$ is met $y^n = x$. Deze y noemen we de (positieve) nde wortel uit x, en we noteren die als $\sqrt[n]{x}$, of ook als $x^{1/n}$.
 (d) Laat zien dat voor $x, y \in \mathbb{R}_{\geq 0}$ met $x \leq y$ geldt dat $\sqrt[n]{x} \leq \sqrt[n]{y}$.

2. Laat zien dat voor alle reële getallen x, y en c geldt: Het maximum van xy onder de voorwaarde dat $x + y = c$ wordt aangenomen als $x = y$ en dat maximum is gelijk aan $c^2/4$.

3. Laat zien dat voor alle positieve reële getallen x, y en c geldt: Het minimum van $x + y$ onder de voorwaarde dat $xy = c$ wordt aangenomen als $x = y$ en dat minimum is gelijk aan $2\sqrt{c}$.

4. (de Volkskrant, 27 maart 1993, rubriek Knars) Iemand heeft een balans waarvan de arm uit evenwicht is. Zij weegt een brief aan beide kanten. De balans is in evenwicht met de brief links en rechts 44.5 gram en ook met de brief rechts en links 56 gram. Is de brief zwaarder of lichter dan 50 gram?

3Meetkundig betekent dit dat dit punt de kortste afstand heeft tot $(0, 0, 0)$ van alle punten van het vlak gegeven door de vergelijking $2x + 3y + 4z = -3$
5. Welk getal overschrijdt zijn kwadraat met het grootste bedrag?

6. Bewijs dat voor elk positief reëel getal a geldt
 \[a + \frac{1}{a} \geq 2. \]
 Voor welke a geldt gelijkheid?

7. Schrijf het bewijs van Stelling III.2.6 helemaal uit (zonder somtekens) voor $n = 2$ en $n = 3$.

8. Laat zien dat in Stelling III.2.6 gelijkheid precies dan als:
 \[a = 0 \text{ of er is een } \lambda \in \mathbb{R} \text{ met } b = \lambda a \]
 hier schrijven we $a = (a_1, \ldots, a_n)$, etc.

9. Bepaal in elk van de volgende gevallen het maximum van xyz en de waarden van x, y, z waarvoor dit maximum wordt aangenomen als de positieve reëele getallen x, y, z voldoen aan:
 \[(a) \quad x + y + z = 5; \]
 \[(b) \quad 2x + 3y + 4z = 36; \]
 \[(c) \quad 2x^2 + 3y^2 + z^2 = 3. \]

10. Vind positieve reële getallen a, b, en c zó dat O minimaal is als gegeven is dat
 \[(a) \quad abc = 5 \text{ en } O = a + b + c; \]
 \[(b) \quad abc = 10 \text{ en } O = 5a + 3b + 2c; \]
 \[(c) \quad abc = 4 \text{ en } O = 2a^2 + 3b^2 + 2c^2. \]

11. Vind reële getallen x, y, z en w zó dat $x^2 + y^2 + z^2 + w^2$ minimaal is als gegeven is
 \[(a) \quad x + 2y + 3z + 4w = 5; \]
 \[(b) \quad x - 2y + 3z - 4w = -2. \]

12. Vind het minimum en het maximum van $2x + y - 3z$ en de waarden van x, y en z waarvoor de extremen worden aangenomen als gegeven wordt dat $x^2 + 4y^2 + z^2 = 1$.

 \[(a) \quad \text{Het bedrijf wil dozen maken die ten hoogste 24 euro moeten kosten. De} \]
 \[\text{specificaties zijn: een vierkante bodem van materiaal dat 8 euro per m}^2 \text{ kost, zijkanten van materiaal dat 2 euro per m}^2 \text{ kost. Het volume moet zo groot} \]
 \[\text{mogelijk worden. Bepaal de optimale afmetingen van de dozen.} \]

 \[(b) \quad \text{Het bedrijf kreeg ook een opdracht om dozen te maken met de volgende} \]
 \[\text{specificaties: een rechthoekige bodem van materiaal dat 8 euro per m}^2 \text{ kost, rechthoekige zijkanten van materiaal dat 2 euro per m}^2 \text{ kost. Het volume} \]
 \[\text{moet 2 m}^3 \text{ zijn. Bepaal de optimale afmetingen als de prijs van een doos zo laag mogelijk} \]
 \[\text{moet zijn. Wat is de minimale prijs?} \]

14. (a) Laat $n \in \mathbb{N}_{\geq 1}$, en laat a_1, a_2, \ldots, a_n positieve reële getallen zijn. Bewijs dat
 \[(a_1 + a_2 + \cdots + a_n)\left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}\right) \geq n^2. \]
 Onderzoek onder welke voorwaarden gelijkheid geldt.
(b) Laat $n \in \mathbb{N}_{\geq 1}$. Bepaal de maximale waarde van
\[
\left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} \right)^{-1}.
\]
onder de voorwaarde dat $a_1 + a_2 + \cdots + a_n = A$, en bereken de waarde(n)
van a_1, a_2, \ldots, a_n waarvoor dit maximum wordt aangenomen.

15. Laat $n \in \mathbb{N}_{\geq 1}$ en laat x_1, x_2, \ldots, x_n positieve reële getallen zijn.
(a) Zij $k \in \mathbb{N}_{\geq 1}$. Bewijs:
\[
\left(\frac{x_1^k + x_2^k + \cdots + x_n^k}{n} \right)^{\frac{1}{k}} \leq \left(\frac{x_1^{2k} + x_2^{2k} + \cdots + x_n^{2k}}{n} \right)^{\frac{1}{2k}}.
\]
(b) Bewijs dat voor alle positieve reële getallen a, b en c die aan $a^2 + b^2 + c^2 = 8$
voldoen geldt
\[
a^4 + b^4 + c^4 \geq \frac{64}{3}.
\]

(a) Laat a en b twee positieve reële getallen zijn. Toon aan
\[
ab = \left(\frac{a + b}{2} \right)^2 - \left(\frac{a - b}{2} \right)^2.
\]
Toon aan: als $a \neq b$ dan $ab < ((a + b)/2)^2$.
(b) Bewijs nu de ongelijkheid van Ongelijkheid van Rekenkundig en Meetkundig
Gemiddelde voor twee getallen a_1 en a_2.
(c) Bewijs de ongelijkheid voor vier getallen a_1, a_2, a_3 en a_4. Hint: pas het geval
$n = 2$ toe op het paar a_1 en a_2, het paar a_3 en a_4, en het paar $(a_1 + a_2)/2$
een $(a_3 + a_4)/2$
(d) Bewijs de ongelijkheid voor drie getallen a_1, a_2 en a_3. Hint: definiëer eerst
$a_4 = (a_1 + a_2 + a_3)/3$ en pas dan het geval $n = 4$ toe.
(e) Bewijs, met volledige inductie naar n, de ongelijkheid voor 2^n getallen a_1,
a_2, \ldots, a_{2^n}.
(f) Bewijs: als de ongelijkheid voor n getallen geldt dan geldt hij ook voor $n - 1$
getallen.
(g) Bewijs de Ongelijkheid van Rekenkundig en Meetkundig Gemiddelde.

17. Bewijs de Ongelijkheid van Cauchy voor een willekeurige $n \in \mathbb{N}$.

III ONGELIJKHEDEN
Een onmisbaar begrip in de Analyse is dat van een rij. Rijen worden overal gebruikt: om continue functies te beschrijven, bij benaderingen van oplossingen van vergelijkingen enzovoort. In dit hoofdstuk bestuderen we een aantal belangrijke eigenschappen van reële rijen. We zullen ook een aandacht besteden aan reeksen (oneindige sommen) van reële getallen.

IV.1 Rijen, deelrijen, convergentie en limiet

Rijen

In Paragraaf I.3 is al gezegd wat een rij is; we herhalen de definitie.

IV.1.1 Definitie. Zij A een verzameling. Een *rij* in A is een functie $a: \mathbb{N} \rightarrow A$. In plaats van $a(n)$ schrijven we meestal a_n en in plaats van $a: \mathbb{N} \rightarrow A$ schrijven we vaak $(a_n)_{n \geq 0}$ of $(a_n)_{n \in \mathbb{N}}$. De getallen a_n heten de *termen* van $(a_n)_{n \geq 0}$. Als $A = \mathbb{R}$ dan noemen we zo’n rij ook wel een *reële rij*.

In dit verband noemen we $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ de *indexverzameling* van de rij. Het is soms handiger om een andere indexverzameling te gebruiken, bijvoorbeeld $\{1, 2, 3, \ldots\}$; in dat geval noteren we de rij als $(a_n)_{n \geq 1}$.

Vaak is de rij door een expliciete formule voor de n-de term gegeven, zoals $a_n = 1/n$, $b_n = 2^{-n}$, $c_n = \sin(n)$ enzovoort. Deze rijen kunnen we dan noteren als $(1/n)_{n \geq 1}$, $(2^{-n})_{n \geq 0}$ en $(\sin(n))_{n \geq 0}$. Minder formeel kunnen we een rij geven door een aantal termen uit te schrijven (indien de formule voor a_n duidelijk is); bijvoorbeeld: met $1, 1/3, 1/5, 1/7, \ldots$ bedoelen we de rij $(1/(2n + 1))_{n \geq 0}$.

Als we een aantal termen uit een rij weglaten krijgen we een *deelrij* (niets weglaten mag), mits er oneindig veel termen overblijven en de volgorde van termen niet veranderd wordt.

IV.1.2 Definitie. Een rij $(b_k)_{k \geq 0}$ heet een *deelrij* van de rij $(a_n)_{n \geq 0}$ als er een strikt stijgende rij k natuurlijke getallen $(n_k)_{k \geq 0}$ bestaat zó dat voor alle $k \in \mathbb{N}$: $b_k = a_{n_k}$.

IV.1.3 Voorbeeld.

(a) Iedere rij is een deelrij van zichzelf: neem $n_k = k$.
(b) De rij $(2^{-n})_{n \geq 0}$ is een deelrij van $(a_n)_{n \geq 1}$ met $a_n = 1/n$: neem maar $n_k = 2^k$.

(c) De rij 2, 0, 6, 4, 10, 8, … is geen deelrij van \((2n)_{n \geq 0}\) (de volgorde van termen is veranderd).

(d) De rij \((b_n)_{n \geq 0}\) met \(b_n = 1\) is geen deelrij van \((a_n)_{n \geq 1}\) met \(a_n = 1/n\) (waarom niet?).

IV.1.4 Definitie

Een reële rij \((a_n)_{n \geq 0}\) heet convergent wanneer er een \(a \in \mathbb{R}\) bestaat met de volgende eigenschap: voor iedere \(\varepsilon \in \mathbb{R}_{>0}\) bestaat een \(N \in \mathbb{N}\) zodanig dat

\[
\text{voor alle } n \in \mathbb{N}_{\geq N} : \quad |a_n - a| < \varepsilon.
\]

We noemen \(a\) een limiet van de rij \((a_n)_{n \geq 0}\). Notatie:

\[
\lim_{n \to \infty} a_n = a.
\]

Een rij die niet convergent is heet divergent.

Merk op dat volgens Opgave IV.1.10 en rij kan maximaal één limiet hebben.

IV.1.5 Voorbeeld

(a) Constante rijen zijn convergent, zie Opgave IV.1.9.

(b) We bewijzen dat de rij \((1/n)_{n \geq 1}\) convergent is met limiet 0. Laat \(\varepsilon \in \mathbb{R}_{>0}\).

Uit de Archimedele eigenschap van \(\mathbb{R}\) volgt het bestaan van een \(N \in \mathbb{N}\) met \(N \geq 1\) en \(1/N < \varepsilon\). Dan geldt voor alle \(n \in \mathbb{N}_{\geq N}\):

\[
\left|\frac{1}{n} - 0\right| = \frac{1}{n} \leq \frac{1}{N} < \varepsilon.
\]

(c) De rij \((-1)^n)_{n \in \mathbb{N}}\) is divergent want geen enkel getal \(a\) voldoet aan de eisen uit Definitie IV.1.4. Neem maar eens aan dat er wel zo’n \(a\) was en neem \(\varepsilon = 1/2\).

Laat \(N \in \mathbb{N}\) zó dat \(|(-1)^n - a| < 1/2\) voor alle \(n \geq N\). Neem een even \(n > N\), dan volgt dat \(a > 1/2\), en door een oneven \(n > N\) te gebruiken vinden we dat \(a < -1/2\). Dit is absurd, de rij is dus divergent.

Merk op dat de deelrijen \((-1)^{2n})_{n \in \mathbb{N}}\) en \((-1)^{2n+1})_{n \in \mathbb{N}}\) wel convergeren. Wat zijn hun limieten?

Het volgende hulpresultaat zullen we nodig hebben:

IV.1.6 Proppositie (Ongelijkheid van Bernoulli)

Voor alle reële \(b \geq -1\) en alle \(n \in \mathbb{N}\) geldt

\[(1 + b)^n \geq 1 + nb.
\]

Bewijs. Laat \(b \in \mathbb{R}_{\geq -1}\). We bewijzen de ongelijkheid met behulp van volledige inductie.

STAP 1: Voor \(n = 0\) zijn beide zijden gelijk aan 1.

STAP 2: Laat \(n \in \mathbb{N}\), en neem aan dat \((1 + b)^n \geq 1 + nb\). Volgens de inductieveronderstelling geldt

\[(1 + b)^n \geq 1 + nb.
\]

Omdat \(b \geq -1\) is \(1 + b \geq 0\) en dus

\[(1 + b) \cdot (1 + b)^n \geq (1 + b)(1 + nb).
\]

Hieruit volgt

\[(1 + b)^{n+1} \geq (1 + b) \cdot (1 + nb) = 1 + (n + 1)b + nb^2 \geq 1 + (n + 1)b.
\]
IV.1.7 Definitie. We zeggen dat een rij \((x_n)_{n \geq 0}\) in \(\mathbb{R}\) naar \(\infty\) divergeert, notatie:
\[
\lim_{n \to \infty} x_n = \infty,
\]
as er voor iedere \(\xi \in \mathbb{R}\) een \(N \in \mathbb{N}\) bestaat zodanig dat voor alle \(n \in \mathbb{N}_{\geq N}\):
\[x_n \geq \xi.\]

Divergentie naar \(-\infty\) wordt analoog gedefinieerd (we eisen dat voor elke \(\xi \in \mathbb{R}\) een \(N \in \mathbb{N}\) bestaat zodanig dat voor alle \(n \in \mathbb{N}_{\geq N}\):
\[x_n \leq \xi.\]

IV.1.8 Voorbeeld. Beschouw de rij \((a_n)_{n \in \mathbb{N}}\) gedefinieerd door \(a_n = 2^n\). Laat \(\xi \in \mathbb{R}\). Volgens de Archimedische eigenschap is er een \(N \in \mathbb{N}\) met \(N \geq \xi\). Voor alle \(n \geq N\) geldt dan \(2^n \geq 2N \geq N \geq \xi\). We hebben bewezen dat \(\lim_{n \to \infty} 2^n = \infty\).

IV.1.9 Stelling. Zij \(x \in \mathbb{R}\). Dan geldt:

(a) Als \(x > 1\) dan divergeert de rij \((x^n)_{n \geq 0}\) naar \(\infty\).
(b) Als \(|x| < 1\) dan \(\lim_{n \to \infty} x^n = 0\).
(c) Als \(x = 1\) dan \(\lim_{n \to \infty} x^n = 1\).
(d) Als \(x \leq -1\) dan heeft de rij \((x^n)_{n \geq 0}\) geen limiet.

Opgaven

1. Van een reële rij \(a_0, a_1, a_2, \ldots\) is gegeven
\[a_0 = 0\] en voor \(n \in \mathbb{N}\) \(a_n + a_{n+1} = 2n - 1\).
Vind en bewijs een algemene formule voor \(a_n\).

2. Vind alle convergente deelrijen van de rij \(1, -1, 1, -1, 1, -1, \ldots\).

3. Wat kan men zeggen over een rij \((a_n)_{n \geq 0}\) als gegeven is dat de rij convergent is en elke \(a_n\) een geheel getal is? Vind eerst een paar voorbeelden.

4. Schrijf een paar termen van \((a_n)_{n \geq 0}\) op om een mogelijke limiet \(a\) af te leiden. Probeer vervolgens in elk geval hieronder een natuurlijk getal \(N\) te vinden zó dat \(|a_n - a| < 1/2\) voor alle \(n \in \mathbb{N}_{\geq N}\), als gegeven wordt
\[
\begin{align*}
(a) & \quad a_n = \frac{1}{2n + 1}; \\
(b) & \quad a_n = \frac{n}{n + 1}; \\
(c) & \quad a_n = \frac{(-1)^n}{n + 1}; \\
(d) & \quad a_n = (-1)^n \left(\frac{9}{10}\right)^n.
\end{align*}
\]

5. Beschouw dezelfde rijen als in de voorafgaande opgave.
\[
\begin{align*}
(a) & \quad \text{Vind voor elke } \varepsilon \in \{10^{-1}, 10^{-2}, 10^{-3}\} \text{ een } N \in \mathbb{N} \text{ (afhankelijk van } \varepsilon, \text{ indien nodig) zó dat voor alle } n \in \mathbb{N}_{\geq N}: |a_n - a| < \varepsilon. \\
(b) & \quad \text{Herzie indien nodig uw keuze van } a, \text{ en bewijs dat elke rij naar de gevonden waarde } a \text{ convergeert.}
\end{align*}
\]
6. Een bal valt van een hoogte van 20m. Hij blijft stuiteren en elke keer bereikt hij 6/7 van de vorige hoogte. Hoeveel keer moet de bal stuiteren opdat hij minder dan 10cm stuiterd?

7. Beschouw de rij \((a_n)_{n \geq 0}\), waarbij \(a_n = (4^n + 5^n)/(2^n + 3^n)\) voor elke \(n \in \mathbb{N}\).
 (a) Vind een \(N \in \mathbb{N}\) zó dat voor alle \(n \geq N\) geldt \(a_n > 1000\).
 (b) Bewijs met behulp van Definitie IV.1.7 dat \(\lim_{n \to \infty} a_n = \infty\).

8. Beschouw \((a_n)_{n \geq 0}\) gedefinieerd voor elke \(n \in \mathbb{N}\) als volgt: \(a_{2n} = 2^{-n}\) en \(a_{2n+1} = 0\). Bewijs met behulp van Definitie IV.1.4 dat de rij convergent is of laat zien dat de rij divergent is.

9. Bewijs dat een constante rij in \(\mathbb{R}\) convergent is.

11. Toon aan:
 (a) Voor alle \(k \in \mathbb{N}_{\geq 1}\) geldt \(\lim_{n \to \infty} 1/n^k = 0\).
 (b) Voor alle \(n \in \mathbb{N}_{\geq 2}\) geldt \(\lim_{k \to \infty} 1/n^k = 0\).

12. Zij \((x_n)_{n \geq 0}\) een convergente rij in \(\mathbb{R}\) met limiet \(x\). Laat \(a\) en \(b\) in \(\mathbb{R}\) met \(a \leq b\).
 (a) Toon aan: als \(a \leq x_n \leq b\) voor alle \(n\), dan geldt ook \(a \leq x \leq b\).
 (b) Geef een voorbeeld waaruit blijkt dat de volgende bewering niet juist is: als \(a < x_n < b\) voor alle \(n\), dan geldt ook \(a < x < b\).

13. Zij \((x_n)_{n \geq 0}\) een rij in \(\mathbb{R}\).
 (a) Toon aan: uit \(\lim_{n \to \infty} x_n = x\) volgt
 \[\lim_{n \to \infty} |x_n| = |x|\]
 (b) Geef een voorbeeld van een divergente rij \((x_n)_{n \in \mathbb{N}}\) zó dat \((|x_n|)_{n \in \mathbb{N}}\) convergeert.

15. Zij \(x \in \mathbb{R}_{\leq -1}\). Heeft de rij \((x^n)_{n \in \mathbb{N}}\) een convergente deelrij?

16. Zij \(V\) een niet-lege deelverzameling van \(\mathbb{R}\). Toon aan:
 (a) Als \(V\) naar boven begrensd is dan bestaat er een rij \((v_n)_{n \geq 0}\) in \(V\) met de eigenschap dat \(v_0 \leq v_1 \leq v_2 \leq \cdots\) en
 \[\lim_{n \to \infty} v_n = \sup V\]
 (b) Als \(V\) naar beneden begrensd is dan bestaat er een rij \((v_n)_{n \geq 0}\) in \(V\) met de eigenschap dat \(v_0 \geq v_1 \geq v_2 \geq \cdots\) en
 \[\lim_{n \to \infty} v_n = \inf V\]
We gaan nu een aantal eigenschappen van convergente rijen onderzoeken. Omdat elke reeks de rij van zijn partiële sommen is kunnen we vele resultaten over rijen ook voor reeksen toepassen, zie Paragraaf IV.4.

IV.2 Stelling (Insluitstelling). Laat \((x_n)_{n \geq 0}, (y_n)_{n \geq 0}\) en \((z_n)_{n \geq 0}\) reële rijen zijn met \(x_n \leq y_n \leq z_n\) voor alle \(n \geq 0\). Neem voorts aan dat de rijen \((x_n)_{n \geq 0}\) en \((z_n)_{n \geq 0}\) convergent zijn met limiet \(a \in \mathbb{R}\). Dan convergeert de rij \((y_n)_{n \geq 0}\) eveeens, met limiet \(a\).

Bewijs. Laat \(\varepsilon \in \mathbb{R}_{>0}\). Er bestaan \(N, N' \in \mathbb{N}\) zó dat \(|x_n - a| < \varepsilon\) voor alle \(n \geq N\) en \(|z_n - a| < \varepsilon\) voor alle \(n \geq N'\). Neem zulke \(N\) en \(N'\). Noem \(M = \max\{N, N'\}\), dan geldt voor alle \(n \geq M\) dat

\[
a - \varepsilon < x_n \leq y_n \leq z_n < a + \varepsilon,
\]

en dus ook \(|y_n - a| < \varepsilon\).

IV.2.2 Voorbeeld. Beschouw de rij \(((\sin n)/n)_{n \geq 1}\). Voor elke \(n \geq 1\) geldt:

\[
\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n}
\]

en ook geldt \(\lim_{n \to \infty} n^{-1/n} = 0 = \lim_{n \to \infty} 1/n\). Volgens de Insluitstelling geldt dus \(\lim_{n \to \infty} (\sin n)/n = 0\).

De rij \((\sqrt{n})_{n \geq 1}\)

IV.2.3 Voorbeeld. We onderzoeken de rij \((\sqrt{n})_{n \geq 1}\). Omdat \(\sqrt{n}\) een \(n\)-de machtswortel is, rijst het vermoeden dat we iets met de Ongelijkheid van het Rekenkundig en Meetkundig Gemiddelde kunnen doen. Schrijf \(n = \sqrt{n} \cdot \sqrt{n} \cdot \ldots \cdot \sqrt{n}\) met \(n - 2\) maal een 1, we krijgen dan

\[
\sqrt{n} = \sqrt{n} \cdot \sqrt{n} \cdot \ldots \cdot \sqrt{n} \geq \frac{2\sqrt{n} + (n - 2)}{n} = 1 + \frac{2}{\sqrt{n}} - \frac{n}{2} < 1 + \frac{2}{\sqrt{n}}
\]

Voor elke \(n \geq 1\) geldt dus \(1 \leq \sqrt{n} \leq 1 + 2/\sqrt{n}\) en aangezien \(\lim_{n \to \infty} 2/\sqrt{n} = 0\) volgt uit de Insluitstelling dat \(\lim_{n \to \infty} \sqrt{n} = 1\).

IV.2.4 Stelling. Neem aan dat \((x_n)_{n \geq 0}\) en \((y_n)_{n \geq 0}\) convergente rijen in \(\mathbb{R}\) zijn, met \(\lim_{n \to \infty} x_n = x\) en \(\lim_{n \to \infty} y_n = y\). Dan geldt:

(i) Voor iedere \(\alpha \in \mathbb{R}\) is de rij \((\alpha x_n)_{n \geq 0}\) convergent, met \(\lim_{n \to \infty} \alpha x_n = \alpha x\).

(ii) De somrij \((x_n + y_n)_{n \geq 0}\) is convergent met \(\lim_{n \to \infty} (x_n + y_n) = x + y\).

Bewijs. (i) Laat \(\varepsilon \in \mathbb{R}_{>0}\). Kies \(\eta > 0\) zo klein dat \(|\alpha|\eta < \varepsilon\). Kies tenslotte \(N \in \mathbb{N}_{\geq 0}\) zo groot dat \(|x_n - x| < \eta\) voor alle \(n \geq N\). Voor alle \(n \geq N\) geldt dan

\[
|\alpha x_n - \alpha x| = |\alpha||x_n - x| < |\alpha|\eta < \varepsilon.
\]
(ii) Laat \(\varepsilon \in \mathbb{R}_{>0} \). Neem \(N \) en \(N' \) in \(\mathbb{N} \) zó dat \(|x_n - x| < \varepsilon/2 \) voor alle \(n \geq N \) en \(|y_n - y| < \varepsilon/2 \) voor alle \(n \geq N' \). Voor alle \(n \geq \max\{N, N'\} \) geldt dan:
\[
|(x_n + y_n) - (x + y)| = |(x_n - x) + (y_n - y)| \leq |(x_n - x)| + |(y_n - y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]

Voor het bewijs dat convergentie van rijen ook de vermenigvuldiging, en onder de nodige voorwaarden, het nemen van de multiplicatieve inverse respecteert, hebben we het volgende hulpresultaat nodig.

IV.2.5 Definitie. Zij \((x_n)_{n \geq 0}\) een reëlle rij. We zeggen dat \((x_n)_{n \geq 0}\) een begrensde rij is als een getal \(G \in \mathbb{R} \) bestaat zó dat voor elke \(n \in \mathbb{N} \) geldt \(|x_n| \leq G \).

IV.2.6 Propositie. Iedere convergente rij in \(\mathbb{R} \) is begrens.

Bewijs. Zij \((x_n)_{n \geq 0}\) een convergente rij in \(\mathbb{R} \) met limiet \(x \). We moeten laten zien dat er een \(M \in \mathbb{R}_{\geq 0} \) bestaat met \(|x_n| \leq M \) voor alle \(n \geq 0 \). Kies een \(N \in \mathbb{N} \) zodanig dat \(|x_n - x| < 1 \) voor alle \(n \geq N \). Zij \(m = \max\{|x_k| : k = 0, \ldots, N-1\} \) en \(M = \max\{m, |x|+1\} \). Het is duidelijk dat \(|x_n| \leq m \leq M \) voor alle \(0 \leq n \leq N-1 \). Voor \(n \geq N \) geldt
\[
|x_n| = |x + (x_n - x)| \leq |x| + |x_n - x| \leq |x| + 1 \leq M.
\]

IV.2.7 Stelling. Laat \((x_n)_{n \geq 0}\) en \((y_n)_{n \geq 0}\) convergente rijen in \(\mathbb{R} \) zijn, met limieten \(x \) en \(y \), respectievelijk.

(i) De productrij \((x_n y_n)_{n \geq 0}\) is convergent, met \(\lim_{n \to \infty}(x_n y_n) = xy \).

(ii) Neem aan \(x \neq 0 \). Er is een \(N \in \mathbb{N} \) met de eigenschap dat voor alle \(n \geq N \) geldt \(x_n \neq 0 \). De rij \((1/x_n)_{n \geq N}\) is convergent met limiet \(1/x \).

Bewijs. Opgave IV.2.4.

Monotone rijen

De praktijk leert dat het vaak lastig is om rechtstreeks aan te tonen dat een gegeven rij convergeert; vaak hebben we niet eens een kandidaat voor de limiet. Om deze reden is het van belang om convergentecriteria te hebben die alleen refereren aan de termen van de rij zelf en niet aan de eventuele limiet. Zo'n criterium gaan we nu afleiden.

IV.2.8 Definitie. Een rij \((x_n)_{n \geq 0}\) in \(\mathbb{R} \) heet
- stijgend als \(x_0 \leq x_1 \leq x_2 \leq \cdots \);
- strikt stijgend als \(x_0 < x_1 < x_2 < \cdots \).

Daledende en strikt daledende rijen worden analogo gedefinieerd. We noemen stijgende en daledende rijen monotoon.

