CLASSIFICATION OF VECTOR BUNDLES ON \mathbb{P}^1

ILA VARMA

Abstract. Last time we saw the classification of projective modules over Dedekind domains. We now consider the geometric analogue, classifying projective \mathcal{O}_X-modules over smooth projective curves, in particular, when $X = \mathbb{P}^1$.

Let X/k be an irreducible smooth projective curve over the algebraically closed field k. We can produce an open affine cover of X by taking out a k-rational point from X. Denote this point $\infty \in X(k)$, and let $U = X - \{\infty\}$. Note that $U = \text{Spec} \mathcal{O}_X(U)$ and $\mathcal{O}_X(U)$ is a Dedekind domain. We want to classify locally free \mathcal{O}_X-modules \mathcal{E} of rank r, $r > 0$. There is an intrinsic way of decomposing \mathcal{E} using line bundles (the analogue of invertible fractional ideals in the algebraic case) known as the Harder-Narasimhan filtration. Here, we discuss the simplified case of $X = \mathbb{P}^1$ and the classification of vector bundles over X via linear algebra.

Theorem 1 (Grothendieck). A vector bundle of rank r over the projective line \mathbb{P}^1 can be decomposed into r line bundles uniquely up to isomorphism.

If we let \mathcal{E} be a vector bundle of rank r, with \mathcal{O}_X the usual sheaf of functions on $X = \mathbb{P}^1$, then we can write our line bundles as the invertible sheaves $\mathcal{O}_X(n)$ with $n \in \mathbb{Z}$. Thus, the decomposition can be stated as

$$\mathcal{E} \cong \oplus_{i=1}^n \mathcal{O}(n_i) \quad n_1 \geq ... \geq n_r.$$

If we use the usual open cover of \mathbb{P}^1 with two affine lines $U_0 = \mathbb{P}^1 - \{\infty\}$ and $U_1 = \mathbb{P}^1 - \{0\}$, note that $\mathcal{O}_{U_0 \cap U_1} = k[x, x^{-1}]$ (with $\mathcal{O}_{U_0} = k[x]$ and $\mathcal{O}_{U_1} = k[x^{-1}]$). A vector bundle (up to isomorphism) \mathcal{E} of rank n is then a linear automorphism on $\mathcal{O}_{U_0 \cap U_1}$ modulo automorphisms of each \mathcal{O}_{U_i} for $i = 0, 1$. (Using the definition given in Hartshorne II.5.18 where $A = k[x, x^{-1}]$, the linear automorphisms are $\psi_i^{-1} \circ \psi_0$ where $\psi_i : \mathcal{O}_{U_i} \rightarrow \mathcal{E}|_{U_i}$ are isomorphisms, and the definition of isomorphism of vector bundles allows us to change bases of \mathcal{O}_{U_i}.)

Thinking of this in linear algebra terms, these linear automorphisms on $\mathcal{O}_{U_0 \cap U_1}$ are elements of $GL_r(k[x, x^{-1}])$, and changing coordinates in \mathcal{O}_{U_i} are elements of $GL_r(k[x])$ for $i = 0$ and $GL_r(k[x^{-1}])$ for $i = 1$. Thus up to isomorphism, the vector bundles of rank r on \mathbb{P}^1 are elements of the double quotient

$$GL_r(k[x^{-1}]) \backslash GL_r(k[x, x^{-1}]) / GL_r(k[x]).$$

The decomposition of vector bundles into line bundles should mean that these double cosets can be represented by diagonal matrices where the ith entry on the diagonal corresponds to the line bundle $\mathcal{O}(n_i)$ in the decomposition above.

Theorem 2. For every matrix M in $GL_r(k[x, x^{-1}])$, there exists a matrix $P \in GL_r(k[x])$ and $Q \in GL_r(k[x^{-1}])$ such that

$$QMP = \begin{pmatrix} x^{n_1} & 0 & \cdots & 0 \\ x^{n_2} & \ddots & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & x^{n_r} \end{pmatrix} \quad n_1 \geq n_2 \geq ... \geq n_r$$

[Note: For the affine case, taking the double quotient

$$GL_n(k[x]) \backslash M_{n,m}(k[x]) / GL_m(k[x]).$$]
gives the classification of vector bundles over A_k (and of course, when replacing $k[x]$ with an arbitrary PID, gives the usual structure theorem of finitely generated modules over PID).

Proof. We prove this by induction. For $r = 1$, note that $GL_1(k[x]) = GL_1(k[x^{-1}]) = k^\times$, and $GL_1(k[x,x^{-1}]) = \{ux^n : u \in k^\times, n \in \mathbb{Z}\}$, thus take $Q = u^{-1}$.

Now consider $r > 1$. In the double quotient above, note that matrices are equivalent under row operations with elements of $k[x^{-1}]$ and column operations with elements of $k[x]$.