IV.2.9 Voorbeeld.

(a) De rij \((-1)^n)_{n \in \mathbb{N}}\) is niet stijgend en ook niet dalend (en dus ook niet monotoon).

(b) De rij \((n^3)_{n \in \mathbb{N}}\) is strikt stijgend (en dus monotoon).

(c) De constante rij \((a_n)_{n \in \mathbb{N}}\) gedefinieerd door \(a_n = -2 \) voor elke \(n \in \mathbb{N} \) is monotoon want hij is zowel daled als stijgend, maar hij is niet strikt stijgend en ook niet strikt dalend.
Het supremum van een naar boven begrensde rij en het infimum van een naar beneden begrensde rij definieëren en noteren we als volgt:

\[
\sup_{n \geq 0} x_n = \sup \{ x_n : n \geq 0 \} \quad \text{en} \quad \inf_{n \geq 0} x_n = \inf \{ x_n : n \geq 0 \}.
\]

IV.2.10 Stelling (Monotone Convergentiestelling). Iedere stijgende en naar boven begrensde reële rij convergeert naar zijn supremum.

Bewijs. Zij \((x_n)_{n \geq 0}\) een stijgende en naar boven begrensde rij in \(\mathbb{R}\) zijn, en laat \(V = \{ x_n : n \geq 0 \}\) en \(x = \sup V\). We gaan bewijzen dat de rij \((x_n)_{n \geq 0}\) naar \(x\) convergeert. Laat \(\varepsilon \in \mathbb{R}_{> 0}\). Omdat \(x - \varepsilon\) geen bovengrens voor \(V\) is, bestaat een \(v \in V\) met \(x - \varepsilon < v\). Er geldt \(v = x_N\) voor een zekere \(N \in \mathbb{N}\). Voor alle \(n \geq N\) geldt dan \(x - \varepsilon < x_N \leq x_n \leq x\), waarbij we gebruiken dat de rij stijgt en dat \(x\) een bovengrens is. Uit deze ongelijkheden volgt dat

\[
|x_n - x| = x - x_n < \varepsilon \quad \text{voor alle } n \geq N.
\]

Door de rij \((-x_n)_{n \geq 0}\) te beschouwen zien we dat een analoog resultaat geldt voor dalende, naar beneden begrensde rijen, zie Opgave IV.2.11.

IV.2.11 Voorbeeld. Beschouw de rij \((x_n)_{n \geq 0}\) gedefinieerd door

\[
x_0 = 1 \quad \text{en} \quad x_{n+1} = \sqrt{2x_n}
\]

voor \(n \geq 0\). We bewijzen dat de rij convergent is en vinden zijn limiet.

Met volledige induktie laten we eerst zien dat voor elke \(n \in \mathbb{N}\) geldt \(x_n \leq 2\). Duidelijk geldt \(x_0 = 1 \leq 2\). Laat nu \(n \in \mathbb{N}\), en neem aan dat \(x_n \leq 2\). Dan geldt

\[
x_{n+1} = \sqrt{2x_n} \leq \sqrt{2 \cdot 2} = 2.
\]

We hebben bewezen dat \(x_n \leq 2\) voor elke \(n \in \mathbb{N}\).

Het is ook niet moeilijk in te zien dat \((x_n)_{n \geq 0}\) stijgend is: zij \(n \in \mathbb{N}\) willekeurig, omdat \(x_n \leq 2\) volgt nu

\[
x_{n+1} = \sqrt{2x_n} \geq \sqrt{x_n^2} = x_n.
\]

De rij \((x_n)_{n \geq 0}\) is dus stijgend en naar boven begrensdd. Volgens de Monotone Convergentiestelling is \((x_n)_{n \geq 0}\) convergent; laat \(a = \lim_{n \to \infty} x_n\). Dan volgt uit \(x_{n+1} = \sqrt{2x_n}\) dat \(\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sqrt{2x_n}\) en dus \(a^2 = \sqrt{2a}\). Hieruit volgt \(a = 2\).

Exponentiële functie Als een toepassing van de Monotone Convergentiestelling laten we nu zien hoe we de exponentiële functie kunnen definieëren. Deze definitie geeft ons ook een eenvoudige benadering van \(e^x\) voor elke reële \(x\) (wie kent de waarde van \(e^{0.08}\) zonder rekenmachine?).

We keren terug naar Voorbeeld III.2.4. We hebben daar bewezen dat voor alle \(n \in \mathbb{N}\) en voor alle \(x \in \mathbb{R}_{\geq 0}\)

\[
\left(1 + \frac{x}{n}\right)^n \leq \left(1 + \frac{x}{n+1}\right)^{n+1}.
\]

\(^{2}\text{Hier worden de continuïteit van de wortel-functie en een relatie tussen limieten en continuïteit gebruikt. Zie Definitie V.1.1, Stelling V.1.4, en Opgave V.1.4,}\)
Merk op dat hetzelfde argument laat zien dat deze ongelijkheid ook voor negatieve $x \in \mathbb{R}$ geldt mits $1 + x/n > 0$. Laat nu $x \in \mathbb{R}$, en $N \in \mathbb{N}$ zó dat $1 + x/N > 0$. Dan is de rij $((1 + x/n)^n)_{n \geq N}$ stijgend. We bewijzen nu dat de rij $((1 + x/n)^n)_{n \geq N}$ naar boven begrensd is. Merk op dat voor elke $n \in \mathbb{N}$ met $n > |x|$ geldt:

$$\left(1 + \frac{x}{n}\right)^n \cdot (1 - \frac{x}{n})^n = \left(1 - \frac{x^2}{n^2}\right)^n \leq 1.$$

We delen nu links en rechts door (het positieve getal) $(1 - \frac{x}{n})^n$ en we krijgen

$$\left(1 + \frac{x}{n}\right)^n \leq (1 - \frac{x}{n})^{-n}$$

voor $n \in \mathbb{N}$ met $n > |x|$.

Nemen we in het bijzonder het eerste natuurlijke getal N dat groter is dan $|x|$ dan geldt voor elke $n \geq N$ de volgende ongelijkheid

$$\left(1 + \frac{x}{n}\right)^n \leq (1 - \frac{x}{n})^{-n} \leq \left(1 - \frac{x}{N}\right)^{-N}.$$

Hieruit volgt dat de rij $((1 + x/n)^n)_{n \geq N}$ naar boven begrensd is.

We hebben aangetoond dat voor elke $x \in \mathbb{R}$ de rij $((1 + x/n)^n)_{n \geq N}$ naar boven begrensd en stijgend is, waarbij $N \in \mathbb{N}$ zó gekozen wordt dat $1 + x/N > 0$. Volgens de Monotone Convergentiestelling is de rij convergent en kunnen we definieren:

IV.2.12 Definitie. De exponentiële functie $\exp : \mathbb{R} \to \mathbb{R}$ is gedefinieerd door

$$\exp x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n.$$

In plaats van $\exp x$ schrijven we vaak ook e^x.

IV.2.13 Voorbeeld. Het getal $\exp 1 = e$ wordt dus als volgt gedefinieerd:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n.$$

IV.2.14 Opmerking. Omdat $e^{0.08} = \lim_{n \to \infty} (1 + 0.08/n)^n$ kunnen we $e^{0.08}$ benaderen met de termen van $(1 + 0.08/n)^n_{n \in \mathbb{N}}$. Deze benadering is echter niet efficiënt; een veel betere benadering is bijvoorbeeld met behulp van Taylor-reeksen, bekend uit de Analyse.

Opgaven

1. Bewijs of weerleg: als de reële rij $(a_n)_{n \geq 0}$ convergent is en voor elke $n \in \mathbb{N}$ geldt $a_n > 13$ dan geldt ook $\lim_{n \to \infty} a_n > 13$.

2. Gegeven zijn de reële rijen $(x_n)_{n \geq 0}$ en $(y_n)_{n \geq 0}$. Toon aan: als $\lim_{n \to \infty} x_n = 0$ en $(y_n)_{n \geq 0}$ is begrensd, dan geldt $\lim_{n \to \infty} x_n y_n = 0$.

3. Bewijs dat de reële rij $(n \cdot 2^{-n})_{n \in \mathbb{N}}$ convergent is en vind zijn limiet.

5. (a) Zij \((x_n)_{n \geq 0}\) convergent en \((y_n)_{n \geq 0}\) divergent. Toon aan dat \((x_n + y_n)_{n \geq 0}\) divergeert.
(b) Bewijs: uit \(\lim_{n \to \infty} x_n = \infty\) en \(\lim_{n \to \infty} y_n = \infty\) volgt \(\lim_{n \to \infty}(x_n + y_n) = \infty\).
(c) Bewijs of weerleg: de som van twee divergente rijen is divergent.

6. Laat \((a_n)_{n \geq 0}\) een reële rij zijn. Neem aan dat \(\lim_{n \to \infty} a_n = a \neq 0\). Wat kan men zeggen over \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n}\)?

7. Laat \((a_n)_{n \geq 0}\) en \((b_n)_{n \geq 0}\) reële rijen zijn. Bewijs of weerleg: als \(\lim_{n \to \infty} a_n b_n = 0\) dan \(\lim_{n \to \infty} a_n = 0\) of \(\lim_{n \to \infty} b_n = 0\).

8. Construeer reële rijen \((a_n)_{n \geq 0}\) en \((b_n)_{n \geq 0}\) met \(\lim_{n \to \infty} a_n = 0\) en \(\lim_{n \to \infty} b_n = \infty\) en zó dat
 (a) \(\lim_{n \to \infty} a_n b_n = 0\);
 (b) \(\lim_{n \to \infty} a_n b_n = -3\);
 (c) \(\lim_{n \to \infty} a_n b_n = \infty\);
 (d) \(\lim_{n \to \infty} a_n b_n = -\infty\);
 (e) \(a_n b_n)_{n \geq 0}\) divergeert en \(\lim_{n \to \infty} a_n b_n \neq \infty\) en ook \(\lim_{n \to \infty} a_n b_n \neq -\infty\).

9. Geef in elk van de onderstaande gevallen een reële rij met de genoemde eigenschappen:
 (a) De rij is dalend met 0 als het infimum.
 (b) De rij is stijgend met 5 als het supremum.
 (c) De rij is noch dalend noch stijgend en heeft 0 als het infimum en 5 als het supremum.

10. Laat \((a_n)_{n \in \mathbb{N}}\), \((b_n)_{n \in \mathbb{N}}\) en \((c_n)_{n \in \mathbb{N}}\) reële rijen zijn. Bewijs of weerleg:
 (a) Als \((a_n)_{n \in \mathbb{N}}\) niet naar boven begrensd is dan is ook geen van zijn deelrijen naar boven begrensd.
 (b) Als \(b \in \mathbb{R}\) een bovengrens van \((b_n)_{n \in \mathbb{N}}\) is dan heeft elke van zijn deelrijen ook \(b\) als een bovengrens.
 (c) Als \(c \in \mathbb{R}\) het supremum van \((c_n)_{n \in \mathbb{N}}\) is dan heeft elke van zijn deelrijen ook \(c\) als een supremum.

 (a) \((a_n)_{n \geq 1}\) waarbij \(a_n = \sum_{k=1}^{n} \frac{9}{10^k}\);
 (b) \((a_n)_{n \geq 1}\) waarbij \(a_n = \sum_{k=1}^{n} \frac{5}{10^k}\).
 (c) Bezoek eens de wikipedia pagina http://en.wikipedia.org/wiki/0.999\ldots

13. De rij \((x_n)_{n \geq 0}\) is gedefinieerd door \(x_0 = 2\) en \(x_{n+1} = (1 + x_n)/2\) voor \(n \geq 0\).
 (a) Laat zien dat voor elke \(n \in \mathbb{N}\) geldt \(x_n \geq 1\).
 (b) Laat zien dat \((x_n)_{n \geq 0}\) dalend is.
 (c) Bewijs dat \((x_n)_{n \geq 0}\) convergent is en vind zijn limiet.

14. Bewijs dat voor elke \(x \in \mathbb{R}\) geldt
 \[
 \exp x = \lim_{n \to \infty} \left(1 - \frac{x}{n}\right)^{-n}.
 \]
15. Bewijs: als \((x_n)_{n \geq 0}\) een rij is zó dat \(\lim_{n \to \infty} nx_n = 0\) dan geldt
\[
\lim_{n \to \infty} (1 + x_n)^n = 1.
\]

16. Bewijs de bekende rekenregels voor de exponentiële functie.

 (a) \(e^x > 0\) voor elke \(x \in \mathbb{R}\);

 (b) \(e^x \cdot e^y = e^{x+y}\).

17. Zij \((a_n)_{n \geq 0}\) en reële rij. We definiëren \(\limsup_{n \to \infty} a_n\) en \(\liminf_{n \to \infty} a_n\) als volgt:
\[
\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sup \{a_k : k \geq n\} \right)
\quad \text{en} \quad
\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \left(\inf \{a_k : k \geq n\} \right).
\]

 (a) Bewijs dat \(\liminf_{n \to \infty} (-1)^n = -1\) en \(\limsup_{n \to \infty} (-1)^n = 1\).

 (b) Bewijs dat \(\liminf_{n \to \infty} (-1)^n n = -\infty\) en \(\limsup_{n \to \infty} (-1)^n n = \infty\).

 (c) Bewijs dat voor elke \((a_n)_{n \geq 0}\) \(\liminf_{n \to \infty} a_n\) en \(\limsup_{n \to \infty} a_n\) bestaan.

 (d) Bewijs dat voor elke \((a_n)_{n \geq 0}\) \(\liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n\).

18. Zij \(k \in \mathbb{N}\). Bewijs
\[
\lim_{n \to \infty} \frac{1}{n^k} \binom{n}{k} = \frac{1}{k!}.
\]
IV.3 Volledigheid van \(\mathbb{R} \)

In de vorige paragraaf hebben we de Monotone Convergentiestelling bewezen, die een voldoende voorwaarde voor convergentie van monotone rijen geeft. In deze paragraaf bewijzen we de Volledigheidsstelling, die een criterium geeft voor convergentie van rijen die niet noodzakelijk monotoon zijn. We zullen ook zien dat met behulp van de Monotone Convergentiestelling een eenvoudig maar in de praktijk vaak gebruikt convergentie-criterium voor oneindige sommen makkelijk af te leiden is.

IV.3.1 Definitie

Een rij \((x_n)_{n \geq 0}\) in \(\mathbb{R} \) heet een **Cauchy-rij** als er voor iedere \(\varepsilon \in \mathbb{R}_{>0} \) een \(N \in \mathbb{N} \) bestaat met de volgende eigenschap:

\[
|x_n - x_N| < \varepsilon.
\]

voor alle \(n \geq N \).

IV.3.2 Voorbeeld

(a) De rij \((1/(n+1))_{n \in \mathbb{N}}\) is een Cauchy-rij. Immers, \(\varepsilon \in \mathbb{R}_{>0} \). Kies \(N \in \mathbb{N} \) met \(N+1 > 2/\varepsilon \) dan is \(1/(N+1) < \varepsilon/2 \). Hieruit volgt dat voor elke \(n \geq N \) geldt:

\[
\left| \frac{1}{n+1} - \frac{1}{N+1} \right| \leq \frac{1}{n+1} + \frac{1}{N+1} \leq \frac{2}{N+1} < \varepsilon.
\]

(b) De rij \((-1)^n_{n \in \mathbb{N}}\) is geen Cauchy-rij want voor \(\varepsilon = 1 \) bestaat geen \(N \geq 0 \) zo dat voor alle \(n \geq N \) geldt \(|(-1)^n - (-1)^N| < 1 \): zij \(N > 0 \) en neem \(n = N+1 \) dan geldt \(|(-1)^n - (-1)^N| = |(-1)^{N+1} - (-1)^N| = 2 \neq 1 \).

We zullen zo-dadelijk zien dat een reële rij precies dan convergeert wanneer hij een Cauchy-rij is. Eén helft van deze bewering is eenvoudig te bewijzen.

IV.3.3 Stelling

Ledere convergente rij in \(\mathbb{R} \) is een Cauchy-rij.

Bewijs. Zij \((x_n)_{n \geq 0}\) een convergente reële rij, met limiet \(x \). Laat \(\varepsilon \in \mathbb{R}_{>0} \). Er is een \(N \in \mathbb{N}_{>0} \) zodanig dat \(|x_n - x| < \varepsilon/2 \) voor alle \(n \geq N \). Voor alle \(n \geq N \) geldt dan

\[
|x_n - x_N| = |(x_n - x) + (x - x_N)| \leq |x_n - x| + |x - x_N| < \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]

De omkering van deze stelling is lastiger te bewijzen. Hiervoor leiden we eerst een versie van de propositie IV.2.6 voor Cauchy-rijen af.

IV.3.4 Propositie

Ledere Cauchy-rij in \(\mathbb{R} \) is begrensd.

Bewijs. Zij \((x_n)_{n \geq 0}\) een Cauchy-rij in \(\mathbb{R} \). We moeten laten zien dat er een \(M \in \mathbb{R} \) bestaat met \(|x_n| \leq M \) voor alle \(n \geq 0 \). Kies een \(N \in \mathbb{N} \) zodanig dat \(|x_n - x_N| < 1 \) voor alle \(n \geq N \). Zij \(m = \max\{ |x_k| : k = 0, \ldots, N \} \) en \(M = m + 1 \). Voor \(n = 0, \ldots, N \) is het duidelijk dat \(|x_n| \leq m \leq M \). Voor \(n \geq N \) geldt

\[
|x_n| = |x_N + (x_n - x_N)| \leq |x_N| + |x_n - x_N| \leq m + 1 = M.
\]

Nu zijn we klaar voor het bewijs van de omkering van Stelling IV.3.3:

IV.3.5 Stelling (Volledigheidsstelling)

Ledere Cauchy-rij in \(\mathbb{R} \) is convergent.
Bewijs. Zij \((x_n)_{n \geq 0}\) een Cauchy-rij in \(\mathbb{R}\). Aangezien \((x_n)_{n \geq 0}\) begrensd is, bestaan voor iedere \(n \geq 0\) de getallen

\[
a_n = \inf_{k \geq n} x_k \quad \text{en} \quad b_n = \sup_{k \geq n} x_k.
\]

Merk op dat de rij \((a_n)_{n \geq 0}\) stijgt en dat de rij \((b_n)_{n \geq 0}\) daalt. Bovendien geldt, voor iedere \(n \geq 0\):

\[
a_0 \leq a_n \leq x_n \leq b_n \leq b_0.
\]

Hieruit volgt dat \(b_0\) een bovengrens is voor \((a_n)_{n \geq 0}\) en dat \(a_0\) een benedengrens is voor \((b_n)_{n \geq 0}\). Zij

\[
a = \sup_{n \geq 0} a_n \quad \text{en} \quad b = \inf_{n \geq 0} b_n.
\]

We gaan nu bewijzen dat de rij \((x_n)_{n \geq 0}\) naar \(a\) convergeert. Laat \(\varepsilon \in \mathbb{R}_{>0}\), en neem een \(N \in \mathbb{N}\) zó dat voor alle \(n \in \mathbb{N}_{>N}\) geldt dat \(|x_n - x_N| < \varepsilon/2\) (hier gebruiken we de definitie van Cauchy-rij). Dan geldt voor iedere \(n \in \mathbb{N}_{>N}\) dat \(x_n \in [x_N - \varepsilon/2, x_N + \varepsilon/2]\). Uit de definities van \(a_n\) volgt dat voor alle \(n \in \mathbb{N}_{>N}\) geldt dat \(a_n \in [x_N - \varepsilon/2, x_N + \varepsilon/2]\). Volgens de definitie van \(a\) geldt dan dat \(a \in [x_N - \varepsilon/2, x_N + \varepsilon/2]\). Dus geldt voor iedere \(n \in \mathbb{N}_{\geq N}\) dat \(|a - x_n| \leq \varepsilon\).

We bewijzen nu een belangrijke toepassing van de Volledigheidsstelling.

IV.3.6 Stelling (Bolzano-Weierstrass). Iedere begrensde rij in \(\mathbb{R}\) heeft een convergente deelrij.

Bewijs. Zij \((x_n)_{n \geq 0}\) een begrensde reële rij. Kies \(a_0 \leq b_0 \in \mathbb{R}\) zodanig dat \(x_n \in [a_0, b_0]\) voor alle \(n \geq 0\). Zet \(m_0 = 0\) en merk op dat \(x_{m_0} \in I_0\).

Zij \(c_0 = (a_0 + b_0)/2\). Tenminste één van de twee deelintervallen \([a_0, c_0]\) en \([c_0, b_0]\) bevat oneindig veel termen van de rij \((x_n)_{n \geq 0}\). Kies zo'n deelinterval en noem het \(I_1\). De eindpunten van \(I_1\) noemen we \(a_1\) en \(b_1\), zodat \(I_1 = [a_1, b_1]\). Kies een \(n_1 \in \mathbb{N}_{>m_0}\) waarvoor geldt dat \(x_{n_1} \in I_1\).

Zij \(c_1 = (a_1 + b_1)/2\). Tenminste één van de twee deelintervallen \([a_1, c_1]\) en \([c_1, b_1]\) bevat oneindig veel termen van de rij \((x_n)_{n \geq 0}\). Kies zo'n deelinterval en noem het \(I_2\). De eindpunten van \(I_2\) noemen we \(a_2\) en \(b_2\), zodat \(I_2 = [a_2, b_2]\).

Omdat \(I_2\) oneindig veel termen van de rij \((x_n)_{n \geq 0}\) bevat, kunnen we een \(n_2 \in \mathbb{N}\) met \(n_2 > n_1\) kiezen waarvoor geldt dat \(x_{n_2} \in I_2\).

Zo krijgen we een rij intervallen \((I_n)_{n \geq 0}\) met \(\text{diam}(I_n) = 2^{-n}(b_0 - a_0)\), waarbij \(\text{diam}(I_n)\) de lengte van het interval \(I_n\) is, en zo dat \(I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots\), en een deelrij \((x_{n_k})_{k \geq 0}\) van \((x_n)_{n \geq 0}\) met de eigenschap dat \(x_{n_k} \in I_k\) voor alle \(k \geq 0\). Als \(k' \geq k \geq N\), dan geldt bovendien dat \(x_{n_{k'}} \in I_{k'} \subseteq I_k \subseteq I_N\).

De rij \((x_{n_k})_{k \geq 0}\) is een Cauchy-rij. Inderdaad, voor gegeven \(\varepsilon \in \mathbb{R}_{>0}\) kiezen we \(N \in \mathbb{N}\) zo groot dat \(\text{diam}(I_N) < \varepsilon\). Voor alle \(m \geq N\) geldt dan \(x_{n_m} \in I_{n_m} \subseteq I_N\) en \(x_{n_N} \in I_N\), zodat

\[
|x_{n_m} - x_{n_N}| \leq \text{diam}(I_N) < \varepsilon.
\]

Uit de Volledigheidsstelling volgt dat \((x_{n_k})_{k \geq 0}\) convergeert.

Construktie van \(\mathbb{R}\)

We eindigen deze sectie met een zeer korte schets van een constructie van \(\mathbb{R}\) uit \(\mathbb{Q}\). Natuurlijk kunnen we dan \(\mathbb{R}\) niet gebruiken tijdens deze constructie. Vandaar dat we opnieuw moeten definiëren wat een Cauchy-rij in \(\mathbb{Q}\) is. Een rij \(a = (a_n)_{n \in \mathbb{N}}\)
in \mathbb{Q} noemen we een Cauchy-rij als voor alle $\varepsilon \in \mathbb{Q} > 0$ er een $N \in \mathbb{N}$ is zo dat voor alle $n \in \mathbb{N} \geq N$: $|a_n - a_N| < \varepsilon$. Laat \mathcal{R} de verzameling van alle Cauchy-rijen in \mathbb{Q} zijn. Voor $a \in \mathcal{R}$ zeggen we dat a limiet 0 heeft als voor alle $\varepsilon \in \mathbb{Q} > 0$ er een $N \in \mathbb{N}$ is zo dat voor alle $n \in \mathbb{N} \geq N$: $|a_n| < \varepsilon$. Op \mathcal{R} hebben we dan de volgende equivalentierelatie:

$$a \sim b \iff a - b$$

Heeft limiet 0. Het quotiënt \mathcal{R}/\sim dat we noteren als \mathcal{R}, heeft dan alle gewenste eigenschappen.

Op \mathcal{R} hebben we operaties $+$ en ·, die, net als in het geval $\mathbb{Z}/n\mathbb{Z}$, overgaan op het quotiënt \mathcal{R}. De constante rijen 0 en 1 geven elementen 0 en 1 in \mathcal{R}. Voor $a, b \in \mathcal{R}$ definiëren we $a > b$ als volgt: er is een $\varepsilon \in \mathbb{Q} > 0$ en een $N \in \mathbb{N}$ zo dat voor alle $n \in \mathbb{N} \geq N$ geldt dat $a_n > b_n + \varepsilon$. Deze relatie gaat ook over op het quotiënt \mathcal{R}. Het is veel werk, maar niet echt moeilijk, te laten zien dat de hier geconstrueerde $(\mathcal{R}, 0, 1, +, \cdot, >)$ aan alle axioma’s (R0)–(R13) voldoet.

Opgaven

1. Laat $(a_n)_{n \in \mathbb{N}}$ een reële rij zijn. Bewijs dat $(a_n)_{n \in \mathbb{N}}$ een Cauchy-rij is dan en slechts dan als voor elke $\varepsilon \in \mathbb{R} > 0$ een $N \in \mathbb{N}$ bestaat zo dat

 $$\text{voor alle } n, m \geq N : \quad |a_n - a_m| < \varepsilon.$$

2. Zij $(x_n)_{n \geq 0}$ een rij in \mathbb{R}. Toon aan: als $\lim_{n \to \infty} x_n = x$, dan geldt $\lim_{k \to \infty} x_{n_k} = x$ voor iedere deelrij $(x_{n_k})_{k \geq 0}$ van $(x_n)_{n \geq 0}$.

3. Laat $(x_n)_{n \in \mathbb{N}}$ een reële Cauchy-rij is zijn en neem aan dat een convergente deelrij $(x_{n_k})_{k \in \mathbb{N}}$ bestaat die naar $a \in \mathbb{R}$ convergeert. Bewijs dat $(x_n)_{n \in \mathbb{N}}$ ook een convergente rij is met de limiet a.

4. Toon aan dat een begrensde rij in \mathbb{R} dan en slechts dan convergent is als alle convergente deelrijen van de rij dezelfde limiet hebben.

5. Noem twee Cauchy-rijen $(x_n)_{n \in \mathbb{N}}$ en $(y_n)_{n \in \mathbb{N}}$ in \mathbb{R} equivalent als

 $$\lim_{n \to \infty} |x_n - y_n| = 0.$$

Laat zien dat dit een equivalentie-relatie is.

6. Construeer een reële rij $(x_n)_{n \geq 0}$ met de eigenschap dat iedere $x \in [0, 1]$ de limiet is van een deelrij van $(x_n)_{n \geq 0}$.

7. Bewijs of weerleg: Als $(x_n)_{n \geq 0}$ en $(y_n)_{n \geq 0}$ reële Cauchy-rijen zijn dan is ook $(x_n + y_n)_{n \geq 0}$ een Cauchy-rij.

8. Laat zien dat er Cauchy-rijen in \mathbb{Q} bestaan die geen limiet in \mathbb{Q} hebben.
Voor $n \in \mathbb{N}$ en $x_1, \ldots, x_n \in \mathbb{R}$ is de som $\sum_{i=1}^{n} x_i$ gedefinieerd. De situatie is anders als we de som van een oneindige rij getallen willen definiëren. Om sommen van een (oneindige) rij getallen te definiëren gebruiken we de rij van partiële sommen.

IV.4.1 Definitie. Zij $(a_n)_{n \in \mathbb{N}}$ een reëele rij.

(i) Voor elke $n \in \mathbb{N}$ is de n-de partiële som van de rij $(a_n)_{n \in \mathbb{N}}$ gegeven door

$$s_n = a_0 + a_1 + \cdots + a_n = \sum_{k=0}^{n} a_k.$$

De reeks van de rij $(a_n)_{n \in \mathbb{N}}$ wordt nu definiëerd als de rij $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ van zijn partiële sommen, dat wil zeggen, als de rij $(s_n)_{n \in \mathbb{N}}$.

(ii) Als de rij $(s_n)_{n \in \mathbb{N}}$ convergeert, of met andere woorden, als de reeks van de rij $(a_n)_{n \in \mathbb{N}}$ convergeert, dan noemen we de limiet de som van de rij $(a_n)_{n \in \mathbb{N}}$ en noteren we die als $\sum_{n=0}^{\infty} a_n$. In dit geval is de reeks $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ van de rij $(a_n)_{n \in \mathbb{N}}$ convergent,

Reeksen die niet convergent zijn heten **divergent**.

IV.4.2 Opmerking. In veel teksten wordt de notatie $\sum_{n=0}^{\infty} a_n$ gebruikt zowel voor de reeks $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ als de voor de limiet, als die laatste bestaat. In dit dictaat doen we een poging dit te vermijden.

IV.4.3 Opmerking. Laat $(a_n)_{n \in \mathbb{N}}$ een reële rij zijn. Rechtstreeks toepassen van Definitie IV.4.1 geeft dat de reeks $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ convergent is precies dan als er voor iedere $\varepsilon \in \mathbb{R}_{\geq 0}$ een $N \in \mathbb{N}$ is zodat voor alle $n \in \mathbb{N}_{\geq N}$ geldt dat $|s_N + \cdots + a_n| < \varepsilon$.

In de Analyse zullen reeksen in meer detail bestudeerd worden. We bekijken nu slechts speciale reeksen die we vaak tegenkomen.

meetkundige reeks

IV.4.4 Definitie. Een *meetkundige reeks* is een rij van de vorm $(\sum_{n=0}^{k} a^n)_{n \in \mathbb{N}}$, waarbij a een reëel getal is.

IV.4.5 Stelling. Laat $a \in \mathbb{R}$. De meetkundige reeks $(\sum_{k=0}^{n} a^n)_{n \in \mathbb{N}}$ is convergent dan en slechts dan als $|a| < 1$. Als $|a| < 1$, dan geldt

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}.$$

Bewijs. Opgave IV.4.1.

IV.4.6 Voorbeeld. We bekijken de reeks $(\sum_{k=0}^{n} (-1/2)^k)_{n \in \mathbb{N}}$. Omdat geldt dat $|(-1/2)| < 1$ is de reeks convergent met

$$\sum_{n=0}^{\infty} (-1/2)^n = \frac{1}{1 - (-1/2)} = \frac{2}{3}.$$

IV.4.4 Definitie. Een meetkundige reeks is een rij van de vorm $(\sum_{n=0}^{k} a^n)_{n \in \mathbb{N}}$, waarbij a een reëel getal is.

IV.4.5 Stelling. Laat $a \in \mathbb{R}$. De meetkundige reeks $(\sum_{k=0}^{n} a^n)_{n \in \mathbb{N}}$ is convergent dan en slechts dan als $|a| < 1$. Als $|a| < 1$, dan geldt

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}.$$

Bewijs. Opgave IV.4.1.

IV.4.6 Voorbeeld. We bekijken de reeks $(\sum_{k=0}^{n} (-1/2)^k)_{n \in \mathbb{N}}$. Omdat geldt dat $|(-1/2)| < 1$ is de reeks convergent met

$$\sum_{n=0}^{\infty} (-1/2)^n = \frac{1}{1 - (-1/2)} = \frac{2}{3}.$$

Majorantie-minorantie kenmerk

Nu we de Monotone convergentiestelling en de Volledigheidsstelling tot onze beschikking hebben is het niet moeilijk het volgende criterium voor convergentie van reeksen te bewijzen, zie Opgave IV.4.5.

IV.4.7 Stelling (Majorantie-minorantie kenmerk). Laat \((a_n)_{n\in\mathbb{N}}\) en \((b_n)_{n\in\mathbb{N}}\) reële rijen zijn.

(i) Neem aan dat voor alle \(n \in \mathbb{N}\) geldt \(|a_n| \leq b_n\), en dat de reeks \(\sum_{k=0}^{n} b_n\) convergent is. Dan is de reeks \(\sum_{k=0}^{n} a_n\) ook convergent.

(ii) Neem aan dat voor alle \(n \in \mathbb{N}\) geldt \(a_n \geq b_n \geq 0\), en dat de reeks \(\sum_{k=0}^{n} b_n\) divergent is. Dan is de reeks \(\sum_{k=0}^{n} a_n\) ook divergent.

IV.4.8 Voorbeeld.

(i) Beschouw de reeks \(\sum_{k=0}^{\infty} a_k\), waarbij \(a_k = 2^{-k}\sin k\). Omdat de meetkundige reeks \(\sum_{k=0}^{\infty} 2^{-k}\) convergent is en voor elke \(k \in \mathbb{N}\) geldt dat \(2^{-k}\sin k \leq 2^{-k}\) volgt onmiddellijk dat \(\sum_{k=0}^{\infty} a_k\) convergent is.

(ii) Volgens Opgave IV.4.2 is de harmonische reeks \(\sum_{k=1}^{\infty} 1/k\) divergent. Als \(a \in \mathbb{Q}\) met \(a \leq 1\), dan \(1/n^a \geq 1/n > 0\) voor \(q = a/b\) met \(a \in \mathbb{Z}, b \in \mathbb{N}_{>0}\) en \(\gcd(a, b) = 1\). voor \(x \in \mathbb{R}_{>0}\) definieren we \(x^q = (x^{1/b})^a\). Hieruit volgt dat de reeks \(\sum_{n=1}^{\infty} 1/n^a\) ook divergent is.

Rekenregels voor convergente reeksen

We hebben rekenregels voor convergente rijen bewezen. Een analoge stelling hebben we dan vanzelfsprekend ook voor reeksen.

IV.4.9 Stelling. Neem aan dat \(\sum_{k=0}^{\infty} a_k\) en \(\sum_{k=0}^{\infty} b_k\) convergente reeksen in \(\mathbb{R}\) zijn, met \(\sum_{n=0}^{\infty} a_n = A\) en \(\sum_{n=0}^{\infty} b_n = B\). Dan geldt:

(i) Voor iedere \(x \in \mathbb{R}\) is de reeks \(\sum_{k=0}^{\infty} x a_k\) convergent, met \(\sum_{n=0}^{\infty} x a_n = A\).

(ii) De reeks \(\sum_{k=0}^{\infty} (a_k + b_k)\) is convergent met \(\sum_{n=0}^{\infty} (a_n + b_n) = A + B\).

Decimaalontwikkeling van een reëel getal

Op het vwo hebben we geleerd dat we ieder reëel getal kunnen voorstellen met behulp van een decimaalontwikkeling. We gaan dit precies maken met behulp van de Monotone convergentiestelling.

Door een reëel getal te schrijven als de som van een geheel getal en een reëel getal in het interval \([0, 1)\) hoeven we alleen naar reële getallen \(x \in [0, 1)\) te kijken.

Laat \(x \in [0, 1)\). Zij \(k_1 \in \{0, 1, \ldots, 9\}\) het unieke getal met de eigenschap dat

\[
\frac{k_1}{10} \leq x < \frac{k_1 + 1}{10}
\]

en definieer \(q_1 = k_1/10\). Merk op dat \(k_1 = \lfloor 10 \cdot x \rfloor\), waar, voor \(y \in \mathbb{R}\), \([y]\) het grootste gehele getal is in \(\mathbb{R}_{\leq y}\) (de entier van \(y\)). Zij \(k_2 \in \{0, 1, \ldots, 9\}\) het unieke getal met de eigenschap dat

\[
\frac{k_1}{100} + \frac{k_2}{100} \leq x < \frac{k_1}{100} + \frac{k_2 + 1}{100}
\]

en definieer \(q_2 = k_1/10 + k_2/100\). Zo voortgaand krijgen we een een rij \((k_n)_{n\geq 1}\), met \(k_n \in \{0, 1, \ldots, 9\}\) voor iedere \(n \geq 1\), en een rij \((q_n)_{n\geq 1}\) met

\[
q_n = \sum_{j=1}^{n} \frac{k_j}{10^j}
\]

Merk op dat we het hier gewoon hebben over het convergentiebegrip van rijen.
Voor $x = 1/7$ levert dit bijvoorbeeld:

\[
\begin{align*}
 k_1 &= 1 & q_1 &= 0.1 \\
 k_2 &= 4 & q_2 &= 0.14 \\
 k_3 &= 2 & q_3 &= 0.142 \\
 k_4 &= 8 & q_4 &= 0.1428 \\
 \ldots & & \ldots
\end{align*}
\]

Uit de keuze van k_n volgt dat

\[|q_n - x| \leq \frac{1}{10^n} \text{ voor alle } n \geq 1.\]

Bijgevolg convergeert $(q_n)_{n \geq 1}$ naar x. Uit de Monotone Convergentiestelling volgt bovendien dat $x = \sup_{n \geq 1} q_n$. We schrijven nu meestal

\[x = 0, k_1 k_2 k_3 k_4 \ldots .\]

Deze representatie van het getal x noemen we de decimaalontwikkeling van x. Voor $x = 1/7$ geldt

\[x = 0, 142857 \]

Opgaven

1. Bewijs Stelling IV.4.5.
2. (a) Bewijs: als $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ convergent is dan geldt $\lim_{n \to \infty} a_n = 0$.
 (b) Bewijs dat het omgekeerde niet waar is door te laten zien dat de **harmonische reeks** $(\sum_{k=1}^{n} 1/k)_{n \in \mathbb{N} \geq 1}$ divergent is.
3. Bepaal of de reeks $(\sum_{k=2}^{n} a_k)_{n \in \mathbb{N} \geq 2}$ convergent of divergent is als gegeven wordt:
 (a) $a_n = \frac{\sqrt{2^n + 3^n} - \sqrt{2^n + 5^n}}{4^n}$;
 (b) $a_n = \frac{n + \sqrt{n}}{n^2 - n}$.
4. Bewijs dat de reeks\(^5\) $(\sum_{k=0}^{n} \frac{1}{k!})_{n \in \mathbb{N}}$ convergent is en dat $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.
6. Vind de som of laat zien dat de reeks $(\sum_{k=0}^{n} a_k)_{n \in \mathbb{N}}$ divergent is, in elk van de onderstaande gevallen.
 (a) $a_n = \frac{2^{n+1} + 4^{n+2}}{8^n}$;
 (b) $a_n = \frac{5^{n-2} + 3^{n+2}}{2^n}$;
 (c) $a_n = (-1)^n$;
 (d) $a_n = \sin(n\pi/2)$.
8. Geef de decimaalontwikkelingen van $1/6$, $1/2$ en 1.
9. De **binaire** ontwikkeling van een reëel getal krijgen we door de rol van het grondtal

\[\text{Deze reeks wordt vaak gebruikt om het getal } e \text{ te definiëren: er geldt } e = \sum_{n=0}^{\infty} \frac{1}{n!} \]

\[\text{IV REËLE RIJEN EN REEKSEN} \]
10 te vervangen door grondtal 2. Geef de binaire ontwikkeling van (het in het 10-tallig stelsel geschreven getal) $1/3$.

10. Vind de decimaalontwikkeling van x als zijn binaire ontwikkeling 11010 is.

\[\star 11. \text{Laat } (a_n)_{n \in \mathbb{N}} \text{ een dalende re"elle rij zijn die naar 0 convergeert. Laat zien dat de reeks } \left(\sum_{k=0}^{n} (-1)^k a_k \right)_{n \in \mathbb{N}} \text{ convergeert.} \]
In dit hoofdstuk bestuderen we continue reëelwaardige functies op deelverzamelingen van \mathbb{R}. We leiden een aantal belangrijke eigenschappen af en laten zien dat elke continue functie op een gesloten en begrensd interval uniform continu is.

V.1 Continue functies

We beginnen met de definitie van continuïteit. Erg informeel gezegd betekent continuïteit zoiets als: kleine oorzaken hebben kleine gevolgen. Deze betekenis geeft dan ook meteen het maatschappelijk nut aan van dit begrip, waar men bang is voor kleine oorzaken met grote gevolgen. Nu de formele definitie.

V.1.1 Definitie. Zij $D \subseteq \mathbb{R}$, en $f: D \to \mathbb{R}$. Laat $c \in D$.

(i) We noemen f continu in c als er voor iedere $\varepsilon \in \mathbb{R}_{>0}$ een $\delta \in \mathbb{R}_{>0}$ bestaat zodanig dat

$$\text{voor alle } x \in D \text{ met } |x - c| < \delta : \ |f(x) - f(c)| < \varepsilon.$$

We noemen $f: D \to \mathbb{R}$ continu als f continu is in ieder punt van D.

(ii) We zeggen dat f linkscontinu in het punt c is indien er voor iedere $\varepsilon \in \mathbb{R}_{>0}$ een $\delta \in \mathbb{R}_{>0}$ bestaat zodanig dat

$$\text{voor alle } x \in D \text{ met } c - \delta < x \leq c : \ |f(x) - f(c)| < \varepsilon.$$

(iii) We zeggen dat f rechtscontinu in het punt c is indien er voor iedere $\varepsilon \in \mathbb{R}_{>0}$ een $\delta \in \mathbb{R}_{>0}$ bestaat zodanig dat

$$\text{voor alle } x \in D \text{ met } c \leq x < c + \delta : \ |f(x) - f(c)| < \varepsilon.$$

V.1.2 Voorbeeld. De functie $f: \mathbb{R} \to \mathbb{R}$ gegeven door $f(x) = |x|$ is continu in elke $c \in \mathbb{R}$. Immers, laat $\varepsilon \in \mathbb{R}_{>0}$. We zoeken een $\delta \in \mathbb{R}_{>0}$ zodat voor elke $x \in \mathbb{R}$ met $|x - c| < \delta$ geldt $|x| - |c| < \varepsilon$.

Er geldt, voor alle c en x in \mathbb{R}:

$$|x| - |c| \leq |x - c|,$$

dus we kunnen $\delta = \varepsilon$ nemen.
V.1.3 Voorbeeld. De functie \(f: (-1,0) \cup (0,1) \rightarrow \mathbb{R} \) gedefinieerd door

\[
f(x) = \begin{cases}
0, & x \in (-1,0) \\
1, & x \in (0,1)
\end{cases}
\]

is continu, want het volgt onmiddellijk uit de definitie dat \(f \) continu is in ieder punt van \((-1,0)\) en \((0,1)\).

Daarentegen is de functie \(f: (-1,1) \rightarrow \mathbb{R} \) gedefinieerd door

\[
f(x) = \begin{cases}
0, & x \in (-1,0] \\
1, & x \in (0,1)
\end{cases}
\]

niet continu, want \(f \) is niet continu in het punt 0. Inderdaad, als we, bijvoorbeeld, \(\varepsilon = 1/2 \) kiezen, dan kunnen we voor iedere \(\delta \in \mathbb{R}_{>0} \) een \(x \in (-1,1) \) vinden met \(|x - 0| = |x| < \delta \) en \(|f(x) - f(0)| = |f(x)| \geq 1/2 \); neem voor \(x \) een willekeurig getal in het interval \((0,\delta)\), bijvoorbeeld \(x = \delta/2 \).

De volgende stelling geeft het verband tussen continuïteit en limieten van rijen.

V.1.4 Stelling. Laat \(D \subseteq \mathbb{R} \) en \(c \in D \) gegeven zijn. Voor een functie \(f: D \rightarrow \mathbb{R} \) zijn de volgende twee uitspraken equivalent:

(i) \(f \) is continu in het punt \(c \);
(ii) voor iedere rij \((x_n)_{n \geq 0} \) in \(D \) met \(\lim_{n \rightarrow \infty} x_n = c \) geldt \(\lim_{n \rightarrow \infty} f(x_n) = f(c) \).

Bewijs. (i) \(\Rightarrow \) (ii): Neem aan dat \(f \) continu is in \(c \), en zij \((x_n)_{n \geq 0} \) een rij in \(D \) met \(\lim_{n \rightarrow \infty} x_n = c \). Zij \(\varepsilon \in \mathbb{R}_{\geq 0} \). Omdat \(f \) continu is in \(c \) is er een \(\delta \in \mathbb{R}_{>0} \) zo dat voor alle \(x \in D \) met \(|x - c| < \delta \) geldt dat \(|f(x) - f(c)| < \varepsilon \). Wegens \(\lim_{n \rightarrow \infty} x_n = c \) is er een \(N \in \mathbb{N} \) zodanig dat voor alle \(n \geq N \) geldt dat \(|x_n - c| < \delta \). Hieruit volgt dat \(|f(x_n) - f(c)| < \varepsilon \) voor \(n > N \). Maar dit betekent dat \(\lim_{n \rightarrow \infty} f(x_n) = f(c) \).

(ii) \(\Rightarrow \) (i): Neem eens aan dat \(f \) niet continu is in \(c \). Dan is er een \(\varepsilon_0 > 0 \) met de volgende eigenschap: voor iedere \(n \geq 0 \) bestaat een punt in \(D \), dat we \(x_n \) zullen noemen, met de eigenschap \(|x_n - c| < 1/(n + 1) \) en \(|f(x_n) - f(c)| \geq \varepsilon_0 \). De resulterende rij \((x_n)_{n \geq 0} \) ligt in \(D \) en voldoet aan \(\lim_{n \rightarrow \infty} x_n = c \), maar de rij \((f(x_n))_{n \geq 0} \) convergeert niet naar \(f(c) \).

Met behulp van deze stelling kunnen we uit de rekenregels voor limieten van rijen overeenkomstige rekenregels voor continue functies afleiden (vergelijk Stelling IV.2.4 en Stelling IV.2.7).

Rekenregels voor continuïteit

V.1.5 Stelling. Als \(f: D \rightarrow \mathbb{R} \) en \(g: D \rightarrow \mathbb{R} \) twee functies zijn die continu zijn in het punt \(c \in D \), en \(\alpha \in \mathbb{R} \) is een reëel getal, dan geldt

(i) De functie \(\alpha f: D \rightarrow \mathbb{R} \) is continu in het punt \(c \);
(ii) de somfunctie \(f + g: D \rightarrow \mathbb{R} \) is continu in het punt \(c \);
(iii) de productfunctie \(fg: D \rightarrow \mathbb{R} \) is continu in het punt \(c \);
(iv) Als bovendien \(f(x) \neq 0 \) voor alle \(x \in D \), dan is de reciprope functie \(1/f: D \rightarrow \mathbb{R} \),
\[
x \mapsto 1/f(x)
\]
continu in \(c \).

V.1.6 Voorbeeld. De functie \(f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = x \) is continu op \(\mathbb{R} \) (neem \(\delta = \varepsilon \) in de definitie van continuïteit). Uit (iii) volgt dan dat, voor iedere gehele \(k \geq 1 \), de functie \(g: \mathbb{R} \rightarrow \mathbb{R}, g(x) = x^k = x \cdots x \) (k maal) continu is op \(\mathbb{R} \).

V.1.7 Stelling. Laat \(D \) en \(E \) twee deelverzamelingen van \(\mathbb{R} \) zijn, en laat \(f: D \rightarrow \mathbb{R} \) en \(g: E \rightarrow \mathbb{R} \) twee functies zijn, met \(f[D] \subseteq E \). Laat \(c \in D \). Als \(f \) continu is in \(c \), en \(g \) continu is in \(f(c) \), dan is de samengestelde functie \(g \circ f: D \rightarrow \mathbb{R} \) continu in \(c \).

1Strikt genomen kunnen we \(g \) en \(f \) niet samenstellen, want \(f: D \rightarrow \mathbb{R} \) en \(g: E \rightarrow \mathbb{R} \), dus het domein van \(g \) is niet het codomein van \(f \). Maar het beeld van \(f \) is bevat in \(E \), dus voor iedere \(x \in D \) is \(g(f(x)) \) goed gedefinieerd.

V.1 CONTINUE FUNCTIES

75
Bewijs. Zij \((x_n)_{n \geq 0}\) een rij met \(\lim_{n \to \infty} x_n = c\). Dan volgt \(\lim_{n \to \infty} f(x_n) = f(c)\) omdat \(f\) continu is in \(c\), en omdat \(g\) continu is in \(f(c)\) volgt dan meteen dat \(\lim_{n \to \infty} g(f(x_n)) = g(f(c))\).

Opgaven

1. Bewijs aan de hand van de definitie van continuïteit dat de functie \(f: \mathbb{R} \to \mathbb{R}\) gedefinieerd door \(f(x) = x^2\) continu is:
 (a) in het punt 0;
 (b) in het punt \(-1\);
 (c) op \(\mathbb{R}\).

2. Toon aan dat de functie \(f: \mathbb{R} \to \mathbb{R}\), gegeven door
 \[f(x) = x^2 + \frac{1}{1 + x^2}\]
 continu is. Gebruik de ‘rekenregels’ voor continuïteit.

3. Is de functie \(f: \mathbb{R} \setminus \{0\} \to \mathbb{R}\) gedefinieerd door
 \[f(x) = \frac{1}{x}\]
 continu?

4. Bewijs met behulp van de definitie van de continuïteit dat de functie \(f: [0, \infty) \to \mathbb{R}\) gegeven door \(f(x) = \sqrt{x}\) continu is.

5. Zij \(a, b \in \mathbb{R}\) met \(a < b\), en \(f: (a, b) \to \mathbb{R}\). Zij \(p \in (a, b)\). Neem aan dat \(f\) continu is in \(p\) en dat \(f(p) \neq 0\). Toon aan dat er een interval \((c, d) \subseteq (a, b)\) bestaat met \(c < p < d\) en zó dat voor alle \(x \in (c, d)\) geldt \(f(x) \neq 0\).

6. Bewijs Stelling V.1.5.

7. Een functie \(f: [a, b] \to \mathbb{R}\) heet Lipschitz continu als er een \(K \in \mathbb{R}_{\geq 0}\) bestaat zó dat
 \[|f(x) - f(y)| \leq K|x - y|\]
 voor alle \(x, y \in [a, b]\).

 Bewijs: een Lipschitz continue functie \(f: [a, b] \to \mathbb{R}\) is continu.

8. Geef een voorbeeld van een \(f: [0, 1] \to \mathbb{R}\) die continu is, maar niet Lipschitz continu.

9. Bewijs dat de functie \(f: \mathbb{R} \to \mathbb{R}\) gedefinieerd door
 \[f(x) = \begin{cases} 0, & x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1, & x \in \mathbb{Q} \end{cases}\]
 in geen \(x \in \mathbb{R}\) continu is.
V.2 Limieten van functies

Beschouw een deelverzameling $D \subseteq \mathbb{R}$, een functie $f : D \to \mathbb{R}$ en zij $c \in \mathbb{R}$. We willen het gedrag van f in de buurt van c bestuderen. De functiewaarde in c is daarvoor niet belangrijk, de functie hoeft in c zelfs niet gedefinieerd te zijn (want c hoeft geen element van D te zijn). Wat wel nodig is, is de mogelijkheid het punt c met behulp van punten uit D willekeurig nauwkeurig te kunnen benaderen. Dit leidt tot de volgende definitie.

V.2.1 Definitie. Zij D een deelverzameling van \mathbb{R} en zij $c \in \mathbb{R}$. We noemen c een verdichtingspunt\(^2\) van D als er voor iedere $\delta \in \mathbb{R}_{>0}$ een $x \in D \setminus \{c\}$ bestaat met $|x - c| < \delta$.

We zijn voornamelijk geïnteresseerd in de volgende situaties.

V.2.2 Voorbeeld. Laat a, b en c reële getallen zijn.

(i) Als $a < b$ en $a \leq c \leq b$, dan is c verdichtingspunt van de intervallen (a, b) en $[a, b]$.

(ii) Als $a < c < b$, dan is c een verdichtingspunt van het gepuncteerd interval $(a, b) \setminus \{c\}$.

V.2.3 Definitie. Laat $D \subseteq \mathbb{R}$, en $g : D \to \mathbb{R}$ een functie zijn en zij $c \in \mathbb{R}$.

(i) Neem aan dat c een verdichtingspunt van D is. We noemen een reëel getal L de limiet van g in c indien er voor iedere $\varepsilon \in \mathbb{R}_{>0}$ een $\delta \in \mathbb{R}_{>0}$ bestaat zodanig dat

$$\text{voor alle } x \in D \text{ met } 0 < |x - c| < \delta : \quad |g(x) - L| < \varepsilon.$$

We noteren dan

$$\lim_{x \to c} g(x) = L.$$

(ii) Neem aan dat c een verdichtingspunt is van $\{x \in D : x < c\}$. We zeggen dat $L \in \mathbb{R}$ de linkerlimiet van g in het punt c indien er voor iedere $\varepsilon \in \mathbb{R}_{>0}$ een $\delta \in \mathbb{R}_{>0}$ bestaat zodanig dat

$$\text{voor alle } x \in D \text{ met } c - \delta < x < c : \quad |g(x) - L| < \varepsilon.$$

We noteren dan

$$\lim_{x \to c^-} g(x) = L.$$

(iii) Neem aan dat c een verdichtingspunt is van $\{x \in D : x > c\}$. We zeggen dat $L \in \mathbb{R}$ de rechterlimiet van g in het punt c indien er voor iedere $\varepsilon \in \mathbb{R}_{>0}$ een $\delta \in \mathbb{R}_{>0}$ bestaat zodanig dat

$$\text{voor alle } x \in D \text{ met } c < x < c + \delta : \quad |g(x) - L| < \varepsilon.$$

We noteren dan

$$\lim_{x \to c^+} g(x) = L.$$

\(^2\)Let wel: c hoeft niet zelf in D te liggen. En ook als $c \in D$ dan hoeft c nog geen verdichtingspunt van D te zijn.
Merk op: als \(c \) een verdichtingspunt van \(D \) is, bevat \(D \setminus \{c\} \) voor iedere \(\delta \in \mathbb{R}_{>0} \) inderdaad punten waarvoor \(|x - c| < \delta \). De limiet is dan uniek en we kunnen spreken van de limiet. Een soortgelijk argument laat zien dat ook linker en rechter limieten uniek zijn. Let wel: net als bij rijen hoeft een functie niet zulke limieten te hebben. Zie Voorbeeld V.2.5.

Een onmiddellijk gevolg van de definitie is de volgende karakterisering van continue in termen van limieten: als \(c \in D \) een verdichtingspunt is van \(D \), dan is een functie \(g: D \to \mathbb{R} \) continu in \(c \) dan en slechts dan als

\[
\lim_{x \to c} g(x) = g(c),
\]
zie Opgave V.2.1

De volgende stelling geeft het verband tussen limieten van functies en limieten van rijen.

V.2.4 Stelling. Zij \(D \) een deelverzameling van \(\mathbb{R} \), zij \(f: D \to \mathbb{R} \) een functie, en zij \(c \in \mathbb{R} \) een verdichtingspunt van \(D \). Voor een reëel getal \(L \) zijn de volgende twee uitspraken equivalent:

(i) \(\lim_{x \to c} f(x) = L \);
(ii) Voor iedere rij \((x_n)_{n \geq 0}\) in \(D \setminus \{c\} \) met \(\lim_{n \to \infty} x_n = c \) geldt \(\lim_{n \to \infty} f(x_n) = L \).

Het bewijs gaat precies zo als het bewijs van Stelling V.1.4, we laten het daarom als een oefening, zie Opgave V.2.3.

V.2.5 Voorbeeld. Laat \(f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto 1/x \). Neem eens aan dat er een \(L \in \mathbb{R} \) is met \(\lim_{x \to 0} f(x) = L \). Zij \(\varepsilon = 1 \). Volgens de definitie van de limiet is er een \(\delta \in \mathbb{R}_{>0} \) zó dat voor alle \(x \in \mathbb{R} \) geldt: als \(0 < |x| < \delta \) dan \(|f(x) - L| < \varepsilon \). We nemen zo'n \(\delta \). Dan geldt, voor \(x \in (0, \delta) \), dat \(f(x) \in (L-1, L+1) \). Maar \(f([0, \delta]) = (1/\delta, \infty) \). Dit is een tegenspraak. Dus heeft \(f \) geen limiet in 0. □

Het is niet moeilijk om de volgende rekenregels voor de limieten van functies te bewijzen.

V.2.6 Stelling. Laat \(D \subseteq \mathbb{R}, f, g: D \to \mathbb{R}, \) en \(\alpha \in \mathbb{R} \) een verdichtingspunt van \(D \).

(a) Als \(\lim_{x \to a} f(x) = L \) en \(\lim_{x \to a} g(x) = M \) dan \(\lim_{x \to a} (f(x) + g(x)) = L + M \).
(b) Als \(\lim_{x \to a} f(x) = L \) en \(\lim_{x \to a} g(x) = M \) dan \(\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot M \).
(c) Neem aan dat voor alle \(x \in D \) \(g(x) \neq 0 \). Als \(\lim_{x \to a} f(x) = L \), \(\lim_{x \to a} g(x) = M \) en \(\alpha \neq 0 \) dan \(\lim_{x \to a} (f(x)/g(x)) = L/M \).
(d) Als \(\lim_{x \to a} f(x) = L \) en \(\alpha \in \mathbb{R} \) dan \(\lim_{x \to a} (\alpha \cdot f(x)) = \alpha \cdot M \).

Opgaven

1. Zij \(c \) een verdichtingspunt is van \(D \). Bewijs dat een functie \(g: D \to \mathbb{R} \) continu in \(c \) dan en slechts dan als

\[
\lim_{x \to c} g(x) = g(c).
\]

2. Bewijs met behulp van de definitie dat \(\lim_{x \to a} f(x) \) bestaat als

(a) \(a = -1, \) en \(f: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \) gegeven door \(f(x) = (x^2 - 1)/(x + 1) \);
(b) \(a = 2, \) en \(f: \mathbb{R} \setminus \{1, 2\} \to \mathbb{R} \) gegeven door \(f(x) = (x^3 - 3x - 2)/(x^2 - 3x + 2) \);
(c) \(a = 0, \) en \(f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \) gegeven door \(f(x) = (x^2 + x)/x \).
3. Bewijs Stelling V.2.4.

4. Definieer \(f : (-1, 1) \to \mathbb{R} \) door

\[
f(x) = \begin{cases}
0, & x \neq 0; \\
1, & x = 0.
\end{cases}
\]

(a) Bestaat \(\lim_{x \to 0} f(x) \)? Zo ja, wat is de waarde van de limiet? Zo nee, waardoor niet?

(b) Is \(f \) continu in 0?

5. Laat \(f : \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto 1/x \). Bewijs dat \(\lim_{x \to 0} f(x) \) niet bestaat met behulp van Stelling V.2.4.

6. Laat \(f : \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto x/|x| \). Bepaal of de \(\lim_{x \to 0} f(x) \) bestaat.

8. Laat \(a, b \in \mathbb{R} \) met \(a < b \). Laat \(f : (a, b) \to \mathbb{R} \). Laat \(c \in (a, b) \). Bewijs:
 (a) \(f \) is continu in \(c \) dan en slechts dan als \(f \) rechts- en linkscontinu in \(c \) is;
 (b) \(\lim_{x \to c^+} f(x) = L \) dan en slechts dan als \(\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = L \).

9. Laat \(f : \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \sin(1/x) \). Bewijs of weerleg: \(\lim_{x \to 0} f(x) \) bestaat.

10. Zij \(D \subseteq \mathbb{R} \) en \(f : D \to \mathbb{R} \). Vind, analoog aan de definitie van de limiet van een reële rij, definities van \(\lim_{x \to \infty} f(x) \) en \(\lim_{x \to -\infty} f(x) \).
V.3 Uniforme continuïteit

De continuïteit van $f: D \to \mathbb{R}$ betekent dat we voor iedere $c \in D$ en iedere $\epsilon \in \mathbb{R}_{>0}$ een $\delta \in \mathbb{R}_{>0}$ kunnen vinden met de volgende eigenschap:

$$\text{voor alle } x \in D \text{ met } |x - c| < \delta \text{ geldt } |f(x) - f(c)| < \epsilon.$$

Deze δ is afhankelijk van ϵ en c. We vragen ons nu het volgende af: wanneer bestaat er een δ die onafhankelijk van c is?

V.3.1 Definitie. Zij D een deelverzameling van \mathbb{R}. Een functie $f: D \to \mathbb{R}$ heet uniform continu als er voor iedere $\epsilon \in \mathbb{R}_{>0}$ een $\delta \in \mathbb{R}_{>0}$ bestaat zodanig dat

$$\text{voor alle } x, y \in D \text{ met } |x - y| < \delta \text{ geldt } |f(x) - f(y)| < \epsilon.$$

Het volgt meteen uit deze definitie dat een uniform continue functie continu is, zie Opgave V.3.1.

V.3.2 Voorbeeld. Zij $f: [0, 1] \to \mathbb{R}$ gegeven door $f(x) = x^2$. We bewijzen dat f uniform continu is. Laat $\epsilon \in \mathbb{R}_{>0}$. We nemen $\delta = \epsilon/2$. Voor alle $x, y \in [0, 1]$ met $|x - y| < \delta$ geldt dan

$$|f(x) - f(y)| = |x^2 - y^2| = |x - y| \cdot |x + y| \leq 2|x - y| < 2\delta = \epsilon.$$

Niet iedere continue functie is echter uniform continu.

V.3.3 Voorbeeld. Zij $f: \mathbb{R} \to \mathbb{R}$ gegeven door $f(x) = x^2$. We bewerken dat f niet uniform continu is. Immers, neem $\epsilon = 1$ en zij $\delta \in \mathbb{R}_{>0}$. Neem nu $x = 1/\delta$ en $y = 1/\delta + \delta/2$. Voor zulke x en y geldt dan $|x - y| < \delta$ en

$$|f(x) - f(y)| = |x^2 - y^2| = |x - y| |x + y| = \frac{1}{2} \delta (x + y) \geq \frac{1}{2} \delta \cdot \frac{2}{\delta} = 1 = \epsilon.$$

De uniforme continuïteit in het eerste voorbeeld is geen toeval: er geldt de volgende algemene stelling.

V.3.4 Stelling. Laat $a, b \in \mathbb{R}$. Iedere continue functie $f: [a, b] \to \mathbb{R}$ is uniform continu.

Bewijs. Zij $f: [a, b] \to \mathbb{R}$ continu en stel eens dat f niet uniform continu is. We zullen een tegenspraak afleiden.

Omdat f niet uniform continu is, kunnen we niet voor alle $\epsilon \in \mathbb{R}_{>0}$ een zodanige $\delta \in \mathbb{R}_{>0}$ vinden dat voor alle $x, y \in [a, b]$ met $|x - y| < \delta$ geldt $|f(x) - f(y)| < \epsilon$.

Er is dus een $\epsilon \in \mathbb{R}_{>0}$ waarmee geen $\delta \in \mathbb{R}_{>0}$ bestaat zodanig dat voor alle $x, y \in [a, b]$ met $|x - y| < \delta$ geldt $|f(x) - f(y)| < \epsilon$.

Er is dus een $\epsilon \in \mathbb{R}_{>0}$ zo dat voor alle $x, y \in [a, b]$ met $|x - y| < \delta$ geldt $|f(x) - f(y)| < \epsilon$.

We nemen nu zo'n ϵ, en voor δ achtereenvolgens $1/2$, $1/3$, enzovoort. Voor iedere $n \geq 0$ vinden we zo een tweetal punten $x_n, y_n \in [a, b]$ met

$$|x_n - y_n| < \frac{1}{n + 1} \text{ en } |f(x_n) - f(y_n)| \geq \epsilon. \quad (V.1)$$
De rij \((x_n)_{n \geq 0}\) is begrensd, en met Stelling IV.3.6 van Bolzano-Weierstrass vinden we een convergente deelrij \((x_{n_k})_{k \geq 0}\). Zij \(x\) de limiet van deze deelrij. Dan is \(x \in [a, b]\). Voor alle \(k \geq 0\) geldt

\[
|y_{n_k} - x| \leq |y_{n_k} - x_{n_k}| + |x_{n_k} - x| \leq \frac{1}{n_k + 1} + |x_{n_k} - x|.
\]

Wegens \(\lim_{k \to \infty} x_{n_k} = x\) volgt hieruit dat de rij \((y_{n_k})_{k \geq 0}\) eveneens convergeert en dat

\[
\lim_{k \to \infty} y_{n_k} = x.
\]

Omdat \(f\) continu is, levert dit

\[
\lim_{k \to \infty} f(x_{n_k}) = f(x) = \lim_{k \to \infty} f(y_{n_k}).
\]

Uit de definitie van een convergente rij volgt dat er een \(N \in \mathbb{N}\) bestaat met de volgende eigenschap: voor alle indices \(k\) met \(n_k \geq N\) geldt

\[
|f(x_{n_k}) - f(x)| < \frac{\varepsilon}{2} \quad \text{en} \quad |f(y_{n_k}) - f(x)| < \frac{\varepsilon}{2}.
\]

Maar voor deze \(k\) volgt dan

\[
|f(x_{n_k}) - f(y_{n_k})| \leq |f(x_{n_k}) - f(x)| + |f(x) - f(y_{n_k})| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

Deze tegenspraak besluit het bewijs.

Opgaven

1. Bewijs dat een uniform continue functie continu is.

2. Toon aan met behulp van de definitie dat de functie \(f: \mathbb{R} \to \mathbb{R}\) gegeven door

\[
f(x) = 5x
\]

uniform continu is.

3. Laat zien dat de functie \(f: (0, \infty) \to \mathbb{R}, x \mapsto \frac{1}{x}\) niet uniform continu is.

4. Toon aan dat iedere Lipschitz continue functie uniform continu is (vergelijk Opgave V.1.7).

5. Laat \(D \subseteq \mathbb{R}\) en \(f, g: D \to \mathbb{R}\) uniform continu zijn. Toon aan:

 (a) \(f + g\) is uniform continu.
 (b) Als \(f\) en \(g\) begrensd zijn, dan is \(fg\) uniform continu.
 (c) Geef een voorbeeld waarin \(f\) en \(g\) uniform continu zijn en \(fg\) niet.

6. Stel \(f: (0, 1] \to \mathbb{R}\) is uniform continu. Bewijs dat \(\lim_{x \to 0} f(x)\) bestaat.

7. Geef een voorbeeld van een functie \(f: \mathbb{R} \to \mathbb{R}\) die continu en begrensd is maar niet uniform continu.

8. Laat \(f: [0, \infty) \to \mathbb{R}, x \mapsto \sqrt{x}\). Bewijs, direct met de definities, dat \(f\) uniform continu is, maar niet Lipschitz continu.

V.3 UNIFORME CONTINUITEIT

81
V.4 Eigenschappen van continue functies

We bestuderen een paar belangrijke stellingen over continue functies.

Nulpunten

Laat $D \subseteq \mathbb{R}$, en $f : D \to \mathbb{R}$. Een punt $x \in D$ waarvoor geldt dat $f(x) = 0$ noemen we een *nulpunt* van f. De volgende stelling laat zien dat een continue functie die op een interval van teken wisselt, altijd een nulpunt heeft.

V.4.1 Stelling (Nulpuntstelling). Laat $a, b \in \mathbb{R}$ met $a < b$. Zij $f : [a, b] \to \mathbb{R}$ continu en neem aan dat $f(a) < 0 < f(b)$. Dan is er een $\xi \in (a, b)$ waarvoor geldt $f(\xi) = 0$.

Bewijs. Zij $V = \{x \in [a, b] : f(x) \leq 0\}$. Dan is V niet-leeg en naar boven begrensd: er geldt immers $a \in V$ en b is een bovengrens voor V. Dus bestaat $\xi = \sup V$; er geldt $\xi \in [a, b]$.

We gaan bewijzen dat $f(\xi) = 0$. Zodra we dit hebben aangetoond is de stelling bewezen, want wegens $f(a) \neq 0$ en $f(b) \neq 0$ volgt achteraf dat $\xi \in (a, b)$.

Stel eens dat $f(\xi) < 0$. Dan is $\xi \neq b$, want $f(b) > 0$. Uit de continuïteit van f volgt dat $f(x) < 0$ voor alle x in een klein interval rond ξ. Dit interval behoort dan in zijn geheel tot V, waaruit zou volgen dat $\sup V > \xi$; een tegenspraak.

Stel eens dat $f(\xi) > 0$. Dan is $\xi \neq a$, want $f(a) < 0$. Uit de continuïteit van f volgt dat $f(x) > 0$ voor alle x in een klein interval rond ξ. Dit interval is dan disjunct met V, waaruit zou volgen dat $\sup V < \xi$; een tegenspraak. \blacksquare

V.4.2 Opmerking. Door $-f$ in plaats van f te beschouwen zien we dat een continue functie $f : [a, b] \to \mathbb{R}$ met $f(b) < 0 < f(a)$ ook altijd een nulpunt heeft.

Het belang van de Nulpuntstelling is gelegen in het feit dat zij het bestaan van nulpunten garandeert, ook wanneer deze moeilijk of zelfs niet expliciet bepaald kunnen worden.

V.4.3 Voorbeeld. We gebruiken de Nulpuntstelling om te bewijzen dat ieder 3e-graads reëel polynoom p een reëel nulpunt heeft. Na delen door de kopcoëfficiënt is het polynoom van de vorm $p(x) = x^3 + ax^2 + bx + c$ is, met a, b, c in \mathbb{R}. Wegens

$$\lim_{x \to -\infty} \frac{p(x)}{x^3} = \lim_{x \to -\infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3}\right) = 1$$

is er een $\xi_1 > 0$ zodanig dat $p(\xi_1)/\xi_1^3 > 1/2$. Dan geldt $p(\xi_1) > \xi_1^3/2 > 0$. Op dezelfde manier volgt uit $\lim_{x \to -\infty} p(x)/x^3 = 1$ dat er een $\xi_0 < 0$ bestaat met $p(\xi_0)/\xi_0^3 > 1/2$, zodat $p(\xi_0) < \xi_0^3/2 < 0$. Uit de Nulpuntstelling volgt dan dat p een nulpunt heeft in het interval $[\xi_0, \xi_1]$.

Vaak is het handig om de volgende, iets algemener, variant van de Nulpuntstelling tot onze beschikking te hebben:

Tussenwaardestelling

V.4.4 Gevolg (Tussenwaardestelling). Laat $a, b \in \mathbb{R}$ met $a < b$. Zij $f : [a, b] \to \mathbb{R}$ een continue functie, en neem aan dat $f(a) \leq f(b)$. Dan geldt: voor iedere C in $[f(a), f(b)]$ bestaat een $c \in [a, b]$ met $f(c) = C$.

Bewijs. Als $f(a) = C$ of $f(b) = C$ is er niets te bewijzen. Als $f(a) < C < f(b)$, pas dan de Nulpuntstelling toe op de functie $g : [a, b] \to \mathbb{R}$ gedefinieerd door $g(x) = f(x) - C$. \blacksquare
We kunnen de Tussenwaardestelling gebruiken om het bestaan te bewijzen van reële getallen met bepaalde eigenschappen. Ter illustratie leiden we het bestaan van wortels af.

V.4.5 Definitie. Zij $D \subseteq \mathbb{R}$. Een reële functie $f: D \to \mathbb{R}$ noemen we:

(i) **stijgend** indien $f(x) \leq f(y)$ voor alle $x, y \in D$ met $x < y$;
(ii) **strikt stijgend** indien $f(x) < f(y)$ voor alle $x, y \in D$ met $x < y$.

Dalende en strikt dalende functies definiëren we analoog.

V.4.6 Stelling. Voor iedere reële $x \geq 0$ en gehele $k \geq 1$ bestaat een uniek reêel getal y met de eigenschap dat $y^k = x$.

Bewijs. Kies $N \in \mathbb{N}_{\geq 1}$ zodanig dat $0 \leq x \leq N$ en beschouw de continue functie $f: [0, N] \to \mathbb{R}$ met voorschrift $f(t) = t^k$. Uit

$$f(0) = 0 \leq x \leq N \leq N^k = f(N)$$

en de Tussenwaardestelling volgt het bestaan van een punt $y \in [0, N]$ zo dat $f(y) = y^k = x$.

Vervolgens bewijzen we de uniciteit. Dit volgt omdat de k-de machtsfunctie strikt stijgend is op $[0, \infty)$: voor elke $y_1, y_2 \in [0, \infty)$ met $y_1 < y_2$ geldt

$$y_2^k - y_1^k = (y_2 - y_1)(y_2^{k-1} + y_1y_2^{k-2} + \cdots + y_1^{k-2}y_2 + y_1^{k-1}) \geq (y_2 - y_1)y_2^{k-1} > 0.$$

V.4.7 Stelling. Voor alle $k \in \mathbb{N}_{\geq 1}$ is de functie $f_k: [0, \infty) \to \mathbb{R}$ gegeven door $f_k(x) = \sqrt[k]{x}$ strikt stijgend en continu.

Bewijs. Laat $x_1, x_2 \in [0, \infty)$ met $x_1 < x_2$. Als zou gelden $f_k(x_1) \geq f_k(x_2)$, dan zou $x_1 = (f_k(x_1))^k \geq (f_k(x_2))^k = x_2$, tegenspraak. Dus $f_k(x_1) < f_k(x_2)$. Dit laat zien dat f_k strikt stijgt op $[0, \infty)$.

Vervolgens bewijzen we de continuïteit. Laat $c \in (0, \infty)$; het geval $c = 0$ wordt aan de lezer overgelaten. Schrijf $d = \sqrt[k]{c}$. Zij $\varepsilon \in \mathbb{R}_{>0}$ met $\varepsilon < d$. Omdat $d^k = c$ en $0 < d - \varepsilon < d < d + \varepsilon$ geldt

$$(d - \varepsilon)^k < c < (d + \varepsilon)^k.$$

Kies nu $\delta \in \mathbb{R}_{>0}$ met

$$(d - \varepsilon)^k < c - \delta < c + \delta < (d + \varepsilon)^k$$

dan geldt, als $|x - c| < \delta$, dat

$$d - \varepsilon < \sqrt[k]{x} < d + \varepsilon.$$

Maxima en minima

De andere belangrijke stelling over continue functies die we in dit hoofdstuk bewijzen zegt dat een continue functie op een begrens en gesloten interval altijd ergens een maximum en een minimum aannemt.

V.4.8 Stelling. Laat $a, b \in \mathbb{R}$ met $a \leq b$. Zij $f: [a, b] \to \mathbb{R}$ een continue functie. Dan heeft de verzameling

$$f([a, b]) = \{ f(x) : x \in [a, b] \}$$

een maximum en een minimum.
Bewijs. Eerst laten we zien dat de verzameling \(V = \{ f(x) : x \in [a, b] \} \) begrensd is. Als dit niet zo was, dan zou er voor iedere \(n \geq 0 \) een \(x_n \in [a, b] \) bestaan met \(|f(x_n)| \geq n \). Dit levert een rij \((x_n)_{n \geq 0} \) in \([a, b]\) met \(\lim_{n \to \infty} |f(x_n)| = \infty \). Met behulp van de Bolzano-Weierstrass stelling vinden we een convergente deelrij \((x_n)_{n \geq 0} \) van \((x_n)_{n \geq 0} \). Noem de limiet van deze deelrij \(x \); merk op dat \(x \in [a, b] \).

Dan geldt aan de ene kant dat \(\lim_{k \to \infty} |f(x_n_k)| = \infty \), en aan de andere kant dat \(\lim_{k \to \infty} |f(x_n_k)| = |f(x)| \), een tegenspraak.

Zij \(y = \sup V \). Als \(V \) geen maximum heeft dan is \(y > f(x) \) voor elke \(x \in [a, b] \).

Beschouw \(g : [a, b] \to \mathbb{R} \) gedefinieerd door \(g(x) = 1/(y - f(x)) \). De functie \(g \) is continu en onbegrensd (zie Opgave V.4.5), wat in tegenspraak is met de net bewezen bewering dat een continue functie op \([a, b]\) begrensd is.

Analoog kunnen we aantonen dat \(V \) een minimum heeft.
7. Zij $f : \mathbb{R} \to \mathbb{R}$ een continue functie en zij (x, y) een punt dat niet op de grafiek van f ligt. We gaan aantonen dat er een $t \in \mathbb{R}$ bestaat waarvoor de afstand tussen de punten $(t, f(t))$ en (x, y) minimaal is.
 Zij $d(t)$ de afstand van het punt $(t, f(t))$ tot (x, y).
 (a) Toon aan dat de functie $d : \mathbb{R} \to \mathbb{R}$ continu is.
 (b) Toon aan: als $|t - x| > |y - f(x)|$, dan is $d(t) > d(x)$. Teken een plaatje!
 (c) Beredeneer dat de beperking van d tot het interval $[x - |y - f(x)|, x + |y - f(x)|]$ ergens op dit interval een minimum aanneemt.
 (d) Beredeneer aan de hand van (b) dat het minimum uit (c) tevens het minimum van d is op heel \mathbb{R}.
VI

VI.1 Differentiëren

In het vorige hoofdstuk hebben we continuïteit gedefinieerd voor functies op wilkeurige deelverzamelingen van \(\mathbb{R} \). In dit hoofdstuk, over differentieerbaarheid, beperken we ons tot een speciaal soort deelverzamelingen van \(\mathbb{R} \): de zogenaamde open deelverzamelingen.

VI.1.1 Definitie. Laat \(D \subseteq \mathbb{R} \). Dan heet \(D \) open in \(\mathbb{R} \) als voor alle \(x \in D \) er een \(\varepsilon \in \mathbb{R}_{>0} \) is zó dat \((x - \varepsilon, x + \varepsilon) \subseteq D \).

VI.1.2 Voorbeeld. De deelverzameling \((0, 1) \) van \(\mathbb{R} \) is open, maar \([0, 1) \) niet.

We beginnen met de definitie van de afgeleide.

VI.1.3 Definitie. Laat \(D \subseteq \mathbb{R} \) open, en \(f: D \to \mathbb{R} \). Laat \(c \in D \). Dan heet \(f \) differentieerbaar in \(c \) als de limiet

\[
\lim_{x \to c} \frac{f(x) - f(c)}{x - c}
\]

bestaat. In dat geval noemen we deze limiet de afgeleide van \(f \) in \(c \), notatie: \(f'(c) \).

We noemen \(f \) differentieerbaar als \(f \) differentieerbaar is in ieder punt van \(D \).

VI.1.4 Voorbeeld. We bekijken de functie \(f: (0, \infty) \to \mathbb{R}, f(x) = \sqrt{x} \). We laten zien dat \(f \) differentieerbaar is.

Voor \(c > 0 \) en \(x > 0 \) geldt

\[
\frac{\sqrt{x} - \sqrt{c}}{x - c} = \frac{\sqrt{x} - \sqrt{c}}{x - c} \cdot \frac{\sqrt{x} + \sqrt{c}}{\sqrt{x} + \sqrt{c}} = \frac{1}{\sqrt{x} + \sqrt{c}}.
\]

Omdat \(f \) continu is, geldt

\[
\lim_{x \to c} \frac{1}{\sqrt{x} + \sqrt{c}} = \frac{1}{2\sqrt{c}}.
\]

\footnote{We zijn hier slordig. Strikt genomen moeten we een functie definieren \(g: D \setminus \{c\} \to \mathbb{R}, x \mapsto (f(x) - f(c))/(x - c) \), in dit geval) waarvan we de limiet nemen. In het vervolg maken we geen opmerkingen meer over deze slordigheid. Merk wel op dat \(c \) inderdaad een verdichtingspunt van \(D \setminus \{c\} \) is (waarom?).}
Hieruit volgt dat \(f \) differentieerbaar is in \(c \), met afgeleide
\[
f'(c) = \frac{1}{2\sqrt{c}}.
\]

Differentieerbare functies zijn automatisch continu.

VI.1.5 Stelling. Als \(D \subseteq \mathbb{R} \) open is, \(c \in D \), en \(f : D \to \mathbb{R} \) differentieerbaar is in \(c \), dan is \(f \) continu in \(c \).

Bewijs. Dit volgt uit
\[
\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \cdot (x - c) \right) = f'(c) \cdot 0 = 0.
\]

Het omgekeerde geldt niet: de absolute waarde-functie \(f : \mathbb{R} \to \mathbb{R} \), \(f(x) = |x| \) is niet differentieerbaar in 0, zie Opgave VI.1.6.

Eigenschappen van de afgeleide

Voor het nemen van afgeleiden gelden de bekende rekenregels, zie Opgave VI.1.9.

We gaan nu de *kettingregel* bewijzen, die zegt dat de samenstelling van twee differentieerbare functies weer differentieerbaar is. Bovendien geeft de kettingregel een formule voor de afgeleide van de samenstelling. We beginnen met handige herformulering van de definitie van differentieerbaarheid.

VI.1.6 Stelling (Lineariseren). Zij \(D \subseteq \mathbb{R} \) open, \(f : D \to \mathbb{R} \) een functie, \(c \in D \) en \(L \in \mathbb{R} \). De volgende beweringen zijn equivalent:

(i) \(f \) is differentieerbaar in het punt \(c \) en \(f'(c) = L \);
(ii) er is een functie \(\tilde{F} : D \to \mathbb{R} \), continu in \(c \), zó dat \(\tilde{F}(c) = 0 \) en voor elke \(x \in D \) geldt
\[
f(x) = f(c) + L \cdot (x - c) + (x - c) \cdot \tilde{F}(x).
\]

Bewijs. Neem aan dat \(f \) differentieerbaar is in \(c \in D \) met \(f'(c) = L \). Definieer \(\tilde{F} : D \to \mathbb{R} \) als volgt:
\[
\tilde{F}(x) = \begin{cases}
\frac{f(x) - f(c)}{x - c} - L, & \text{als } x \neq c; \\
0, & \text{als } x = c.
\end{cases}
\]

Ga zelf na dat \(\tilde{F} \) de gewenste eigenschappen heeft.

Omgekeerd, zij \(\tilde{F} : D \to \mathbb{R} \), continu in \(c \) en zó dat \(\tilde{F}(c) = 0 \) en dat voor elke \(x \in D \) geldt
\[
f(x) = f(c) + L \cdot (x - c) + (x - c) \cdot \tilde{F}(x).
\]

Dan geldt
\[
\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \left(L + \tilde{F}(x) \right) = L,
\]
dus \(f \) is differentieerbaar in \(c \) met afgeleide \(f'(c) = L \).

We kunnen deze stelling als volgt interpreteren: rond het punt \(c \) is \(f(x) \) bij benadering gelijk aan zijn *linearisering*
\[
l(x) = f(c) + f'(c)(x - c),
\]
waarbij de *foutterm* \(E(x) = (x - c) \cdot \tilde{F}(x) \) sneller naar 0 gaat voor \(x \to c \) dan het verschil \(x - c \).
VI.1.7 Stelling (Kettingregel). Laat D_1, D_2 open deelverzamelingen van \mathbb{R} zijn, $f: D_1 \to \mathbb{R}$ en $g: D_2 \to \mathbb{R}$, en neem aan dat $f[D_1] \subseteq D_2$. Laat $c \in D_1$ en neem aan dat f differentieerbaar is in c en dat g differentieerbaar is in $f(c)$. Dan is ook de samengestelde functie $g \circ f: D_1 \to \mathbb{R}$ differentieerbaar in c, en er geldt

$$(g \circ f)'(c) = g'(f(c)) \cdot f'(c).$$

Bewijs. Volgens Stelling VI.1.6 bestaan er functies $\tilde{F}: D_1 \to \mathbb{R}$ en $\tilde{G}: D_2 \to \mathbb{R}$, met \tilde{F} continu in c en \tilde{G} continu in $f(c)$, zodat $\tilde{F}(c) = 0$ en $\tilde{G}(f(c)) = 0$, en voor elke $x \in D_1$ geldt

$$f(x) = f(c) + f'(c) \cdot (x - c) + (x - c) \cdot \tilde{F}(x)$$

een voor elke $y \in D_2$ geldt

$$g(y) = g(f(c)) + g'(f(c)) \cdot (y - f(c)) + (y - f(c)) \cdot \tilde{G}(y).$$

Dan geldt voor elke $x \in D_1$

$$g(f(x)) = g(f(c)) + g'(f(c)) \cdot (f(x) - f(c)) + (f(x) - f(c)) \cdot \tilde{G}(f(x)) = g(f(c)) + g'(f(c)) \cdot (f'(c)(x - c) + (x - c)\tilde{F}(x)) +$$

$$(f'(c)(x - c) + (x - c)\tilde{F}(x)) \cdot \tilde{G}(f(x)) = g(f(c)) + g'(f(c)) \cdot f'(c) \cdot (x - c) +$$

$$(x - c) \bigg(g'(f(c)) \cdot \tilde{F}(x) + (f'(c) + \tilde{F}(x)) \cdot \tilde{G}(f(x)) \bigg).$$

Het is makkelijk te zien dat de functie $\tilde{H}: D_1 \to \mathbb{R}$ gegeven door

$$\tilde{H}(x) = g'(f(c)) \cdot \tilde{F}(x) + (f'(c) + \tilde{F}(x)) \cdot \tilde{G}(f(x))$$

continu is in c, en dat $\tilde{H}(c) = 0$. Uit Stelling VI.1.6 volgt nu dat $g \circ f$ differentieerbaar is in c met afgeleide $g'(f(c))f'(c)$.

Opgaven

1. (a) Is \mathbb{Q} een open deelverzameling van \mathbb{R}?
 (b) Is het complement van \mathbb{Q} in \mathbb{R} open?
 (c) Laat I een verzameling zijn, en, voor alle $i \in I$, $D_i \subseteq \mathbb{R}$ een open deelverzameling. Bewijs dat de vereniging $\cup_{i \in I} D_i$ open is.
 (d) Laat I een eindige verzameling zijn, en, voor alle $i \in I$, $D_i \subseteq \mathbb{R}$ een open deelverzameling. Bewijs dat de doorsnede $\cap_{i \in I} D_i$ open is.
 (e) Geef een voorbeeld dat laat zien dat de uitspraak van het vorige onderdeel niet waar is voor oneindige I.

2. Toon aan met behulp van de definitie van afgeleide:
 (a) De functie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x$ is differentieerbaar op \mathbb{R}, met afgeleide $f'(x) = 1$;
 (b) De functie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is differentieerbaar op \mathbb{R}, met afgeleide $f'(x) = 2x$.

3. Zij $n \geq 1$ een geheel getal. Toon aan dat de functie $f(x) = x^n$ differentieerbaar is op \mathbb{R}, met afgeleide $f'(x) = nx^{n-1}$. Aanwijzing: Gebruik volledige inductie, of de binomiaalformule van Newton, of iets anders.
4. Welke van de volgende functies $f : D \to \mathbb{R}$ zijn differentieerbaar op hun domein D?

(a) $f(x) = |x|$, $D = \mathbb{R}$
(b) $f(x) = |x|$, $D = \mathbb{R}\{0\}$

5. Ga na dat de volgende functies $f : (0, \infty) \to \mathbb{R}$ differentieerbaar zijn en bepaal hun afgeleiden:

(a) $f(x) = \sqrt{1 + x}$
(b) $f(x) = \sqrt{1 + \sqrt{1 + x}}$
(c) $f(x) = \sqrt{1 + \sqrt{1 + \sqrt{1 + x}}}$

6. Ga na welke van de volgende functies $f : \mathbb{R} \to \mathbb{R}$ differentieerbaar zijn in 0. Bepaal indien mogelijk $f'(0)$.

(a) $f(x) = |x|$
(b) $f(x) = x \cdot |x|$
(c) $f(x) = \sqrt{|x|}$
(d) $f(x) = x \sqrt{|x|}$

7. Voor welke waarde(n) van $a \in \mathbb{R}$ is de functie $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 + 3 & \text{als } x \geq 1 \\ a(x^3 + 5) & \text{als } x < 1 \end{cases}$ differentieerbaar?

8. Als we in Definitie VI.1.3 de limiet door de linkerlimiet vervangen krijgen we de linkerafgeleide, en analoge, als we de limiet door de rechterlimiet vervangen krijgen we de rechterafgeleide van een functie f.

Bewijs: $f : (a, b) \to \mathbb{R}$ is differentieerbaar in een $c \in (a, b)$ dan en slechts dan als de linker- en rechterafgeleiden van f in c bestaan en aan elkaar gelijk zijn.

9. (Rekenregels voor de afgeleide) Laat $f : (a, b) \to \mathbb{R}$ en $g : (a, b) \to \mathbb{R}$ twee functies zijn. Zij verder $c \in (a, b)$ gegeven, en zij α een reëel getal. Als f en g beide differentieerbaar zijn in c, bewijs dat dan geldt:

(i) αf is differentieerbaar in c met afgeleide $(\alpha f)'(c) = \alpha f'(c)$;
(ii) $f + g$ is differentieerbaar in c met afgeleide $(f + g)'(c) = f'(c) + g'(c)$;
(iii) fg is differentieerbaar in c met afgeleide $(fg)'(c) = f(c)g'(c) + f'(c)g(c)$.

(iv) Als bovendien $g(x) \neq 0$ voor alle $x \in (a, b)$, dan geldt: $1/g$ is differentieerbaar in het punt c met afgeleide

$$\left(\frac{1}{g}\right)'(c) = -\frac{g'(c)}{(g(c))^2}$$

10. Laat $f : (a, b) \to \mathbb{R}$ en $E : (a, b) \to \mathbb{R}$ twee functies zijn, $c \in (a, b)$, en zij L een reëel getal, zó dat

$$f(x) = L \cdot (x - c) + E(x)$$

voor alle $x \in (a, b)$. We nemen aan dat E continu is in het punt c en dat

$$\lim_{x \to c} E(x) = 0.$$

(a) Toon aan dat f continu is in c.

(b) Geef een voorbeeld waaruit blijkt dat f niet differentieerbaar hoeft te zijn in c.

VI.1 DIFFERENTIËREN
VI.2 De Middelwaardestelling

Van het vwo weten we dat een differentieerbare functie \(f: (a, b) \to \mathbb{R} \) stijgend is dan en slechts dan als de afgeleide niet-negatief is: \(f'(x) \geq 0 \) voor alle \(x \in (a, b) \). Deze paragraaf besteden we aan het precieze bewijs van deze stelling.

VI.2.1 Stelling. Laat \(a, b \in \mathbb{R} \) met \(a < b \). Als \(f: (a, b) \to \mathbb{R} \) een stijgende differentieerbare functie is, dan is \(f'(x) \geq 0 \) voor alle \(x \in (a, b) \).

Bewijs. Laat \(c \in (a, b) \). Dan geldt

\[
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \geq 0
\]

waar we gebruiken dat \(f(x) - f(c) \geq 0 \) wanneer \(x > c \).

De omkering is lastiger te bewijzen. We beginnen met een hulpresultaat.

VI.2.2 Stelling. Laat \(a, b \in \mathbb{R} \) met \(a < b \). Neem aan dat de functie \(f: [a, b] \to \mathbb{R} \) een maximum of een minimum aanneemt in een punt \(c \in (a, b) \). Als \(f \) differentieerbaar is in \(c \), dan geldt \(f'(c) = 0 \).

Bewijs. Neem aan dat \(f \) in \(c \) een maximum aaneemt (het geval dat \(f \) in \(c \) een minimum aaneemt gaat analogo). Dan geldt

\[
f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \geq 0 \quad \text{omdat} \quad f(x) \leq f(c) \quad \text{voor} \quad x < c, \quad \text{en}
\]

\[
f'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \leq 0 \quad \text{omdat} \quad f(x) \leq f(c) \quad \text{voor} \quad x > c.
\]

Het volgende resultaat staat bekend als de Stelling van Rolle (M. Rolle, 1652-1719).

Stelling van Rolle

VI.2.3 Stelling (Rolle). Laat \(a, b \in \mathbb{R} \) met \(a < b \). Zij \(f: [a, b] \to \mathbb{R} \) een continue functie die differentieerbaar is op \((a, b) \). Als \(f(a) = f(b) = 0 \), dan bestaat er een \(\xi \in (a, b) \) met \(f' (\xi) = 0 \).

Bewijs. Volgens Stelling V.4.8 neemt \(f \) op het interval \([a, b]\) een maximum en een minimum aan, er bestaan dus \(\xi_0 \in [a, b] \) en \(\xi_1 \in [a, b] \) met \(f(\xi_0) \leq f(x) \leq f(\xi_1) \) voor alle \(x \in [a, b] \).

Als \(f(\xi_1) \neq 0 \), dan, vanwege \(f(a) = f(b) = 0 \), geldt \(\xi_1 \in (a, b) \). Uit Stelling VI.2.2 volgt dan dat \(f' (\xi_1) = 0 \) en kunnen we \(\xi = \xi_1 \) nemen. Net zo, als \(f(\xi_0) \neq 0 \), dan volgt dat \(\xi_0 \in (a, b) \), dat \(f' (\xi_0) = 0 \) en kunnen we \(\xi = \xi_0 \) nemen.

In het overgebleven geval is \(f(\xi_0) = f(\xi_1) = 0 \). Maar dan is \(f \) constant 0 is. In het bijzonder is ook \(f' \) constant 0 op \((a, b)\) en voldoet iedere \(\xi \in (a, b) \).

Uit de Stelling van Rolle leiden we het volgende resultaat af.

Middelwaardestelling

VI.2.4 Stelling (Middelwaardestelling). Laat \(a, b \in \mathbb{R} \) met \(a < b \). Zij \(f: [a, b] \to \mathbb{R} \) een continue functie die differentieerbaar is op \((a, b) \). Dan bestaat er een \(\xi \in (a, b) \) waarvoor geldt

\[
f' (\xi) = \frac{f(b) - f(a)}{b - a}.
\]

De notaties \(\lim_{x \to c^+} \) en \(\lim_{x \to c^-} \) staan voor linker en rechter limiet waarvoor we ook de notatie \(\lim_{x \to c^-} \) en \(\lim_{x \to c^+} \) hebben.
Bewijs. Beschouw de functie $F : [a, b] \rightarrow \mathbb{R}$ gegeven door:
\[
F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a), \quad x \in [a, b].
\]
Deze functie is continu op $[a, b]$ en differentieerbaar op (a, b), met afgeleide
\[
F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}, \quad x \in (a, b).
\]
Bovendien geldt $F(a) = F(b) = 0$. Volgens de stelling van Rolle is er dus een $\xi \in (a, b)$ met
\[
F'(\xi) = 0.
\]
Dit betekent dat
\[
0 = F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a}.
\]

De Middelwaardestelling heeft een aantal belangrijke gevolgen, waaronder de omkering van Stelling VI.2.1.

VI.2.5 Stelling. Laat $a, b \in \mathbb{R}$ met $a < b$. Zij $f : [a, b] \rightarrow \mathbb{R}$ een continue functie die differentieerbaar is op (a, b).

(i) Als $f'(x) \geq 0$ voor alle $x \in (a, b)$, dan is f stijgend op $[a, b]$;

(ii) Als $f'(x) > 0$ voor alle $x \in (a, b)$, dan is f strikt stijgend op $[a, b]$;

(iii) Als $f'(x) = 0$ voor alle $x \in (a, b)$, dan is f constant op $[a, b]$.

Bewijs. Opgave VI.2.7.

Deze stelling is minder triviaal dan men misschien op het eerste gezicht geneigd is te denken! De volledigheid van \mathbb{R} speelt hier een cruciale rol.

VI.2.6 Gevolg (Middelwaardeongelijkheid). Laat a en b in \mathbb{R} zijn, met $a < b$. Zij $f : [a, b] \rightarrow \mathbb{R}$ continu, en differentieerbaar op (a, b). Laat $C \in \mathbb{R}$ en neem aan dat
\[
\text{voor alle } x \in (a, b) : \quad |f'(x)| \leq C.
\]
Dan geldt
\[
\text{voor alle } x, y \in [a, b] : \quad |f(y) - f(x)| \leq C|y - x|.
\]

Bewijs. Laat $x, y \in [a, b]$. Als $x = y$, dan is de uitspraak duidelijk waar. Ook is de uitspraak symmetrisch in x en y. We mogen (en zullen) dus aannemen dat $x < y$. Door de Middelwaardebetingstelling toe te passen op het interval $[x, y]$ vinden we een $\xi \in (x, y)$ waarvoor
\[
f'(\xi) = \frac{f(y) - f(x)}{y - x}.
\]
Maar we weten dat $|f'(\xi)| \leq C$, zodat
\[
\frac{|f(y) - f(x)|}{y - x} = \frac{|f(y) - f(x)|}{|y - x|} = |f'(\xi)| \leq C.
\]

Deze ongelijkheid heeft de volgende fysische interpretatie: wie in het tijdsinterval $[x, y]$ niet harder rijdt dan C km/u legt in dit tijdsinterval hoogstens $C|y - x|$ km af.
1. Agent A ziet op de snelweg een Porsche voorbijrijden met snelheid 90 km/u. Hij vertrouwt de zaak niet en belt voor de zekerheid zijn collega B, die 10 km verderop staat. Deze ziet de Porsche precies 6 minuten later voorbij komen, wederom met 90 km/u. De maximumsnelheid is 100 km/u. Kan Agent B bewijzen dat de Porsche harder dan 100 km/u gereden heeft?

2. Wat zal een goede rechter van Agent B's argument zeggen? Is er een \(\varepsilon \in \mathbb{R} > 0 \) waarvoor Agent B kan bewijzen dat de Porsche harder dan 100 + \(\varepsilon \) km/u gereden heeft?

3. Bewijs dat de vergelijking \(x^7 + x^5 + x^3 + 1 = 0 \) precies één reële oplossing heeft.
 Aanwijzing: Pas de stelling van Rolle toe.

4. Zij \(N \geq 2 \) een gegeven geheel getal. Laat \(a, b \in \mathbb{R} \) met \(a < b \), en zij \(f: [a, b] \rightarrow \mathbb{R} \) een differentieerbare functie met \(N \) verschillende nulpunten. Toon aan dat de afgeleide \(f': [a, b] \rightarrow \mathbb{R} \) tenminste \(N - 1 \) verschillende nulpunten heeft.

 (a) Zij \(a, b \in \mathbb{R} \) met \(a < b \), en \(f: (a, b) \rightarrow \mathbb{R} \) differentieerbaar met begrensde afgeleide. Toon aan dat \(f \) uniform continu is.
 (b) Laat zien dat een differentieerbare en uniform continue functie \(f: (0, 1) \rightarrow \mathbb{R} \) geen begrensde afgeleide hoeft te hebben.

5. Laat \(c \in \mathbb{R} \) en \(f: (-1, 1) \rightarrow \mathbb{R} \) voldoen aan:
 1. \(f \) is continu;
 2. \(f \) is differentieerbaar op \((-1, 1) \setminus \{0\};
 3. \(\lim_{x \to 0} f'(x) = c \).

 Bewijs dat \(f \) ook differentieerbaar is in 0, en dat \(f'(0) = c \).

6. Bewijs Stelling VI.2.5.
VI.3 De Inverse Functiestelling

Stel we willen een vergelijking van de vorm $f(x) = y$ oplossen; y is gegeven en x is de onbekende. Bovendien vragen we ons af of de oplossing, als die bestaat, uniek is, en dan continu of zelfs differentieerbaar afhangt van y. Met andere woorden, als we y een beetje variëren, hoeveel varieert dan de oplossing x? Als we weten dat de functie f een inverse f^{-1} heeft, dan zien we meteen dat de vergelijking een unieke oplossing heeft, namelijk $x = f^{-1}(y)$. Hoe x afhangt van y wordt bepaald door de eigenschappen van de inverse functie f^{-1}.

We gaan nu bewijzen dat de inverse van een continue inverteerbare functie wederom continu is, en dat, onder bepaalde voorwaarden, de inverse van een differentieerbare functie wederom differentieerbaar is; in dat geval kunnen we ook een formule voor de afgeleide van de inverse functie geven. We formuleren de stellen voor strikt stijgende functies op een interval $[a, b]$. Analoge resultaten gelden voor strikt dalende functies op $[a, b]$ en voor strikt stijgende- of dalende functies op andere typen intervallen; de bewijzen zijn geheel anaaloog.

VI.3.1 Stelling (Inverse Functiestelling, continue versie).
Laat $a, b \in \mathbb{R}$ met $a < b$ en $f : [a, b] \to \mathbb{R}$ een continue, strikt stijgende functie zijn. Dan geldt:
(i) Als $x \in [a, b]$ dan $a \leq x \leq b$ dus $f(a) \leq f(x) \leq f(b)$. Hieruit volgt dat $f([a, b]) \subseteq [f(a), f(b)]$. Zij nu $y \in [f(a), f(b)]$. Dankzij de Tussenwaardestelling V.4.4 is er een $x \in [a, b]$ met $f(x) = y$. Hieruit volgt dat ook $[f(a), f(b)] \subseteq f([a, b])$ en dus zijn deze twee verzamelingen aan elkaar gelijk.

Hierboven hebben we al bewezen dat $f : [a, b] \to [f(a), f(b)]$ surjectief is. Om te laten zien dat deze functie bijjectief is moeten we alleen de injectiviteit aantonen.

Stel $x_1, x_2 \in [a, b]$ met $x_1 \neq x_2$. Zonder beperking der algemeenheid kunnen we aannemen dat $x_1 < x_2$. Omdat f strikt stijgend is volgt dat $f(x_1) < f(x_2)$ en dus $f(x_1) \neq f(x_2)$.

(ii) Zij $g = f^{-1} : [f(a), f(b)] \to [a, b]$. We laten eerst zien dat g strikt stijgend is. Stel $f(a) \leq y_1 < y_2 \leq f(b)$ en laat $x_1, x_2 \in [a, b]$ zijn met $g(y_1) = x_1$ en $g(y_2) = x_2$. Dan $f(x_1) = y_1$, $f(x_2) = y_2$ en $x_1 \neq x_2$ (want $f(x_1) \neq f(x_2)$). Als $x_2 < x_1$ krijgen we een tegenspraak: $y_2 = f(x_2) < f(x_1) = y_1$. Er moet dus gelden dat $x_1 < x_2$ ofwel $g(y_1) < g(y_2)$.

We bewijzen nu de continuïteit. Zij $d \in [f(a), f(b)]$. Zij $\varepsilon \in \mathbb{R}_{>0}$ en laat $c = g(d)$ zijn. Laat $\varepsilon' = \min\{\varepsilon, c - a, b - c\}$ zijn dan is $\varepsilon' \leq \varepsilon$, $\varepsilon' > 0$ en $f(c - \varepsilon') < d < f(c + \varepsilon')$. Kies $\delta = \min\{d - f(c - \varepsilon'), f(c + \varepsilon') - d\}$ dan geldt voor alle $y \in [f(a), f(b)]$ met $|y - d| < \delta$:

$$|g(y) - g(d)| < \varepsilon'.$$

Bewijs zelf dat g continu is in $d = f(a)$ en $d = f(b)$.

De volgende stelling geeft onder bepaalde voorwaarden de differentieerbaarheid van de inverse functie.

VI.3.2 Stelling (Inverse Functiestelling, differentieerbare versie).
Laat $a, b \in \mathbb{R}$ met $a < b$, en $f : [a, b] \to [f(a), f(b)]$ een continue strikt stijgende
functie zijn. Zij $c \in (a, b)$. Als f differentieerbaar is in c met $f'(c) \neq 0$, dan is de inverse functie $f^{-1} : [f(a), f(b)] \to [a, b]$ differentieerbaar in $f(c)$ met afgeleide3:

$$(f^{-1})'(f(c)) = \frac{1}{f'(c)}.$$

Bewijs. Laat weer $g = f^{-1} : [f(a), f(b)] \to \mathbb{R}$ en $d = f(c)$ zijn. Omdat f differentieerbaar in c is bestaat een functie $\tilde{F} : [a, b] \to \mathbb{R}$, continu in c, zó dat $\tilde{F}(c) = 0$ en voor elke $x \in [a, b]$ geldt $f(x) = f(c) + f'(c) \cdot (x - c) + (x - c) \cdot \tilde{F}(x)$.

Zij $y \in [f(a), f(b)]$ en laat $x \in [a, b]$ zijn met $f(x) = y$. Merk op dat $f'(c) + \tilde{F}(c) \neq 0$ en als $x \neq c$ dan $y = f(x) \neq d = f(c)$ omdat f injectief is. Uit $f(x) - f(c) = (x - c) \cdot (f'(c) + \tilde{F}(x))$ volgt nu dat voor alle $x \in [a, b]$ geldt $f'(c) + \tilde{F}(x) \neq 0$ en bijgevolg

$$g(y) - g(d) = x - c = \frac{1}{f'(c) + \tilde{F}(x)} \cdot (y - d).$$

Definieer $\tilde{G} : [f(a), f(b)] \to \mathbb{R}$ door

$$\tilde{G}(y) = \frac{1}{f'(c) + \tilde{F}(y)} - \frac{1}{f'(c)}.$$

Het is makkelijk te zien dat \tilde{G} continu is en

$$g(y) = g(d) + \frac{1}{f'(c)} \cdot (y - d) + (y - d) \cdot \tilde{G}(y),$$

dus g is differentieerbaar in $d = f(c)$ met afgeleide $1/f'(c)$.

\[\square \]

VI.3.3 Voorbeeld. Voor $n \in \mathbb{N}_{\geq 1}$ bekijken we de functie $f : [0, \infty) \to [0, \infty)$ met voorschrift $f(x) = x^n$. Deze functie is inverteerbaar met inverse $g(x) = \sqrt[n]{x}$. In Stelling V.4.7 hebben we bewezen dat g continu is. We tonen hier aan dat g ook differentieerbaar is.

Laat $d \in (0, \infty)$ en zij $c = g(d) = \sqrt[n]{d}$. Dan geldt

$$f'(c) = nc^{n-1} \neq 0.$$

Uit de differentieerbare versie van de Inverse Functiestelling volgt nu dat g differentieerbaar is in het punt d, met afgeleide

$$g'(d) = g'(c^n) = \frac{1}{n c^{n-1}} = \frac{1}{n \sqrt[n]{d^{n-1}}} = \frac{1}{n}(d^{\frac{1}{n}})^{-1}.$$

\[\square \]

VI.3.4 Voorbeeld. We beschouwen weer de exponentiële functie $\exp : \mathbb{R} \to \mathbb{R}$. Om de Inverse-Functiestelling toe te passen moeten we laten zien dat \exp strikt stijgend en continu is op elk gesloten en begrensde interval.

Het is niet moeilijk in te zien dat de functie strikt stijgend is, zie Opgave VI.3.6. Om de continuïteit te bewijzen laten we eerst zien dat \exp continu is in 0.

Zij $(h_n)_{n \geq 0}$ een rij met $\lim_{n \to \infty} h_n = 0$, we bewijzen dat $\lim_{n \to \infty} e^{h_n} = e^0 = 1$. Kies eerst een $N \in \mathbb{N}$ zó dat $|h_n| < 1$ voor elke $n \geq N$, dan geldt voor die n (zie pagina 63)

$$1 + h_n = \left(1 + \frac{h_n}{1}\right) \leq e^{h_n} \leq \left(1 - \frac{h_n}{1}\right)^{-1} = \frac{1}{1 - h_n}.$$

- Als f^{-1} differentieerbaar is in $f(c)$ dan geldt, vanwege de lemmingregel:

$$1 = (f^{-1} \circ f)'(c) = f^{-1}'(f(c)) \cdot f'(c).$$

De formule voor $(f^{-1})'(f(c))$ is dus duidelijk maar niet dat f^{-1} differentieerbaar is in $f(c)$.

94 VI AFGELEIDE
Uit de Insluitstelling volgt nu dat \(\lim_{n \to \infty} e^{b_{n}} = 0 \).

We laten nu zien dat de functie \(e \) overal continu is. Zij \(x \in \mathbb{R} \) willekeurig en neem aan dat \((x_{n})_{n \geq 0} \) een rij is met \(\lim_{n \to \infty} x_{n} = x \); we moeten aantonen dat \(\lim_{n \to \infty} e^{x_{n}} = e^{x} \). Schrijf het verschil \(e^{x_{n}} - e^{x} \) als \(e^{x_{n} - x} - 1 \). Omdat de rij \((x_{n} - x)_{n \in \mathbb{N}} \) naar 0 convergeert geldt \(\lim_{n \to \infty} e^{x_{n} - x} = 1 \).

We hebben bewezen dat de exponentiële functie continu en strikt stijgend is op elk gesloten en begrens interval; volgens de continue versie van de Inverse-Functiestelling bestaat de inverse functie die eveneens continu en strikt stijgend is. De inverse functie heet de natuurlijke logaritme, notatie: \(\ln : (0, \infty) \to \mathbb{R} \).

Analoog kunnen we bewijzen dat \(e \) overal differentieerbaar is met de afgeleide \(e' = e \); zie Opgave VI.3.7. Uit de differentieerbare versie van de Inverse-Functiestelling volg nu dat \(\ln \) ook differentieerbaar is op \((0, \infty) \) met de afgeleide

\[
\ln'(x) = \frac{1}{x}.
\]

Opgaven

1. Ga na welke van de volgende functies \(f : V \to W \) een inverse \(f^{-1} : W \to V \) heeft, en of deze inverse continu en/of differentieerbaar is.
 (a) \(f : \mathbb{R} \to \mathbb{R} \) met \(f(x) = x^{2} \)
 (b) \(f : [0, \infty) \to \mathbb{R} \) met \(f(x) = x^{2} \)
 (c) \(f : \mathbb{R} \to [0, \infty) \) met \(f(x) = x^{2} \)
 (d) \(f : [0, \infty) \to [0, \infty) \) met \(f(x) = x^{2} \).

2. Zij \(f : (0, 2) \to (2, 14) \) gegeven door \(f(x) = x^{3} + x^{2} + 2 \). Toon aan dat \(f \) inverteerbaar is en bereken \((f^{-1})'(4) \).

3. Zij \(f : (0, 3) \to \mathbb{R} \) gegeven door \(f(x) = x^{5} + 3x^{2} - 2 \).
 (a) Vind \(a, b \in \mathbb{R} \) zó dat \(f([0, 3]) = (a, b) \), en laat zien dat \(f : (0, 3) \to (a, b) \) inverteerbaar is.
 (b) Bereken \((f^{-1})'(2) \).
 (c) Bereken \((f^{-1})'(-39/32) \).

4. Vind met behulp van de Inverse-Functiestelling (controleer ook dat aan alle voorwaarden voldaan is):
 (a) \(\arcsin' x \);
 (b) \(\arccos' x \);
 (c) \(\arctan' x \).

5. We geven een voldoende voorwaarde opdat een continu differentieerbare functie inverteerbaar is.
 (a) Neem aan dat \(f : (a, b) \to \mathbb{R} \) een continu differentieerbare functie (zie Definitie VII.2.1) is met \(f'(c) \neq 0 \) voor een \(c \in (a, b) \). Laat zien dat er een deelinterval van \((a, b) \) bestaat waarop \(f \) inverteerbaar is.

Ook log wordt gebruikt als notatie voor de natuurlijke logaritme, en de dan gebruikte notatie voor de logaritme met grondtal 10 is \(\log_{10} \).
(b) Beschouw de functie \(f: \mathbb{R} \rightarrow \mathbb{R} \) gedefinieerd door
\[
f(x) = \begin{cases}
 x + 2x^2 \sin \frac{1}{x}, & x \neq 0, \\
 0, & x = 0.
\end{cases}
\]

Ga na dat \(f \) differentieerbaar is met \(f'(0) \neq 0 \) maar dat \(f \) op geen open interval rond \(0 \) inverteerbaar is. (Merk op dat \(f' \) niet continu is in \(0 \); de voorwaarde ‘continu differentieerbaar’ in (a) kunnen we dus niet weglaten.)

6. Bewijs dat de exponentiële functie strikt stijgend is.

7. (a) Laat zien dat voor alle \(x \in (-1,1) \) geldt:
\[
|\exp(x) - 1 - x| \leq 3x^2
\]
(b) Laat zien dat \(\exp \) differentieerbaar is in \(0 \), met afgeleide \(1 \).
(c) Laat zien dat \(\exp \) differentieerbaar is, met afgeleide \(\exp \).
Als toepassing van uniforme continuïteit laten we zien dat continue functies op gesloten en begrenste intervallen integreerbaar zijn. We geven eerst de definitie van integreerbaarheid.

VII.1 Definitie en basis-eigenschappen

VII.1.1 Definitie. Laat $D \subseteq \mathbb{R}$. Een functie $f : D \rightarrow \mathbb{R}$ heet begrensd als er een $G \in \mathbb{R}$ bestaat zodanig dat $|f(x)| \leq G$ voor alle $x \in D$.

VII.1.2 Opmerking. In de bovenstaande definitie is f begrensd precies dan als haar beeld $f[D]$ begrensd is als deelverzameling van \mathbb{R}.

VII.1.3 Voorbeeld. De functie $f : \mathbb{R} \rightarrow \mathbb{R}$ gedefinieerd door $f(x) = \arctan x$ is begrensd want voor elke $x \in \mathbb{R}$ geldt $|\arctan x| \leq \pi/2$.

De functie $g : (0,1) \rightarrow \mathbb{R}$ gedefinieerd door $g(x) = \ln x$ is niet begrensd: voor elke $G > 0$ is er een $x \in (0,1)$ met $|\ln x| > G$ (neem bijvoorbeeld het getal $x = e^{-G-1}$).

Om de Riemann-integraal te definiëren hebben we een aantal begrippen nodig.

VII.1.4 Definitie. Laat $a, b \in \mathbb{R}$ met $a \leq b$. Een partitie van het interval $[a,b]$ is een eindige verzameling $P = \{x_0, x_1, \ldots, x_n\}$ punten uit $[a,b]$ met de eigenschap dat $a = x_0 < x_1 < \cdots < x_n = b$. Het getal $\mu(P) = \max\{x_i - x_{i-1} : i = 1, \ldots, n\}$ noemen we de maaswijdte van P. Het woord partitie (verdeling) duidt natuurlijk aan dat we, met behulp van de punten van P, het interval $[a,b]$ in deelintervallen verdelen. Als $a = b$ dan is er precies één partitie van $[a,b]$, te weten $a = x_0 = b$.

Als P_1 en P_2 partities van $[a,b]$ zijn dan noemen we P_2 fijner dan P_1 als $P_1 \subseteq P_2$. (Dit betekent dat elk intervalletje uit de verdeling P_1 door P_2 verder wordt verdeeld; bijgevolg is de maaswijdte van P_2 kleiner dan of gelijk aan die van P_1.)

Als P_1 en P_2 partities van $[a,b]$ zijn, dan krijgen we een nieuwe partitie P door P_1 en P_2 samen te voegen: $P = P_1 \cup P_2$. Merk op dat deze partitie P een verfijning is van zowel P_1 als P_2.

VII.1.5 Definitie. Laat $a, b \in \mathbb{R}$ met $a \leq b$ en neem aan dat $f : [a,b] \rightarrow \mathbb{R}$ een begrenste functie is. Zij $P = \{x_0, \ldots, x_n\}$ een partitie van $[a,b]$. Voor $i = 1, \ldots, n$
definiëren we

\[M_i = \sup \{ f(x) : x_{i-1} \leq x \leq x_i \} \]
\[m_i = \inf \{ f(x) : x_{i-1} \leq x \leq x_i \} \]
\[\Delta_i = x_i - x_{i-1}. \]

De bovensom \(U(P, f) \) is gedefinieerd door

\[U(P, f) = \sum_{i=1}^{n} M_i \Delta_i \]

en de ondersom \(L(P, f) \) is gedefinieerd door

\[L(P, f) = \sum_{i=1}^{n} m_i \Delta_i. \]

We kunnen nog een derde soort som maken door voor elke \(i \) een punt \(t_i \) in het interval \([x_{i-1}, x_i]\) te kiezen; zo’n keuze noemen we een strooiing bij \(P \) en we schrijven \(\theta = \{ t_i : i = 1, \ldots, n \} \). Bij \(P \) en \(\theta \) definiëren we dan de Riemannsom \(S(P, f, \theta) \) als volgt:

\[S(P, f, \theta) = \sum_{i=1}^{n} f(t_i) \Delta_i. \]

VII.1.6 Voorbeeld. De functie \(f : [0, 1] \rightarrow \mathbb{R} \) gegeven door \(f(x) = \sin(x^2) \) is begrensd op het gesloten en begrensd interval \([0, 1]\); de Riemann-sommen voor \(f \) zijn dus gedefinieerd. In Figuur 7.1 zien we de boven- en ondersom voor de partitie \(P = \{0, 1/5, 2/5, 3/5, 4/5, 1\} \).

![Figuur 7.1: Boven- en ondersom van \(\int_{0}^{1} \sin(x^2) \, dx \)](image)

VII.1.7 Definitie. Laat \(a, b \in \mathbb{R} \) met \(a \leq b \). Laat \(f : [a, b] \rightarrow \mathbb{R} \) begrensd. De bovenintegraal van \(f \) over \([a, b]\) is gedefinieerd door

\[\int_{a}^{b} f(x) \, dx = \inf \{ U(P, f) : P \text{ is een partitie van } [a,b] \}. \]

De onderintegraal van \(f \) over \([a, b]\) is gedefinieerd door

\[\int_{a}^{b} f(x) \, dx = \sup \{ L(P, f) : P \text{ is een partitie van } [a,b] \}. \]
VII.1.8 Definitie. Laat \(a, b \in \mathbb{R} \) met \(a \leq b \). Laat \(f : [a, b] \rightarrow \mathbb{R} \) begrensd. Dan heet \(f \) Riemann-integreerbaar (over \([a, b] \)) als de bovenintegraal \(\int_a^b f(x) \, dx \) en de onderintegraal \(\int_a^b f(x) \, dx \) van \(f \) aan elkaar gelijk zijn. Hun gemeenschappelijke waarde heet dan de Riemann-integraal van \(f \) over \([a, b] \) en wordt genoteerd als \(\int_a^b f(x) \, dx \).

VII.1.9 Opmerking. Onder de aannames van de bovenstaande definitie is het vaak handig ook \(\int_a^b f(x) \, dx \) te definiëren. We spreken daarom af:

\[
\int_a^b f(x) \, dx = - \int_b^a f(x) \, dx.
\]

Ga zelf na dat \(\int_a^a f(x) \, dx = 0 \).

VII.1.10 Voorbeeld. We bewijzen dat \(\int_0^1 x \, dx = \frac{1}{2} \) slechts gebruik makend van de Definitie VII.1.8.

Zij \(f(x) = x \) en beschouw voor elke \(n \in \mathbb{N} \) de partitie \(P_n = \{0, 1/n, 2/n, \ldots, 1\} \) van het interval \([0, 1]\). Dan geldt

\[
L(P_n, f) = 0 + \frac{1}{n} \cdot 1 + \frac{2}{n} \cdot 1 + \cdots + \frac{n-1}{n} \cdot 1 = \frac{1}{2} \frac{n(n-1)}{n^2} = \frac{1}{2} \left(1 - \frac{1}{n}\right)
\]

en

\[
U(P_n, f) = \frac{1}{n} \cdot 1 + \frac{1}{n} \cdot 1 + \cdots + \frac{n}{n} \cdot 1 = \frac{1}{2} \frac{n(n+1)}{n^2} = \frac{1}{2} \left(1 + \frac{1}{n}\right).
\]

Het is niet moeilijk in te zien dat

\[
\sup\{L(P_n, f) : n \in \mathbb{N}\} = \inf\{U(P_n, f) : n \in \mathbb{N}\} = \frac{1}{2}.
\]

Zij \(P \) een willekeurige partitie van \([0, 1]\). Omdat voor elke \(n \in \mathbb{N} \) de partitie \(P \cup P_n \) een verfijning van \(P \) is volgt hieruit (zie Opgave VII.1.1) dat

\[
\int_0^1 x \, dx = \int_0^1 x \, dx = \frac{1}{2}
\]

en dus

\[
\int_0^1 x \, dx = \frac{1}{2}.
\]

VII.1.11 Stelling. Elke continue reële functie op een gesloten en begrensd interval is Riemann-integreerbaar.

Bewijs. Opgave VII.1.8.

VII.1.12 Opmerking. Er zijn ook niet-continue functies die Riemann-integreerbaar zijn, zie Opgave VII.1.5 en Opgave VII.1.10. Het volgende voorbeeld laat zien dat er begrense functies bestaat die niet Riemann-integreerbaar zijn; zulke functies moeten noodzakelijk in oneindig veel punten niet continu zijn.
VII.1.13 Voorbeeld. Beschouw \(f : [0, 1] \to \mathbb{R} \) gedefinieerd door
\[
f(x) = \begin{cases}
0 & \text{als } x \in \mathbb{R} \setminus \mathbb{Q} \\
1 & \text{als } x \in \mathbb{Q}.
\end{cases}
\]
Omdat tussen elk paar reële getallen een rationeel getal ligt is elke Riemann-ondersom gelijk aan 0, en omdat tussen elk paar reële getallen een irrationaal getal ligt is elke Riemann-bovensom gelijk aan 1. Hieruit volgt
\[
\int_{0}^{1} f(x) \, dx = 0 \quad \text{en} \quad \int_{0}^{1} f(x) \, dx = 1.
\]
Omdat de boven- en onder-integralen niet aan elkaar gelijk zijn kan de functie niet Riemann-integreerbaar zijn.

Opgaven

1. Laat \(a, b \in \mathbb{R} \) met \(a \leq b \), en \(f : [a, b] \to \mathbb{R} \) begrensd. Bewijs de volgende beweringen.
 (a) Als \(P \) een partitie van \([a, b]\) is en \(\theta \) een strooiing bij \(P \) dan geldt
 \[
 L(P, f) \leq S(P, f, \theta) \leq U(P, f).
 \]
 (b) Als \(P_1 \) en \(P_2 \) partities van \([a, b]\) zijn en \(P_2 \) is een verfijning van \(P_1 \) dan geldt
 \[
 L(P_1, f) \leq L(P_2, f) \leq U(P_2, f) \leq U(P_1, f).
 \]
 (c) Als \(P_1 \) en \(P_2 \) partities van \([a, b]\) zijn dan geldt
 \[
 L(P_1, f) \leq U(P_2, f).
 \]

2. Laat \(a, b \in \mathbb{R} \) met \(a \leq b \), en \(f : [a, b] \to \mathbb{R} \) begrensd. Stel \(M = \sup \{ f(x) : x \in [a, b] \} \) en \(m = \inf \{ f(x) : x \in [a, b] \} \). Bewijs:
 \[
 m(b - a) \leq \int_{a}^{b} f \, dx \leq \int_{a}^{b} f \, dx \leq M(b - a).
 \]

3. Laat \(a, b \in \mathbb{R} \) met \(a \leq b \). Zij \(f : [a, b] \to \mathbb{R} \) de constante functie met waarde \(M \).
 (a) Toon aan dat
 \[
 L(f, P) = U(f, P) = M(b - a)
 \]
 voor iedere partitie \(P \) van \([a, b]\).
 (b) Leid af uit (a) dat
 \[
 \int_{a}^{b} f(x) \, dx = M(b - a).
 \]

4. Bewijs, slechts gebruik makend van Definitie VII.1.8, dat \(\int_{0}^{1} x^2 \, dx = 1/3 \).

5. Bewijs dat de functie \(f : [0, 2] \to \mathbb{R} \) gedefinieerd door
 \[
 f(x) = \begin{cases}
0 & \text{als } 0 \leq x \leq 1 \\
1 & \text{als } 1 < x \leq 2.
\end{cases}
\]
 Riemann-integreerbaar is en bereken de waarde van \(\int_{0}^{2} f(x) \, dx \).
6. Laat $a \in \mathbb{R}_{\geq 0}$. Zij $f : [-a, a] \to \mathbb{R}$ oneven, dat wil zeggen, $f(-x) = -f(x)$ voor alle $x \in [-a, a]$, en continu. Toon aan dat
\[\int_{-a}^{a} f(x) \, dx = 0. \]

7. Laat $a, b \in \mathbb{R}$ met $a < b$. Zij $f : [a, b] \to \mathbb{R}$ continu en neem aan dat $f(x) \geq 0$ voor alle $x \in [a, b]$. Toon aan: als
\[\int_{a}^{b} f(x) \, dx = 0, \]
dan is $f(x) = 0$ voor alle $x \in [a, b]$.

8. Bewijs Stelling VII.1.11.

9. Laat a, b en c in \mathbb{R}, met $a < c < b$. Laat $f : [a, b] \to \mathbb{R}$. Bewijs dat f Riemann integreerbaar is dan en slechts dan als $f|_{[a,c]}$ en $f|_{[c,b]}$ dat zijn, en dat dan geldt:
\[\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx. \]

10. Laat $a, b \in \mathbb{R}$ met $a \leq b$. Zij $f : [a, b] \to \mathbb{R}$ een begrensde functie die continu is buiten een eindig aantal punten van $[a, b]$. Bewijs dat f Riemann-integreerbaar is over $[a, b]$.
VII.2 De Hoofdstelling van de Integraalrekening

De volgende stelling geeft een verband tussen integreren en differentiëren. We zeggen dat een functie $F: [a, b] \to \mathbb{R}$ differentieerbaar heet als F differentieerbaar is in ieder punt van $[a, b]$ (in de eindpunten definiëren we de afgeleide als de linker- resp. rechterafgeleide).

VII.2.1 Definitie. We noemen F continu differentieerbaar als F differentieerbaar is en de afgeleide F' continu is op $[a, b]$.

VII.2.2 Stelling (Hoofdstelling van de Integraalrekening).

Laat $a, b \in \mathbb{R}$ met $a < b$. Zij $f: [a, b] \to \mathbb{R}$ continu, en definieer de functie $F: [a, b] \to \mathbb{R}$ door

$$F(x) = \int_a^x f(t) \, dt.$$

Dan is F continu differentieerbaar en voor alle $x \in [a, b]$ geldt $F'(x) = f(x)$.

Bewijs. Laat $c \in [a, b]$. Voor alle $x \in [a, b]$ geldt:

$$F(x) = \int_a^x f(t) \, dt = \int_a^c f(t) \, dt + \int_c^x f(t) \, dt = F(c) + (x - c)f(c) + \int_c^x (f(t) - f(c)) \, dt.$$

We definiëren $\tilde{F}: [a, b] \to \mathbb{R}$ door:

$$\tilde{F}(x) = \begin{cases}
\frac{1}{x - c} \int_c^x (f(t) - f(c)) \, dt & \text{als } x \neq c, \\
0 & \text{als } x = c.
\end{cases}$$

Dan geldt dat $\tilde{F}(c) = 0$, en, voor alle $x \in [a, b]$, dat:

$$F(x) = F(c) + f(c)(x - c) + (x - c) \tilde{F}(x).$$

We laten nu zien dat \tilde{F} continu is in c, en daarmee is dan het bewijs van de stelling klaar. Laat $\varepsilon \in \mathbb{R}_{>0}$. Neem $\delta \in \mathbb{R}_{>0}$ zodat voor alle $t \in [a, b]$ met $|t - c| < \delta$ geldt dat $|f(t) - f(c)| < \varepsilon$. Dan geldt, voor alle $x \in [a, b]$ met $|x - c| < \delta$ en $x \neq c$ dat

$$|\tilde{F}(x)| = \frac{1}{|x - c|} \left| \int_c^x (f(t) - f(c)) \, dt \right| \leq \frac{1}{|x - c|} |(x - c)| \varepsilon = \varepsilon.$$

Nu zijn we in staat de volgende stelling van het vwo te bewijzen:

VII.2.3 Stelling. Laat $a, b \in \mathbb{R}$ met $a < b$. Zij $f: [a, b] \to \mathbb{R}$ een continue functie en zij $F: [a, b] \to \mathbb{R}$ continu op $[a, b]$, en differentieerbaar op (a, b) met $F'(x) = f(x)$ voor alle $x \in (a, b)$. Dan geldt

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Bewijs. Definieer $G: [a, b] \to \mathbb{R}$ door

$$G(x) = F(x) - F(a) - \int_a^x f(t) \, dt.$$
Merk op dat G continu is. We moeten aantonen dat $G(b) = 0$. Uit de Hoofdstelling van de Integraalrekening en de differentieerbaarheid van F op (a, b) volgt dat G differentieerbaar is op (a, b) met afgeleide

$$G'(x) = F'(x) - f(x) = f(x) - f(x) = 0, \quad x \in (a, b).$$

Maar dan volgt uit Stelling VI.2.5 dat G constant is op $[a, b]$. Uit de continuïteit van F op $[a, b]$ volgt dat $G(a) = 0$. Maar dan moet gelden $G(x) = 0$ voor alle $x \in [a, b]$, dus ook $G(b) = 0$. ■

VII.2.4 Gevolg (Substitutieregel). Laat $u : [a, b] \to [a^*, b^*]$ en $f : [a^*, b^*] \to \mathbb{R}$ continue functies zijn, en neem aan dat u differentieerbaar is op (a, b) met continue afgeleide. Dan geldt voor elke $[c, d] \subseteq (a, b)$

$$\int_c^d f(u(x))u'(x) \, dx = \int_{u(c)}^{u(d)} f(t) \, dt.$$

Bewijs. Zij $F : [a^*, b^*] \to \mathbb{R}$ gedefinieerd door

$$F(v) = \int_{a^*}^v f(t) \, dt$$

en definieer $G : [a, b] \to \mathbb{R}$ door $G(x) = F(u(x))$. Dan is G differentieerbaar op (a, b) met afgeleide

$$G'(x) = F'(u(x))u'(x) = f(u(x))u'(x),$$

dus G' is continu op (a, b). Omdat $[c, d] \subseteq (a, b)$ is G' ook continu op $[c, d]$ en er geldt

$$\int_c^d f(u(x))u'(x) \, dx = \int_c^d G'(x) \, dx = G(d) - G(c) = F(u(d)) - F(u(c))$$

$$= \int_{u(c)}^{u(d)} f(t) \, dt.$$ ■

Opgaven

1. Definieer de functie $f : (0, \infty) \to \mathbb{R}$ door

$$f(x) = \int_1^x \frac{1}{t} \, dt.$$

Toon aan: voor alle $x, y \in (0, \infty)$ geldt

$$f(xy) = f(x) + f(y).$$

Aanwijzing: Differentieer, voor vaste y, het verschil $f(xy) - f(x) - f(y)$ naar x.

Opmerking. De zo gedefinieerde functie $f : (0, \infty) \to \mathbb{R}$ is natuurlijk niets anders dan de natuurlijke logarithme ln. Dit geeft dus een alternatief om exp te definiëren.

2. Toon aan dat de functie $f : \mathbb{R} \to \mathbb{R}$ gegeven door

$$f(x) = \int_0^{x^2} \sqrt{1 + y^4} \, dy$$

differentieerbaar is, en bepaal de afgeleide van deze functie.

Aanwijzing: Pas de kettingregel toe op $h(x) = x^2$ en $g(x) = \int_0^{x^2} \sqrt{1 + y^4} \, dy$.

VII.2 DE HOOFDSTELLING VAN DE INTEGRAALREKENING 103
3. Zij $M \in \mathbb{R}_{\geq 0}$, $a, b \in \mathbb{R}$ met $a < b$, en $f : [a, b] \rightarrow \mathbb{R}$ een functie met de eigenschap dat $|f(x) - f(y)| \leq M|x - y|$ voor alle $x, y \in [a, b]$. Toon aan dat

$$\left| \int_{a}^{b} f(x) \, dx - f(a)(b - a) \right| \leq \frac{M}{2}(b - a)^2.$$

4. Laat $a, b \in \mathbb{R}$ met $a < b$. Zij $f : (a, b) \rightarrow \mathbb{R}$ tweemaal differentieerbaar met continue tweede afgeleide f''. Laat $c \in (a, b)$ en definieer de functie $g_c : (a, b) \rightarrow \mathbb{R}$ door

$$g_c(x) = \int_{c}^{x} (x - t)f''(t) \, dt \quad (x \in (a, b)).$$

(a) Toon aan dat g_c differentieerbaar is op (a, b) en bepaal $g'_c(x)$.

(b) Gebruik dit om aan te tonen dat

$$f(x) - f(c) = f'(c)(x - c) + \int_{c}^{x} (x - t)f''(t) \, dt$$

voor alle $x \in (a, b)$.

(c) Toon aan: als $M \in \mathbb{R}_{\geq 0}$ en

$$\text{voor alle } x \in (a, b) : \quad |f''(x)| \leq M,$$

dan geldt voor alle $x \in (a, b)$ de volgende afzetting:

$$|f(x) - f(c) - f'(c)(x - c)| \leq M|x - c|^2/2.$$

5. Laat $a, b \in \mathbb{R}$ met $a < b$. Neem aan dat $f : [a, b] \rightarrow \mathbb{R}$ en $g : [a, b] \rightarrow \mathbb{R}$ Riemann-integreerbare functies zijn en zij $\lambda \in \mathbb{R}$. Bewijs:

(a) De functie $\lambda f : [a, b] \rightarrow \mathbb{R}$ is Riemann-integreerbaar en

$$\int_{b}^{a} (\lambda f(x)) \, dx = \lambda \int_{b}^{a} f(x) \, dx.$$

(b) De functie $f + g : [a, b] \rightarrow \mathbb{R}$ is Riemann-integreerbaar en

$$\int_{b}^{a} (f(x) + g(x)) \, dx = \int_{b}^{a} f(x) \, dx + \int_{b}^{a} g(x) \, dx.$$

(c) De functie $|f| : [a, b] \rightarrow \mathbb{R}$ is Riemann-integreerbaar en

$$\left| \int_{b}^{a} f(x) \, dx \right| \leq \int_{b}^{a} |f(x)| \, dx.$$

6. [Parti"{e}el integreren] Laat $a, b \in \mathbb{R}$ met $a < b$. Laat $f, g : [a, b] \rightarrow \mathbb{R}$ continu differentieerbaar zijn. Toon aan:

$$\int_{a}^{b} f'(x)g(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)g'(x) \, dx.$$

Aanwijzing: Integreer de productregel voor het differentiëren.
VIII

PUNTSGEWIJZE EN UNIFORME CONVERGENTIE

VIII.1 Convergentie van rijen van functies

In vorige hoofdstukken hebben we convergentie van getallenrijen bestudeerd. In de Analyse zijn echter rijen die functies als termen hebben van groot belang. In deze paragraaf zullen we bekijken hoe we convergentie van een functierij kunnen definiëren.

Laten we de rij \((f_n)_{n\geq 1}\) nemen, waarbij voor elke \(n \in \mathbb{N}\) de functie \(f_n\) op het interval \((0, 1)\) gedefinieerd is door \(f_n(x) = x^n\), zie Figuur 8.1.

Een methode om een limietfunctie te definiëren ligt voor de hand: voor elke \(x \in (0, 1)\) geldt \(\lim_{n \to \infty} f_n(x) = 0\); de limietfunctie van deze rij is dan de functie \(f\) gedefinieerd door \(f(x) = 0\).

VIII.1.1 Definitie. Laat \(A \subseteq \mathbb{R}\) en, voor alle \(n \in \mathbb{N}\), \(f_n: A \to \mathbb{R}\). We zeggen dat de functierij \((f_n)_{n \in \mathbb{N}}\) puntsgewijs convergeert als voor elke \(x \in A\) de reële rij \((f_n(x))_{n \in \mathbb{N}}\) convergent is. De limietfunctie \(f: A \to \mathbb{R}\) is dan gedefinieerd door

\[f(x) = \lim_{n \to \infty} f_n(x). \]

Notatie: \(f_n \xrightarrow{p} f\).

Merk op dat de limietfunctie, indien zij bestaat, uniek is; zie Opgave VIII.1.1.

VIII.1.2 Voorbeeld. De functierij hierboven convergeert puntsgewijs op het interval \((0, 1)\) naar de nullfunctie.

VIII.1.3 Voorbeeld. Definieer nu, net als in Voorbeeld VIII.1.2, de rij \((g_n)_{n \in \mathbb{N}}\), \(g_n: [0, 1] \to \mathbb{R}\), door \(g_n(x) = x^n\). Er geldt: \(g_n \xrightarrow{p} g\) met

\[g(x) = \begin{cases} 0 & \text{als } x \in [0, 1), \\ 1 & \text{als } x = 1. \end{cases} \]

Merk op dat de continuïteit verloren ging: hoewel elke \(g_n\) continu is, is \(g\) niet continu.
Puntsgewijze convergentie is een natuurlijk begrip maar blijkt in de praktijk niet zo goed te werken: in Voorbeeld VIII.1.3 was elke g_n continu maar de limietfuntie was niet continu. Er is ook een andere, sterkere, vorm van convergentie die veel betere eigenschappen heeft.

VIII.1.4 Definitie. Laat $A \subseteq \mathbb{R}$ en, voor elke $n \in \mathbb{N}$, $f_n : A \to \mathbb{R}$. Laat ook $f : A \to \mathbb{R}$. We zeggen dat de functierij $(f_n)_{n \in \mathbb{N}}$ uniform naar f convergeert als

$$\lim_{n \to \infty} \left(\sup \{|f_n(x) - f(x)| : x \in A\} \right) = 0.$$

Notatie: $f_n \overset{u}{\to} f$.

VIII.1.5 Voorbeeld. Beschouw de functierij $(g_n)_{n \in \mathbb{N}}$ uit Voorbeeld VIII.1.3. Er geldt

$$\sup \{|g_n(x) - g(x)| : x \in [0, 1]\} = \sup \{|x^n - 0| : x \in [0, 1]\} \cup \{|1^n - 1|\} = 1,$n\to\infty $$

waarbij g de puntsgewijze limiet van $(g_n)_{n \in \mathbb{N}}$ is. Hieruit volgt dat

$$\lim_{n \to \infty} \left(\sup \{|g_n(x) - g(x)| : x \in [0, 1]\} \right) = 1 \neq 0;$$

de functierij convergeert niet uniform naar de functie g.

Analoog kunnen we aantonen dat ook de $(f_n)_{n \in \mathbb{N}}$ uit Voorbeeld VIII.1.2 niet uniform naar f convergeert, zie Opgave VIII.1.3.
VIII.1.6 Voorbeeld. Door de definitieverzameling iets kleiner te nemen kan de convergentie uniform worden. Neem bijvoorbeeld $h_n : [0, 1/2] \to [0, 1]$ met $h_n(x) = x^n$ voor elke $x \in [0, 1/2]$. Dan geldt $h_n \to h$ met $h(x) = 0$ voor elke $x \in [0, 1/2]$. Immers,

$$\sup\{|h_n(x) - h(x)| : x \in [0, 1/2]\} = \sup\{|x^n - 0| : x \in [0, 1/2]\} = \left(\frac{1}{2}\right)^n$$

en dus $\lim_{n \to \infty} \left(\sup\{|h_n(x) - h(x)| : x \in [0, 1/2]\}\right) = 0$.

De volgende stelling zegt dat de uniforme convergentie nderdaad sterker is dan puntsgewijze convergentie.

VIII.1.7 Propositie. Als $f_n \to f$ dan $f_n \to f$.

Uniforme convergentie garandeert dat de limietfunctie van continue functies continu is.

VIII.1.8 Stelling. Laat $A \subseteq \mathbb{R}$. Laat, voor elke $n \in \mathbb{N}$, $f_n : A \to \mathbb{R}$. Laat $f : A \to \mathbb{R}$. Als elke f_n continu is en $f_n \to f$ dan is ook f continu.

Bewijs. We moeten bewijzen dat f continu in c is voor elke $c \in A$. Laat $c \in A$.

Zij $\varepsilon \in \mathbb{R}_{>0}$ We zoeken een $\delta \in \mathbb{R}_{>0}$ zó dat voor alle $x \in A$ met $|x - c| < \delta$ geldt dat $|f(x) - f(c)| < \varepsilon$. Omdat $f_n \to f$ is er een $N \in \mathbb{N}$ zodanig dat

$$\sup\{|f_N(y) - f(y)| : y \in A\} < \frac{\varepsilon}{3}$$

Merk op dat in het bijzonder geldt $|f_N(y) - f(y)| < \varepsilon/3$ voor elke $y \in A$. Volgens de veronderstelling is de functie f_N continu in het punt $c \in A$; kies dus een $\delta \in \mathbb{R}_{>0}$ met $|f_N(x) - f_N(c)| < \varepsilon/3$ voor alle $x \in A$ met $|x - c| < \delta$. Nu is het bewijs voltooid: voor elke $x \in A$ met $|x - c| < \delta$ geldt

$$|f(x) - f(c)| \leq |f(x) - f_N(x)| + |f_N(x) - f_N(c)| + |f_N(c) - f(c)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Opgaven

1. Bewijs dat een puntsgewijs convergente functierij een unieke limietfunctie heeft.

2. Zij $A \subseteq \mathbb{R}$ en neem aan $f_n : A \to \mathbb{R}$ en $g_n : A \to \mathbb{R}$ voor elke $n \in \mathbb{N}$. Toon aan:
 als $f_n \to f$ en $g_n \to g$ dan
 (a) $f_n + g_n \to f + g$;
 (b) $\alpha f_n \to \alpha f$ voor elke $\alpha \in \mathbb{R}$;
 (c) $f_n g_n \to f g$.

3. Laat zien dat de functierij uit Voorbeeld VIII.1.2 niet uniform naar f convergeert.

5. Beschouw de functierij \((f_n)_{n \geq 0}\) met \(f_n: \mathbb{R} \rightarrow \mathbb{R}\) gedefinieerd door
\[
f_n(x) = x^n.
\]
(a) Bewijs of weerleg: er is een \(f: \mathbb{R} \rightarrow \mathbb{R}\) met \(f_n \xrightarrow{p} f\).
(b) Bewijs of weerleg: er is een \(f: \mathbb{R} \rightarrow \mathbb{R}\) met \(f_n \xrightarrow{u} f\).

6. Beschouw de functierij \((f_n)_{n \geq 1}\) met \(f_n: \mathbb{R} \rightarrow \mathbb{R}\) gedefinieerd door
\[
f_n(x) = \cos(x/n).
\]
(a) Bewijs of weerleg: er is een \(f: \mathbb{R} \rightarrow \mathbb{R}\) met \(f_n \xrightarrow{p} f\).
(b) Bewijs of weerleg: er is een \(f: \mathbb{R} \rightarrow \mathbb{R}\) met \(f_n \xrightarrow{u} f\).

7. Beschouw de functierij \((f_n)_{n \geq 0}\) met \(f_n: \mathbb{R} \rightarrow \mathbb{R}\) gedefinieerd door
\[
f_n(x) = |\cos x|^n.
\]
(a) Bewijs of weerleg: er is een \(f: \mathbb{R} \rightarrow \mathbb{R}\) met \(f_n \xrightarrow{p} f\).
(b) Bewijs of weerleg: er is een \(f: \mathbb{R} \rightarrow \mathbb{R}\) met \(f_n \xrightarrow{u} f\).

8. Beschouw de functierij \((f_n)_{n \geq 0}\) met \(f_n: \mathbb{R} \rightarrow \mathbb{R}\) gedefinieerd door
\[
f_n(x) = \frac{x}{1 + n^2 x^2}
\]
(a) Bewijs of weerleg: er is een \(f: \mathbb{R} \rightarrow \mathbb{R}\) met \(f_n \xrightarrow{p} f\).
(b) Bewijs of weerleg: er is een \(f: \mathbb{R} \rightarrow \mathbb{R}\) met \(f_n \xrightarrow{u} f\).

9. Laat \(A \subseteq \mathbb{R}\) en, voor elke \(n \in \mathbb{N}\), \(f_n: A \rightarrow \mathbb{R}\). Laat zien dat \(f_n \xrightarrow{u} f\) dan en slechts dan als voor elke \(\varepsilon \in \mathbb{R}_{>0}\) een \(N \in \mathbb{N}\) bestaat zodanig dat voor alle \(x \in A\) en voor alle \(n \geq N\) geldt \(|f_n(x) - f(x)| < \varepsilon\).

\[
\star 10.\text{ Laat } A \subseteq \mathbb{R}\text{ en, voor elke } n \in \mathbb{N}, f_n: A \rightarrow \mathbb{R}\text{ en } g_n: A \rightarrow \mathbb{R}.\text{ Toon aan: als } f_n \xrightarrow{u} f \text{ en } g_n \xrightarrow{u} g \text{ dan }
\begin{align*}
(a) & \ f_n + g_n \xrightarrow{u} f + g; \\
(b) & \ \alpha f_n \xrightarrow{u} \alpha f \text{ voor elke } \alpha \in \mathbb{R}; \\
(c) & \ \text{als alle } f_n \text{ en } g_n \text{ begrensd zijn dan geldt ook } f_n g_n \xrightarrow{u} fg; \\
(d) & \ \text{de voorwaarde in (c) betreffende begrensdheid kan niet gemist worden.}
\end{align*}
\]
IX APPENDIX

IX.1 De Axioma’s van Zermelo en Fraenkel

In de verzamelingenleer gebruiken we letters (variablen), logische symbolen (\(\forall, \exists, \land, \lor, \neg, \to, \leftrightarrow\)), het =-teken (gelijkheid) en natuurlijk \(\in\) (is element van).

De betekenis van de logische symbolen is als volgt: \(\forall\) is ‘voor alle’, \(\exists\) is ‘er is een’, \(\land\) is ‘en’, \(\lor\) is ‘of’, \(\neg\) is ‘niet’, \(\to\) is ‘impliceert’, \(\leftrightarrow\) is ‘is gevolg van’, \(\Leftarrow\) is ‘dan en slechts dan’, of ook wel ‘precies dan als’ of ook wel ‘is equivalent met’. Als men wil, kan men zenuiger zijn met het aantal logische symbolen (bijvoorbeeld kunnen ze allemaal in \(\land\) en \(\neg\) uitgedrukt worden).

Verder is elk individu dat we tegenkomen een verzameling (de variablen staan voor verzamelingen). In het bijzonder zijn de elementen van al onze verzamelingen zelf dus ook weer verzamelingen.

Het eerste axioma formaliseert hoe gelijkheid van verzamelingen gedefinieerd is.

Axioma van Extensionaliteit Verzamelingen zijn gelijk dan en slechts dan als ze dezelfde elementen hebben:

\[(A = B) \iff (\forall X)(X \in A \iff X \in B).\]

De volgende drie axioma’s geven regels hoe we uit oude verzamelingen nieuwe kunnen vormen.

Axioma van Paarvorming Voor elk tweetal verzamelingen \(A\) en \(B\) is er een verzameling die uit alleen de elementen \(A\) en \(B\) bestaat:

\[(\forall A)(\forall B)(\exists C)(\forall X)(X \in C \iff (X = A \lor X = B)).\]

Deze verzameling \(C\) wordt ook wel als \(\{A, B\}\) genoteerd.

Axioma van Vereniging Voor elke verzameling \(A\) bestaat een verzameling die uit alle elementen van elementen van \(A\) bestaat:

\[(\forall A)(\exists B)(\forall X)(X \in B \iff ((\exists Y)(Y \in A \land X \in Y))).\]

Voor deze \(B\) gebruiken we de notatie \(\bigcup_{Y \in A} Y\).
Axioma van Machtsverzameling Voor elke verzameling A bestaat een verzameling die uit alle deelverzamelingen van A bestaat:

$$(\forall A)(\exists B)(\forall X)(X \in B \Leftrightarrow (\forall Y)((Y \in X) \Rightarrow (Y \in A))).$$

Afscheidingsaxioma Als φ een formule is en A een verzameling dan bestaat een verzameling die bestaat uit alle elementen van A die aan φ voldoen:

$$(\forall A)(\exists B)(\forall X)((X \in B) \Leftrightarrow ((X \in A) \land \varphi(X))).$$

Substitutieaxioma Als F een formule is die een ‘afbeelding’ definieert, dat wil zeggen uit $F(X, Y)$ en $F(X, Z)$ volgt $Y = Z$, dan bestaat voor elke verzameling A de beeldverzameling $F[A]$:

$$(\forall A)(\exists B)(\forall Y)((Y \in B) \Leftrightarrow (\exists X)(X \in A \land F(X, Y))).$$

We geven een voorbeeld. We nemen voor $F(X, Y)$ de formule ‘Y is de machtsverzameling van X’. Dan volgt dat voor iedere A er een B bestaat waarvan de elementen precies de machtsverzamelingen van de elementen van A zijn.

De axioma’s hierboven zijn nog niet sterk genoeg om ons oneindige verzamelingen te geven; die moeten we expliciet postuleren. We gebruiken het symbool \emptyset voor de lege verzameling.

Axioma van Oneindigheid Er is een oneindige verzameling:

$$(\exists A)((\emptyset \in A) \land ((\forall X)((X \in A) \Rightarrow (X \cup \{X\} \in A))).$$

Het volgende axioma zegt dat niet alles een verzameling kan zijn; het verhindert het bestaan van oneindige rijtjes van de vorm $X_0 \ni X_1 \ni X_2 \ni \cdots$.

Regulariteitsaxioma Elke niet-lege verzameling heeft een \in-minimaal element.

$$(\forall A)((A \neq \emptyset) \Rightarrow ((\exists B)(B \in A \land (\forall C)((C \in B) \Rightarrow (C \notin A))))).$$

De bovenstaande axioma’s vormen het axioma-systeem van Zermelo (Duits wiskundige, 1871–1953) en Fraenkel (Duits en Israëlisch wiskundige, 1891–1965), ook wel afgekort tot ZF. In de verzamelingenleer wordt heel vaak nog het volgende axioma gebruikt, afgekort tot AC (Axiom of Choice).

Keuzeaxioma Elke verzameling S van niet-lege verzamelingen heeft een keuzefunctie, dat wil zeggen, er is een functie $g: S \rightarrow \bigcup_{X \in S} X$ zo dat voor alle $X \in S$ geldt $g(X) \in X$.

ZF samen met AC wordt afgekort tot ZFC. In dit dictaat werken we met ZFC.

110 IX APPENDIX
IX.2 Axioma’s van Peano

De axioma’s van Peano (Italiaans wiskundige, 1858-1932) vormen een korte karakterisering van de natuurlijke getallen met de operaties optelling en vermenigvuldiging. In plaats van direct naar de operaties ‘+’ en ‘·’ te kijken, beschouwt men de afbeelding $S: \mathbb{N} \to \mathbb{N}$ gegeven door $a \mapsto a + 1$. Deze afbeelding S heet de *opvolger*-afbeelding (de S staat voor de Engelse term ‘successor’). De *gegevens* zijn dan:

(a) een verzameling \mathbb{N};
(b) een element $0 \in \mathbb{N}$;
(c) een afbeelding $S: \mathbb{N} \to \mathbb{N}$.

Deze gegevens moeten voldoen aan de volgende *eigenschappen* (ofwel ‘axioma’s’).

(P0) er is geen $a \in \mathbb{N}$ met $S(a) = 0$;
(P1) de afbeelding S is injectief;
(P2) (axioma van inductie) als $A \subset \mathbb{N}$ de eigenschappen heeft dat $0 \in A$ en dat $a \in A \Rightarrow S(a) \in A$, dan $A = \mathbb{N}$.

Men kan bewijzen dat als ook $(\mathbb{N}',0',S')$ aan deze eigenschappen voldoet, er een unieke bijectie $f: \mathbb{N} \to \mathbb{N}'$ is zodat $f(0) = 0'$, en zodat voor alle $a \in \mathbb{N}$ geldt $f(S(a)) = S'(f(a))$. In deze zin is $(\mathbb{N},0,S)$ eenduidig door Peano’s axioma’s bepaald.

Voorts kan men dan, gebruikmakend van volledige inductie, bewijzen dat er unieke afbeeldingen $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ en $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ bestaan zodat voor alle $a, b \in \mathbb{N}$ geldt:

(P3) $0 + a = a$;
(P4) $S(a) + b = S(a + b)$;
(P5) $0 \cdot a = 0$;
(P6) $S(a) \cdot b = a \cdot b + b$.

Men definieert dan $1 = S(0)$, en dan kan men bewijzen dat het gegeven $(\mathbb{N},0,1,+,\cdot)$ aan alle eigenschappen (N0) tot en met (N11) van sectie II.1 voldoet.

De standaardmanier om, uitgaande van ZFC, een triple $(\mathbb{N},0,S)$ te maken dat voldoet aan Peano’s axioma’s P0, P1 en P2, is als volgt. Laat A een verzameling zijn als in het Axioma van Oneindigheid. Laat dan \mathbb{N} de doorsnede zijn van alle deelverzamelingen B van A met de eigenschap dat $\emptyset \in B$ en dat $(X \in B) \Rightarrow (X \cup \{X\} \in B)$. Voor het bestaan van die doorsnede, gebruik het Axioma van Machtsverzameling (om de machtsverzameling $\mathcal{P}(A)$ te krijgen), het Afseidingsaxioma (om de verzameling C van de $B \in \mathcal{P}(A)$ met de gewenste eigenschap te krijgen), en nogmaals het Afseidingsaxioma (om de deelverzameling \mathbb{N} van A te krijgen, bestaand uit die a die in alle $B \in C$ zitten). Voor $0 \in \mathbb{N}$ neemt men dan \emptyset, en voor $X \in \mathbb{N}$ definiërt men $S(X) = X \cup \{X\}$. In deze realisatie geldt bijvoorbeeld dat:

• $0 = \emptyset$,
• $1 = S(0) = 0 \cup \{0\} = \{\emptyset\}$,
• $2 = S(1) = 1 \cup \{1\} = \{\emptyset, \{\emptyset\}\}$,
• $3 = S(2) = 2 \cup \{2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$,
• $4 = S(3) = 3 \cup \{3\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$.

Het zal de lezer duidelijk zijn dat dit systeem als notatie voor getallen bijzonder inefficiënt is.
IX.3 De recursiestelling

Soms is het nodig functies met domein \(\mathbb{N} \) recursief te definiëren. De volgende
stelling legt uit wat we hier precies mee bedoelen.

IX.3.1 Stelling. Laat \(X \) een verzameling, \(x \in X \), en \(F: X \to X \) een afbeelding.
Dan is er een unieke \(f: \mathbb{N} \to X \) zó dat:

\[
f(0) = x \text{ en voor alle } n \in \mathbb{N} \text{ geldt } f(n+1) = F(f(n)).
\]

Bewijs. Het idee van het bewijs is simpelweg dat we de grafiek van \(f \) moeten
maken. Laat \(Y \) de verzameling zijn van alle deelverzamelingen \(\Gamma \subseteq \mathbb{N} \times X \) met
de eigenschappen:

1. \((0, x) \in \Gamma; \)
2. als \((n, y) \in \Gamma \), dan \((n + 1, F(y)) \in \Gamma. \)

Omdat \(\mathbb{N} \times X \) aan deze twee eigenschappen voldoet, is \(Y \) niet leeg. Laat nu \(f \) de
doorsnede zijn van alle elementen van \(Y \). We gaan bewijzen dat \(f \) de gevraagde
functie is.

We bewijzen met inductie dat voor alle \(n \in \mathbb{N} \) er een \(y \in X \) is met \((n, y) \in f \). Dit
is duidelijk voor \(n = 0 \); voor iedere \(\Gamma \in Y \) geldt dat \((0, x) \in \Gamma \), dus \((0, x) \in f \).
Laat nu \(n \in \mathbb{N} \), en neem aan dat \((n, y) \in f \). Dan geldt voor alle \(\Gamma \in Y \) dat
\((n, y) \in \Gamma \), en dus ook dat \((n + 1, F(y)) \in \Gamma \), en dus dat \((n + 1, F(y)) \in f \).

Nu bewijzen we met inductie dat voor alle \(n \in \mathbb{N} \) geldt dat er ten hoogste één
\(y \in X \) is met \((n, y) \in f \).

Stap 1. Stel dat \((0, y) \in f \) met \(y \neq x \). Dan is \(f \setminus \{(0, y)\} \) ook een element van \(Y \).
Maar dan geldt \((0, y) \notin f \), want \(f \) is de doorsnede van alle \(\Gamma \in Y \), en dus bevat in \(f \setminus \{(0, y)\} \). Deze tegenspraak bewijst dat er geen \(y \in X \) is met \(y \neq x \) en
\((0, y) \in f \).

Stap 2. Laat \(n \in \mathbb{N} \), en neem aan dat er precies één \(y \in X \) is met \((n, y) \in f \). Stel
nu dat er een \(y' \in X \) is met \(y' \neq F(y) \) en \((n + 1, y') \in f \). Dan is \(f \setminus \{(n + 1, y')\} \)
ook een element van \(Y \). Maar dan geldt \((n + 1, y') \notin f \), want \(f \) is de doorsnede
van alle \(\Gamma \in Y \), en dus bevat in \(f \setminus \{(n + 1, y')\} \). Deze tegenspraak bewijst dat er
geen \(y' \in X \) is met \(y' \neq F(y) \) en \((n + 1, y') \in f \).

We hebben nu bewezen dat \(f \) een functie van \(\mathbb{N} \) naar \(X \) is. We hebben al
bewezen dat \(f(0) = x \). We moeten nog bewijzen dat voor alle \(n \in \mathbb{N} \) geldt dat
\(f(n + 1) = F(f(n)). \) Laat \(n \in \mathbb{N} \). Dan is \((n, f(n)) \in f \), dus geldt voor alle \(\Gamma \in Y \)
dat \((n, f(n)) \in \Gamma \). Maar dan geldt voor alle \(\Gamma \in Y \) dat \((n + 1, F(f(n))) \in \Gamma \). Dus
\((n + 1, F(f(n))) \in f \), hetgeen betekent dat \(f(n + 1) = F(f(n)) \).

Nu moeten we nog bewijzen dat \(f \) de enige functie is met de gevraagde eigenschappen.
Laat \(g: \mathbb{N} \to X \) een functie zijn met die eigenschappen. Dan is (de
grafiek van) \(g \) een element van \(Y \), en dus geldt dat \(f \subseteq g \). Maar dan geldt \(f = g \)
omdat \(f \) en \(g \) functies zijn.

IX.3.2 Gevolg. Laat \(X \) een verzameling zijn. Laat \(g: \mathbb{N} \times X \to X \), en \(x \in X \).
Dan is er een unieke \(f: \mathbb{N} \to X \) met:

\[
f(0) = x \text{ en voor alle } n \in \mathbb{N} \text{ geldt } f(n+1) = g(n, f(n)).
\]

Bewijs. Laat \(F: \mathbb{N} \times X \to \mathbb{N} \times X \) gegeven zijn door \(F(a, y) = (a + 1, g(a, y)) \).
Vanwege de vorige stelling is er een unieke \(h: \mathbb{N} \to \mathbb{N} \times X \) met \(h(0) = (0, x) \),
en met, voor alle \(n \in \mathbb{N} \), \(h(n + 1) = F(h(n)) \). Laat \(h_1: \mathbb{N} \to \mathbb{N} \) en \(h_2: \mathbb{N} \to X

gedefinieerd zijn als volgt: voor elke \(n \in \mathbb{N} \) geldt
\[
\begin{align*}
h(n) &= (h_1(n), h_2(n)).
\end{align*}
\]
Dan geldt:

\[(h_1(0), h_2(0)) = (0, x),\]

\[(\forall n \in \mathbb{N}) : (h_1(n + 1), h_2(n + 1)) = h(n + 1) = F(h(n)) = F(h_1(n), h_2(n)) =
(h_1(n) + 1, g(h_1(n), f(h_1(n)))).\]

Met inductie volgt nu dat voor alle \(n \in \mathbb{N}\): \(h_1(n) = n\). En dus geldt dat \(h_2(0) = x\),

en voor alle \(n \in \mathbb{N}\): \(h_2(n + 1) = g(n, h_2(n))\). Uit inductie volgt ook dat \(h_2\) de

enige functie is met deze eigenschappen.

Als eerste toepassing definiëren we de functie ‘faculteit’ van \(\mathbb{N}\) naar \(\mathbb{N}\).

IX.3.3 Definitie. Laat \(n \mapsto n!\) de unieke functie van \(\mathbb{N}\) naar \(\mathbb{N}\) zijn, met de
eigenschappen: \(0! = 1\), en voor alle \(n \in \mathbb{N}\) geldt \((n + 1)! = (n + 1) \cdot n!\). (We passen
hier Gevolg IX.3.2 toe, met \(X = \mathbb{N}\), \(x = 1\) en \(g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (a, b) \mapsto (a + 1)b\).)

IX.3.4 Definitie. Voor \(n, k \in \mathbb{N}\) met \(k \leq n\) definiëren we een rationaal getal
door:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

De getallen \(\binom{n}{k}\) heten binomiaalcoëfficiënten.

Binomiaalcoëfficiënt Per definitie is \(\binom{n}{k}\) in \(\mathbb{Q}\), maar uit Opgave II.3.14 volgt \(\binom{n}{k}\) \(\in \mathbb{N}\).
Paragraaf I.1.

3. (d) Een verzameling van \(n \) elementen heeft precies \(2^n \) deelverzamelingen.

4. (a) niet waar;
 (b) niet waar;
 (c) niet waar;
 (d) niet waar;
 (e) waar;
 (f) waar.

7. \(A = \emptyset \) of \(B = \emptyset \) of \(A = B \)

Paragraaf I.2.

7. (a) \([1, 2] = \{ x \in \mathbb{R} : 1 \leq x \leq 2 \}\)
 (b) \((0, 3) = \{ x \in \mathbb{R} : 0 < x < 3 \}\)

Paragraaf I.3.

1. \(1, (x - 1)/(x + 1), (1 + x)/(1 - x) \)

2. (a) \(f(x) = x^2 - 7x + 7 \)
 (b) \(1/x + \sqrt{1 + x^2}/|x| \)

3. \(\{ \pm \sqrt{k\pi} : k \in \mathbb{N} \}; \{ \pm \sqrt{3\pi/2 + 2k\pi} : k \in \mathbb{N} \}; \emptyset \)

9. (a) waar;
 (b) niet waar;
 (c) niet waar;
 (d) waar.

10. niet waar; niet waar

12. (b) \(B = (-5, -4], g^{-1}(x) = 1/(x + 5) \)

13. (a) \(B = \mathbb{R}, g(x) = (3 + x)/7 \)
 (b) \(B = [0, \infty), g(x) = -\sqrt{x} \)
 (c) \(B = \mathbb{R} \setminus \{-1\}, g(x) = (1 - 2x)/(1 + x) \)
 (d) \(B = [0, 1], g(x) = -\sqrt{1 - x^2} \)

14. Zij \(f : A \rightarrow B \) een bijectie en neem aan dat er twee functies \(g : B \rightarrow A \) en \(h : B \rightarrow A \) bestaan met de eigenschap

 \[g(b) = a \iff f(a) = b. \]

 en

 \[h(b) = a \iff f(a) = b. \]

 voor elke \(a \in A \) en \(b \in B \). We moeten bewijzen dat \(g = h \). Zij \(b \in B \) willekeurig. Dan geldt \(f(g(b)) = b \) en ook \(f(h(b)) = b \), en dus \(g(b) = h(b) \) omdat \(f \) injectief is.

Paragraaf I.4.
Paragraaf II.1.

1. Er geldt:
\[0 + a = a = 1a = (0 + 1)a = 0a + 1a = 0a + a, \]
dus 0 = 0a.

2. Zij \(a \in \mathbb{N} \) met \(a \neq 0 \). We laten eerst zien dat ten minste één \(b \in \mathbb{N} \) bestaat met \(a = b + 1 \). Beschouw
\[A = \{0\} \cup \{n \in \mathbb{N} : \text{er is een } m \in \mathbb{N} \text{ met } n = m + 1 \}. \]
Blijkbaar \(0 \in A \). Als \(n \in A \), dan zeker \(n \in \mathbb{N} \), en dus \(n + 1 \in A \). Volgens (N2) geldt nu \(A = \mathbb{N}^1 \). Aangezien \(a \neq 0 \), en ook \(a \in A \), is er een \(b \in \mathbb{N} \) met \(a = b + 1 \).
Nu moeten we bewijzen dat ten hoogste één zo'n \(b \in \mathbb{N} \) bestaat. Neem aan dat \(a \neq 0 \), en \(a = b + 1 \) en \(a = b' + 1 \). Volgens (N3) geldt \(b + 1 = 1 + b \) en \(b' + 1 = 1 + b' \). Bijgevolg \(1 + b = 1 + b' \) en volgens (N6) geldt \(b = b' \).

Paragraaf II.2.

2. niet waar

4. Neem aan dat \(a = q' \cdot b + r' \) en \(a = q \cdot b + r \), waarbij \(q, q' \in \mathbb{Z} \) en \(r, r' \in \mathbb{N} \) met \(r < |b| \) en \(r' < |b| \). Zonder beperking der algemeenheid kunnen we ook veronderstellen dat \(r - r' \geq 0 \). Dan geldt
\[0 = a - a = (q' - q) \cdot b + (r' - r). \]
Omdat \(r < |b| \) en \(r' < |b| \) is \(r - r' \) een natuurlijk getal kleiner dan \(|b| \). Aan de andere kant is \(r - r' = (q' - q) \cdot b \) ook een veelvoud van \(b \). Hieruit volgt dat \(r - r' = 0 \) en bijgevolg \(q' - q = 0 \), oftewel \(r = r' \) en \(q = q' \).

5. als \(r = 0 \) dan is het quotiënt \(-q\) en de rest 0; als \(r > 0 \) dan is \((-q - 1)\) en de rest \(b - r \).

6. Aanwijzing: gebruik Stelling II.2.11

8. Neem aan dat \(A \) een niet-lege deelverzameling van \(\mathbb{N} \) is; we zoeken een \(n \in A \) die kleiner dan of gelijk is aan elke \(a \in A \) (dat wil zeggen, we zoeken een minimum van \(A \). Beschouw de volgende verzameling:
\[B = \{k \in \mathbb{N} : k \leq a \text{ voor alle } a \in A\}. \]
Blijkbaar \(0 \in B \). Omdat \(A \neq \varnothing \) is \(B \neq \mathbb{N} \) en uit de definitie van \(\mathbb{N} \) volgt dat er een getal \(n \in \mathbb{N} \) moet zijn met \(n \in B \) en \(n + 1 \notin B \). Hieruit volgt dat er een \(a \in A \) bestaat met \(n \leq a < n + 1 \).

Omdat er slechts één natuurlijk getal groter dan of gelijk aan \(n \) en kleiner dan \(n + 1 \) bestaat is \(a = n \). Het getal \(n \) is dus een kleinste element van \(A \). Nu bewijzen we de uniciteit. Stel dat \(x, y \in A \) met \(x \leq a \) en \(y \leq a \) voor alle \(a \in A \). In het bijzonder geldt dan \(x \leq y \) en \(y \leq x \) en dus \(x = y \).

9. (a) 17;
(b) 1;
(c) 3.

10. (a) waar;
(b) niet waar, 13.

Paragraaf II.3.

2. \((n + 1)^2\)

7. STAP 1: Het getal \(11^0 - 4^0 = 1 - 1 = 0\) is deelbaar door \(7\).

\footnote{Axioma van inductie wordt vaak gebruikt om een bewering over natuurlijke getallen te bewijzen. In Paragraaf II.3 zullen we zulke bewijzen in meer detail bestuderen.}
Stap 2: Stel dat $11^n - 4^n$ deelbaar is door 7 voor een natuurlijk getal n. Dan geldt:

$$11^{n+1} - 4^{n+1} = 11 \cdot 11^n - 4 \cdot 4^n = 7 \cdot 11^n + 4 \cdot 11^n - 4 \cdot 4^n = 7 \cdot 11^n + 4(11^n - 4^n).$$

Uit de inductieveronderstelling volgt dat $11^n - 4^n$ deelbaar is door 7, dus het getal $7 \cdot 11^n + 4(11^n - 4^n)$ is ook deelbaar door 7.

12. Neen
13. In Stap 2 moeten we bewijzen dat voor elke $n \geq 1$ geldt: 'als P_n waar is dan is ook P_{n+1} waar.' Maar de implicatie $P_1 \Rightarrow P_2$ is niet juist.

Paragraaf II.4.

8. Aanwijzing: gebruik de Stelling II.2.11.
11. (a) $\overline{1}$
 (b) $\overline{2}$
 (c) geen oplossing
 (d) twee oplossingen $\overline{3}$ en $\overline{5}$
 (e) $\overline{2}$
 (f) $\overline{25}$

12. Zij p een priemgetal. Met volledige inductie bewijzen we dat de bewering

$$\Pi^n = \Pi$$

juist is voor elke $n \in \mathbb{N}$. Aangezien $\mathbb{Z}/p\mathbb{Z} = \{\overline{0}, \ldots, \overline{p-1}\}$ is dit voldoende. De bewering is juist voor $n = 0$: $0^p = 0$ en dus $\overline{0^n} = \overline{0}$. Laat $n \in \mathbb{N}$, en neem aan dat $\Pi^n = \Pi$ in $\mathbb{Z}/p\mathbb{Z}$. Volgens het Binomium van Newton geldt

$$(n+1)^p - (n+1) = \sum_{k=0}^{p} \binom{p}{k} n^k 1^{p-k} - (n+1)$$

$$= \sum_{k=0}^{p} \binom{p}{k} n^k - (n+1)$$

$$= 1 + pn + \binom{p}{2} n^2 + \cdots + \left(\binom{p}{p-2} n^{p-2} + pn^{p-1} + n^p - (n+1)\right)$$

$$= pn + \binom{p}{2} n^2 + \cdots + \binom{p}{p-2} n^{p-2} + pn^{p-1} + (n^p - n).$$

Volgens Opgave II.3.14 (f) geldt dat $pn + \binom{p}{2} n^2 + \cdots + \binom{p}{p-2} n^{p-2} + pn^{p-1}$ deelbaar is door p, en $n^p - n$ is deelbaar door p volgens de inductieveronderstelling. We hebben bewezen dat $(n+1)^p - (n+1)$ deelbaar door p is, en dus geldt $\Pi^n = \Pi$ in $\mathbb{Z}/p\mathbb{Z}$.

Paragraaf II.5.

8. Aanwijzing: Gebruik de Archimedische eigenschap.

Paragraaf II.6.

2. (a) $\sup V = \max V = \inf V = \min V = 0$;
 (b) $\sup V = \max V = 1$, $\inf V = \min V = -1$;
 (c) $\sup V = 3$, geen maximum, geen infimum, geen minimum;
 (d) $\sup V = \max V = 1$, $\inf V = \min V = -1$;
 (e) $\inf V = 0$, geen minimum, $\sup V = \max V = 1/2$;
 (f) $\inf V = \min V = -1$, $\sup V = \sqrt{2}$, geen maximum.
4. (a) De ongelijkheden volgen rechtsreeks uit het feit dat sup V een bovengrens en inf V een ondergrens van V is.
(b) (\Rightarrow) Neem aan dat inf $V = sup V = x$. Zij $v \in V$ willekeurig, dan $x \leq v$ (want inf V is een ondergrens van V) en $x \geq v$ (want sup V is een bovengrens van V). Hieruit volgt dat $x = v$ voor elke $v \in V$ en dus $V = \{x\}$.
(\Leftarrow) Deze implicatie is duidelijk.

5. (a) waar
(b) niet waar

6. (a) waar
(b) niet waar

8. sup V

Paragraaf III.1.

1. (a) $(-1, 0)$;
(b) $(-\infty, -2) \cup \{-1\} \cup (0, \infty)$;
(c) $(-\infty, -1/4) \cup (0, \infty)$;
(d) $(-\infty, 0)$;
(e) $(-2, 0) \cup (2, \infty)$.

5. Schrijf $x = y + (x - y)$ en pas de driehoeksongelijkheid toe.

Paragraaf III.2.

4. Aanwijzing: Toon aan dat het gewicht van de brief gelijk is aan het meetkundig gemiddelde van 44.5 en 56.
9. (a) $125/27$, $x = y = z = 5/3$;
(b) 72, $x = 6$, $y = 4$, $z = 3$;
(c) $\sqrt[6]{6}$, $x = \sqrt[3]{2}/2$, $y = \sqrt[3]{3}/3$, $z = 1$.

10. (a) $a = b = c = \sqrt[5]{5}$;
(b) $a = \sqrt[3]{300}/5$, $b = \sqrt[3]{300}/3$, $c = \sqrt[3]{300}/2$;
(c) $a = \sqrt[3]{3}$, $b = 2 \cdot \sqrt[3]{1}/3$, $c = \sqrt[3]{24}$.

13. (a) 1 m breed, 2 m hoog
(b) bodem 1 m bij 1 m, 2 m hoog, 24 euro per doos

14. (a) $a_1 = a_2 = \cdots = a_n$
(b) A/n^2, $a_1 = a_2 = \cdots = a_n = A/n$

15. (a) Aanwijzing: Gebruik de Ongelijkheid van Cauchy.

Paragraaf IV.1.

1. Aanwijzing: Bewijs met volledige inductie dat $a_n = n$ als n even is, en $a_n = n - 2$ als n oneven is.
6. ten minste 35 keer
8. $\lim_{n \to \infty} a_n = 0$

12. (a) Aanwijzing: Redeneer uit het ongerijmd.

Paragraaf IV.2.

2. De rij $(y_n)_{n \geq 0}$ is begrensd. Kies $M \in \mathbb{R}_{>0}$ zodat $|y_n| \leq M$ voor alle $n \in \mathbb{N}$. Zij nu $\varepsilon \in \mathbb{R}_{>0}$. Omdat $(x_n)_{n \geq 0}$ naar 0 convergeert kunnen we een $N \in \mathbb{N}$ nemen zodat voor alle $n \in \mathbb{N}_{\geq N}$ geldt dat $|x_n| < \varepsilon/M$. Dan geldt, voor alle $n \in \mathbb{N}_{\geq N}$, dat $|x_n y_n| < \varepsilon/|M| - M = \varepsilon$.

3. Aanwijzing: Bewijs eerst dat $n^2 \leq 2^n$ geldt voor elke $n > 3$ en pas daarna de Insluitstelling toe.

4. (ii) Zij $\varepsilon > 0$ willekeurig. Kies M zo groot dat $|x_n - x| < \varepsilon|x|^2/2$ voor alle $n \geq M$. Kies $N \geq M$ zo groot dat $|x_n - x| \leq |x|/2$ voor alle $n \geq N$. Wegens

$$|x| = |x_n + (x - x_n)| \leq |x_n| + |x - x_n| \leq |x_n| + |x|/2$$
volgt dat \(|x_n| \geq |x|/2\) voor zulke \(n\). In het bijzonder is \(x_n \neq 0\) voor alle \(n \geq N\). Voor alle \(n \geq N\) geldt bovendien:

\[
\left| \frac{1}{x_n} - \frac{1}{x} \right| = \frac{|x-x_n|}{xx_n} < \frac{\varepsilon |x|^2/2}{|x| \cdot |x|/2} = \varepsilon .
\]

5. (c) niet waar
7. niet waar
13. (c) 1
14. Er geldt

\[
\exp x \cdot \exp (-x) = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \cdot \lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^n = \lim_{n \to \infty} \left(1 - \frac{x^2}{n^2} \right)^n .
\]

Als \(n > |x|\) dan is \(\delta = -x^2/n^2 > -1\) en we kunnen de Ongelijkheid van Bernoulli (Propositie IV.1.6) toepassen; we krijgen:

\[
1 \geq \left(1 - \frac{x^2}{n^2} \right)^n \geq 1 + n \cdot \left(-\frac{x^2}{n^2} \right) = 1 - \frac{x^2}{n} .
\]

De Insluitingstelling geef nu, omdat \(\lim_{n \to \infty} \left(1 - \frac{x^2}{n^2} \right) = 1\), het gewenste resultaat.

15. Aanwijzing: Bewijs eerst dat er een \(N \in \mathbb{N}\) bestaat zodanig dat \(|x_n| < 1\) voor elke \(n > N\). Pas nu de ongelijkheid van Bernoulli toe.

16. (b) Laat \(x\) en \(y\) vaste reële getallen zijn. We moeten aantonen

\[
\lim_{n \to \infty} \left(1 + \frac{x+y}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \cdot \left(1 + \frac{y}{n} \right)^n .
\]

We delen \((1 + x/n)(1 + y/n)\) door \((1 + (x+y)/n)\):

\[
\frac{(1 + \frac{x}{n})(1 + \frac{y}{n})}{1 + \frac{x+y}{n}} = \frac{(n+x)(n+y)}{n(n+x+y)} = 1 + \frac{xy}{n(n+x+y)} .
\]

Uit deze twee identiteiten en Opgave IV.2.15 volgt nu dat

\[
\frac{e^x \cdot e^y}{e^{x+y}} = \lim_{n \to \infty} \left(1 + \frac{xy}{n(n+x+y)} \right)^n = 1 .
\]

Paragraaf IV.3.

4. Aanwijzing: Voor één richting kunnen we de vorige opgave gebruiken. Voor de andere richting kunnen we raden wat de limiet moet zijn. Toon aan, redenerend uit het ongerijmde, dat dit inderdaad zo is.

6. De verzameling van alle rationale getallen is aftelbaar en dus kunnen we een aftelling \(Q = \{q_n : n \in \mathbb{N}\}\) nemen. Beschouw de rij \((q_n)_{n \geq 0}\). Zij \(x \in [0,1]\) willekeurig. Voor elke \(k \in \mathbb{N}\), \(k > 1\) kies een \(n_k \in \mathbb{N}\) met telkens \(n_k > n_{k-1}\) en zodanig dat

\[
|x - q_k| < \frac{1}{k} .
\]

Dan is \((q_{nk})_{k \geq 0}\) een deelrij van \((q_n)_{n \geq 0}\) met

\[
\lim_{n \to \infty} q_{nk} = x .
\]

7. waar

Paragraaf IV.4.

1. Aanwijzing: Bewijs eerst met volledige inductie dat voor de partiële sommen geldt

\[
s_n = (1 - a^{n+1})/(1 - a).
\]

3. (a) convergent
 (b) divergent
4. Merk eerst op dat

\[
\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^{n} \frac{1}{k!} \cdot \frac{n!}{(n-k)!n^k} < \sum_{k=0}^{n} \frac{1}{k!}
\]

dus \(e \leq \sum_{n=0}^{\infty} 1/n!\).

Neem nu \(m\) vast. Voor \(n \geq m\) geldt

\[
\left(1 + \frac{1}{n}\right)^n \geq \sum_{k=0}^{m} \frac{1}{k!} \cdot \frac{n!}{(n-k)!n^k}.
\]

Neem de limiet voor \(n \to \infty\); dan volgt \(e \geq \sum_{n=0}^{\infty} 1/n!\).

6. (a) \(34 + 2/3\)
(b) divergent
(c) divergent
(d) divergent

8. 0,166666 . . .
 0,50000 . . . = 0,499999 . . .
 1,00000 . . . = 0,999999 . . .

9. Er geldt

\[
\frac{1}{3} = \frac{1}{1 - \frac{1}{3}} = \frac{1}{4} + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^3 + \cdots = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots.
\]

Hieruit volgt dat de binaire ontwikkeling van \(\frac{1}{3}\) gegeven wordt door

\[
\frac{1}{3} = 0,0101010101 . . .
\]

10. 26

Paragraaf V.1.

1. (c) We bewijzen dat \(f\) continu is in elke \(c > 0\); als \(c < 0\) is het bewijs analoog en het geval \(c = 0\) wordt in onderdeel (a) aangetoond.

Zij \(e \in \mathbb{R}_{>0}\), we zoeken een \(\delta \in \mathbb{R}_{>0}\) zo dat voor elke \(x \in \mathbb{R}\) met \(|x - c| < \delta\) geldt

\[|x^2 - c^2| = |x + c| \cdot |x - c| = (x + c) \cdot |x - c| < 3c \cdot |x - c|,
\]

en

\[3c \cdot |x - c| < e \quad \iff \quad |x - c| < \frac{e}{3c}.
\]

Kies \(\delta = \min\{c, e/3c\}\), we moeten nu laten zien dat de zo gekozen \(\delta\) werkt.

Zij \(x \in \mathbb{R}\) met \(|x - c| < \delta\). Omdat \(\delta \leq c\) geldt er \(0 < x < 2c\), en dus

\[|x^2 - c^2| < 3c \cdot |x - c| < 3c \cdot \delta \leq 3c \cdot \frac{e}{3c} = e.
\]

3. ja

Paragraaf V.2.

Paragraaf V.3.

3. Voor iedere \(\delta \in \mathbb{R}_{>0}\) bestaan twee elementen \(x, x' \in (0, \infty)\) zodanig dat \(|x - x'| < \delta\) en \(|1/x - 1/x'| > 1\). Inderdaad, gegeven \(\delta \in \mathbb{R}_{>0}\) kiezen we \(N \geq 1\) zo groot dat \(1/N < \delta\) en nemen we \(x = 1/(N+1)\) en \(x' = 1/(N+2)\). Hieruit volgt dat de functie \(1/x\) niet uniform continu is op \((0, \infty)\).
1. Het domein van f is geen interval.

6. (a) 1, −31/64, −1

7. (a) De functie d is gegeven door $d(t) = \sqrt{(x-t)^2 + (y-f(t))^2}$. De continuïteit volgt
ommiddellijk uit de rekenregels voor de continuïteit en het feit dat de wortel-functie
continu is.

(b) $d(t) = \sqrt{(x-t)^2 + (y-f(t))^2}$

(c) Een continue functie op een gesloten interval neemt een minimum en een maximum
aan op dit interval.

(d) Zij $d(t_0)$ het minimum op $I = [x - |y - f(x)|, x + |y - f(x)|]$. Als $t \notin I$ dan
$x - t > |y - f(x)|$, dus volgens (b) $d(t) > d(x)$. Maar $d(t_0) \leq d(x)$ want $x \in I$ en $d(t_0)$
is de minimale waarde van d op I, dus er geldt ook $d(t) > d(t_0)$.

Paragraaf V.4.

4. (a) niet differentieerbaar
(b) differentieerbaar

5. (a) $1/2\sqrt{1 + x}$
(b) $1/4\sqrt{1 + \sqrt{1 + x\sqrt{1 + x}}}$
(c) $1/8\sqrt{1 + \sqrt{1 + x\sqrt{1 + x\sqrt{1 + x}}}}$

9. (i) en (ii): Deze eigenschappen volgen uit de rekenregels voor limieten. (iii) Er geldt,
voor $x \in (a, b) \setminus \{c\}$,

$$\lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} = \left(\frac{f(x) - f(c)}{x - c}\right)g(x) + f(c)\left(\frac{g(x) - g(c)}{x - c}\right),$$

zodat, met behulp van de rekenregels voor limieten,

$$\lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c}\right)g(x) + f(c)\left(\frac{g(x) - g(c)}{x - c}\right) = \frac{f'(c)g(c) + f(c)g'(c)}{x - c}.$$

(iv) Er geldt

$$\lim_{x \to c} \frac{1/g(x) - 1/g(c)}{x - c} = \lim_{x \to c} \left(\frac{g(c) - g(x)}{x - c}\right) \cdot \frac{1}{g(c)g(x)} = -g'(c) \cdot \frac{1}{(g(c))^2}.$$

10. (a) Er geldt

$$\lim_{x \to c} f(x) = \lim_{x \to c} [L(x - c) + E(x)]$$

$$= \lim_{x \to c} L(x - c) + \lim_{x \to c} E(x) = 0 + 0 = 0.$$

Verder is E is continu in het punt c, zodat $E(c) = \lim_{x \to c} E(x) = 0$. Daaruit volgt
(door invullen)

$$f(c) = L(c - c) + E(c) = 0.$$

Combineren geeft $f(c) = \lim_{x \to c} f(x)$, en dus is f continu in c.

(b) Neem, bijvoorbeeld, $E(x) = |x - c|$. Dan is $\lim_{x \to c} f(x) = 0$, maar
$f(x) = L(x - c) + |x - c|$ is niet differentieerbaar in c. Immers, linker- en
rechterafgeleiden bestaan, maar zijn niet gelijk aan elkaar.
Paragraaf VI.2.

4. Laat $t_1 < \cdots < t_N$ de nulpunten van f zijn. Omdat f differentieerbaar is op $[a, b]$, en dus op ieder van de $N - 1$ intervallen $[t_j, t_{j+1}]$, geeft de stelling van Rolle punten $s_j \in (t_j, t_{j+1})$ waarvoor $f'(s_j) = 0$ $(j = 1, \ldots, N - 1)$. Aangezien de intervallen (t_j, t_{j+1}) nergens overlappen, zijn alle s_j verschillend.

6. Aanwijzing: gebruik de middelwaardestelling.

7. (i) Kies x_0 en x_1 in $[a, b]$ met $x_0 < x_1$. Als $x_0 = x_1$ dan is dit duidelijk, dus mogen we aannemen dat $x_0 < x_1$. Volgens de Middelwaardestelling is er een punt $\xi \in (x_0, x_1)$ met de eigenschap dat

$$f'('\xi') = \frac{f(x_1) - f(x_0)}{x_1 - x_0},$$

en omdat volgens aanname $f'('\xi') \geq 0$ is, volgt hieruit dat

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} \geq 0.$$

Wegens $x_1 > x_0$ impliceert dit $f(x_1) - f(x_0) \geq 0$.

(ii) Wegens (i) is f stijgend. Stel dat f niet strikt stijgend is. Dat betekent dat er punten x_0 en x_1 in $[a, b]$ bestaan met $x_0 \neq x_1$ en $f(x_0) = f(x_1)$. Maar omdat f stijgend is volgt hieruit dat f constant is op het interval $[x_0, x_1]$. Dus is $f'('\xi') = 0$ voor alle $\xi \in (x_0, x_1)$, hetgeen in tegenspraak is met de aanname dat $f'(x) > 0$ voor alle $x \in (a, b)$.

(iii) Pas (i) toe op de functies f en $-f$.

Paragraaf VI.3.

3. (c) Aanwijzing: Vind eerst de rationele oplossingen van $f(x) = -39/32$.

5. (a) Zonder beperking der algemeenheid kunnen we aannemen dat $f'(0) > 0$. Omdat f' continu is, is er een $d > 0$ zodat $f'(x) > 0$ voor elke $x \in (-d, d)$. De functie f is dus strikt stijgend op $(-d, d)$ en we kunnen Stelling VI.3.2 toepassen.

(b) Volgens de rekenregels voor de afgeleide is f differentieerbaar in elke $x \neq 0$ met $f'(x) = 1 - 2\cos(1/x) + 4x\sin(1/x)$. Als $x = 0$ gebruiken we de definitie van de afgeleide:

$$f'(0) = \lim_{x \to 0} \frac{x + 2x^2\sin(1/x)}{x} = \lim_{x \to 0} (1 + 2x\sin(1/x)) = 1.$$

Omdat $\lim_{x \to 0} f'(x)$ niet bestaat, is f' niet continu in 0 en dus is f niet continu differentieerbaar.

We laten nu zien dat f op geen open interval rond 0 inverteerbaar is. Zij $(-d, d)$ willekeurig. Vind $k \in \mathbb{N}$ zodat $1/(2k\pi) < d$. De punten $x = 1/(2k\pi)$ en $y = 1/(2(k + 1)\pi)$ liggen in het open interval $(-d, d)$ en $f'(x) = -1$ en $f'(y) = 3$. Omdat f' continu is op (y, x) volgt er dat f niet injectief is op $(-d, d)$ (f is stijgend rond y en dalend rond x) en dus ook niet inverteerbaar.

6. Aanwijzing: Gebruik Opgave IV.2.16 en het feit dat $e^x > (1 + x/1)^1 > 1$ voor elke $x > 0$.

7. (a) Aanwijzing: voor alle $n \in \mathbb{N}_{\geq 1}$, schat $|(1 + x/n)^n - 1 - x|$ af.

(b) (c) Aanwijzing: gebruik dat voor alle $a, x \in \mathbb{R}$ geldt dat $\exp(a + x) = \exp(a)\exp(x)$ (zie Opgave IV.2.16).

Paragraaf VII.1.

4. Aanwijzing: Bedenk dat $\sum_{k=1}^{n} k^2 = n(n + 1)(2n + 1)/6$.

5. 1

8. Aanwijzing: Pas Stelling V.3.4 toe.
Paragraaf VII.2.

1. Volgens de Hoofdstelling van de Integraalrekening is de functie f differentieerbaar met afgeleide $f'(x) = 1/x$. Uit de kettingregel volgt dat de functie $g_y(x) = f(xy) - f(x) - f(y)$ eveneens differentieerbaar is met afgeleide

$$g'_y(x) = yf'(xy) - f'(x) = y \cdot \frac{1}{xy} - \frac{1}{x} = 0.$$

Voor iedere $y \in (0, \infty)$ is g_y dus constant: $g_y(x) = C_y$ voor alle $x \in (0, \infty)$. Invullen $x = 1$ geeft $C_y = g_y(1) = -f(1) = 0$ voor alle $y \in (0, \infty)$. We concluderen dat $f(xy) - f(x) - f(y) = 0$ voor alle $x, y \in (0, \infty)$.

Paragraaf VIII.1.

5. (a) niet waar
 (b) niet waar

6. (a) waar; f is de constante functie $f(x) = 1$ voor elke $x \in \mathbb{R}$
 (b) niet waar

7. (a) waar
 (b) niet waar

8. (a) waar; f is de nulfunctie
 (b) Aanwijzing: Om te bewijzen dat de rij naar de nulfunctie uniform convergeert, bepaal eerst extremen van elke f_n.

10. Aanwijzing: Bij (a), (b) en (c) gebruik Opgave VIII.1.9.
 (d) Neem $f_n, g_n : \mathbb{R} \to \mathbb{R}$ gedefinieerd als volgt: $f_n(x) = x$ en $g_n(x) = 1/n$ voor elke $n \in \mathbb{N}$ en elke $x \in \mathbb{R}$.
Index

absolute waarde, 25, 50
domein, 10
afgeleide, 86
doorsnede, 7
afdelbare verzameling, 17
driehoeksgelijkheid, 50
algorithm
euclidische, voor getallen, 27
drieproof, 41
Archimedische eigenschap, 43
equivalentieklasse, 35
eindige verzameling, 17
equivalenterelatie, 34
euclidische algoritme
voor getallen, 27
exponeentiële functie, 63, 64
faculteit, 113
fijnere partitie, 97
foutterm, 87
functie, 10
beeld van, 11
bijjectieve functie, 11
begrensd, 97
bijjectief, 11
continu, 74
continu differentieerbaar, 102
continu in een punt, 74
dalend, 83
differentieerbaar, 86
exponentiële, 63, 64
identieke, 13
injectief, 11
inverse, 14
limiet, 77
linkcontinu, 74
linkerafgeleide, 89
linkerlimiet, 77
Lipschitz continu, 76
oneven, 101
rechterafgeleide, 89
rechterlimiet, 77
rechtscontinu, 74
recursieve definitie, 112
Riemann-integreerbaar, 99
stijgend, 83
strikt dalend, 83
strikt stijgend, 83
surjectief, 11
uniform continu, 80
Fundalementale Eigenschap van \mathbb{R}, 46
gelijkmachtige verzamelingen, 17
geordend lichaam, 43

dalende rij, 62
decimaalontwikkeling, 72
decidriek, 57
decelverzameling, 4
deler, 25
grootste gemene deler, 26
disjuncte verzamelingen, 7
divergent
reeks, 70
rij, 58
domein, 10
doorsnede, 7
Driehoeksgelijkheid, 50
drieproof, 41
eindige verzameling, 17
equivalentieklasse, 35
equivalenterelatie, 34
Euclidische algoritme
voor getallen, 27
exponentiële functie, 63, 64
faculteit, 113
fijnere partitie, 97
foutterm, 87
functie, 10
beeld van, 11
bijjectieve functie, 11
begrensd, 97
bijjectief, 11
continu, 74
continu differentieerbaar, 102
continu in een punt, 74
dalend, 83
differentieerbaar, 86
exponentiële, 63, 64
identieke, 13
injectief, 11
inverse, 14
limiet, 77
linkcontinu, 74
linkerafgeleide, 89
linkerlimiet, 77
Lipschitz continu, 76
oneven, 101
rechterafgeleide, 89
rechterlimiet, 77
rechtscontinu, 74
recursieve definitie, 112
Riemann-integreerbaar, 99
stijgend, 83
strikt dalend, 83
strikt stijgend, 83
surjectief, 11
uniform continu, 80
Fundalementele Eigenschap van \mathbb{R}, 46
gelijkmachtige verzamelingen, 17
geordend lichaam, 43
getal
- negatief, 42
- positief, 42
grafiek, 10
grootste gemene deeler, 26
grootste ondergrens, 45
harmonische reeks, 72
Hoofdstelling van de Integraalrekening, 102

infimum, 45
injectieve functie, 11
Insluistelling, 61
integraal, 99
interval, 4
- begrensd, 4
- gesloten, 4
- halfgesloten, 4
- halfopen, 4
- onbegrensd, 4
- open, 4
inverse
- van een functie, 14
- beeld, 14
Inverse Functiestelling
- continue versie, 93
- differentieerbare versie, 93

Kettingregel, 88
Kleine Stelling van Fermat, 41
kleinst bovengrens, 45

lege verzameling, 3
lichaam, 43
goedend, 43
limiet
- van een functie, 77
- van een rij, 58
limietfunctie, 105
lim inf, 66
lim sup, 66
linearisering, 87
linkerafgeleide, 89
linkerlimiet, 77
linkscontinue functie, 74
Lipschitz continu, 76
logaritme, 95
maaswijdte van een partitie, 97
machtssverzameling, 6
majorantie-minorantie kenmerk, 71
maximum, 46
meetkundig gemiddelde, 52
meetkundige reeks, 70
Middelwaardegelijkheid, 91
Middelwaardestelling, 90
minimum, 46
Monotone Convergentiestelling, 63
monotone rij, 62

natuurlijke logaritme, 95
negentroef, 38
nulpunt, 82
Nulpuntstelling, 82
ondergrens, 45
grootste, 45
onderintegraal, 98
ondersom, 98
ongelijkheid
- van Cauchy, 53
- van rekenkundig en meetkundig
gemiddelde, 52
Ongelijkheid van Bernoulli, 58
open deelverzameling van \(\mathbb{R} \), 86
origineel, 10
overaftelbare verzameling, 17

paradox
- van Berry, 2
- van Russell, 2
partitië integreeren, 104
partitie, 97
- bovensom bij, 98
- fijner, 97
maaswijdte, 97
- ondersom bij, 98
- strooing bij, 98
primgetal, 26
product, Cartesisch, 5
puntsgewijze convergentie, 105

quotiënt bij deling, 25
quotiënt naar equivalenterelatie, 36
quotiëntafbeelding, 36

rechterafgeleide, 89
rechterlimiet, 77
rechtsscontinue functie, 74
reeks, 57
- convergent, 70
- divergent, 70
- harmonisch, 72
- meetkundig, 70
reeks van een rij, 70
reflexieve relatie, 34
rekenkundig gemiddelde, 52
relatie, 34
- reflexief, 34
- symmetrisch, 34
- transitief, 34
relatief priem, 26
rente, 52
rest bij deling, 25
reële getallen
- constructie, 68
Riemann-integraal
- definitie, 99
Riemann-integreerbaarheid, 99
Riemann-som, 98

124 INDEX
rij, 12, 57
begrensd, 62
Cauchy-rij, 67
convergent, 58
dalend, 62
divergent, 58
limiet, 58
monotoon, 62
som van, 70
stijgend, 62
strikt dalend, 62
strikt stijgend, 62

samenstelling, 13
som van een rij, 70

stelling
Binomium van Newton, 31
Driehoeksongelijkheid, 50
Hoofdstelling van de
Integraalrekening, 102
Insluitstelling, 61
Inverse Functiestelling
continue versie, 93
differentieerbare versie, 93
Kettingregel, 88
Kleine stelling van Fermat, 41
majorantie-minorantie kenmerk,
71
middelwaardeongelijkheid, 91
Middelwaardestelling, 90
Monotone Convergentiestelling, 63
Nulpuntstelling, 82
Ongelijkheid van Bernoulli, 58
Ongelijkheid van Cauchy, 53
Ongelijkheid van Rekenkundig en
Meetkundig Gemiddelde, 52
substitutieregel, 103
Tussenwaardestelling, 82
van Bolzano-Weierstrass, 68
van Rolle, 90
Volledigheidsstelling, 67
wel-ordingen van N, 25

stijgende rij, 62
strikt dalende rij, 62
strikt stijgende rij, 62
strooiing, 98
Substitutieregel, 103
supremum, 45
surjectieve functie, 11
symmetrische relatie, 34

transitieve relatie, 34
Tussenwaardestelling, 82

uniform continue functie, 80
uniforme convergentie, 106

verdichtingspunt, 77
vereniging, 7
verschil, 7

verzameling
aftelbaar, 17
aftelbaar oneindig, 17
begrensd, 45
complement, 7
eindig, 17
leeg, 3
machtsverzameling, 6
naar beneden begrensd, 45
naar boven begrensd, 45
overaftelbaar, 17

verzamelingen
Cartesisch product, 5
disjunct, 7
doorsnede, 7
gelijkmachtig, 17
vereniging, 7
verschil, 7
Volledigheidsstelling, 67

wetten van de Morgan, 9

wortel
\(n \)-de machtswortel, 54