Multiply M with elements of m nonzero entry as the g.c.d. in suitable power of ux.

Now consider $r > 1$. In the double quotient above, note that matrices are equivalent under row operations with elements of $k[x^{-1}]$ and column operations with elements of $k[x]$.

Multiply M by x^n, $n \in \mathbb{Z}_{\geq 0}$ such that $M' = x^n M$ has entries in $k[x]$. Note that by doing column operations on M' with elements of $k[x]$, we can sequentially eliminate entries of the first row, being left with the only nonzero entry as the g.c.d. in $m'_{1,1}$. Note that the determinant of M is a unit in $k[x,x^{-1}]$, hence it must be ux^s with $u \in k^\times$. Thus, we can get a matrix of the form

$$\begin{pmatrix}
 x^k & 0 & \ldots & 0 \\
 m'_{2,1} & m'_{2,2} & \ldots & m'_{2,r} \\
 \vdots & \vdots & \ddots & \vdots \\
 m'_{r,1} & m'_{r,2} & \ldots & m'_{r,r}
\end{pmatrix}$$

which is equivalent to M'.

Consider the $(r - 1) \times (r - 1)$ minor of M' not containing $m'_{1,1}$. We know by induction that there exists P_{r-1} and Q_{r-1} such that

$$P_{r-1} M'_{r-1} Q_{r-1} = \begin{pmatrix}
 x^{k_2} & 0 \\
 x^{k_3} & \ddots \\
 0 & \ddots & x^{k_r}
\end{pmatrix}$$

where $P_{r-1} \in GL_{r-1}(k[x])$ and $Q_{r-1} \in GL_{r-1}(k[x^{-1}])$. Note that because we multiplied M originally by a suitable power of x, $k_2, \ldots, k_r \in \mathbb{Z}_{\geq 0}$. Thus, acting on M' gives P_{r-1} and Q_{r-1} gives

$$\begin{pmatrix}
 1 & 0 \\
 0 & Q_{r-1}
\end{pmatrix} M' \begin{pmatrix}
 1 & 0 \\
 0 & P_{r-1}
\end{pmatrix} = \begin{pmatrix}
 x^k & m'_{2,1} x^{k_2} & \ldots & m'_{r,1} x^{k_r} \\
 m'_{3,1} x^{k_2} & \ddots & \vdots & \vdots \\
 \vdots & \ddots & 0 & \ddots \\
 m'_{r,1} & \ldots & m'_{r,1} & x^{k_r}
\end{pmatrix}$$

where $m'_{2,1}, \ldots, m'_{r,1} \in k[x,x^{-1}]$. We can subtract $k[x^{-1}]$-multiples of the first row from the 2nd thru rth row, hence we can force $m'_{2,2}, \ldots, m'_{r,1}$ to be elements in $x^{k+1}k[x]$. Furthermore, subtracting $k[x]$-multiples of the 2nd thru rth columns from the first column forces $m'_{2,i}$ to have degree less than k_i for all $i \in 2, \ldots, r$. Thus, if $k \geq k_i$ for all i, we can eliminate each $m'_{2,1}, \ldots, m'_{r,1}$ and get the diagonal matrix as needed.

Assume $k < k_i$ for some i. As noted earlier, we can find an element $c(x^{-1})$ of $k[x^{-1}]$ such that

$$m'_{i,1} - c(x^{-1}) x^k = x^{k+1} d(x) \in x^{k+1} k[x].$$

Switch the ith row with the first row. Note that the gcd of the two elements in the new first row has degree strictly greater than k. As in the first step, we replace the first row, first column entry with the gcd and eliminate the other non-zero entry in the first row. We have a matrix now where $m'_{1,1}$ is a power of x which has strictly increased. However, the degree of $m'_{1,1}$ is bounded by the degree of the determinant of $x^n M$. Thus, consider the set of all matrices with only nonzero elements in the first column and diagonal that are equivalent to M'. Note that the determinant of M' is a unit times a nonnegative power of x, thus k is bounded above. Furthermore, since $k > 0$, we can find a matrix in this form which has maximal k, i.e. the degree of $m'_{1,1}$ cannot be increased. With this matrix, there cannot exist an element $c(x^{-1})$ such that $m'_{i,1} - c(x^{-1}) x^k = x^{k+1} d(x) \in x^{k+1} k[x]$, otherwise we can do the above trick. Thus, $k \geq k_i$ for all i and we
can eliminate each $m'_{2,i}, \ldots, m'_{r,i}$. Thus, we have found a matrix

$$M' \sim \begin{pmatrix} x^{k_1} & 0 \\ x^{k_2} & \ddots \\ 0 & \cdots & x^{k_r} \end{pmatrix} \quad \Rightarrow \quad M \sim \begin{pmatrix} x^{k_1-n} & 0 \\ x^{k_2-n} & \ddots \\ 0 & \cdots & x^{k_r-n} \end{pmatrix}.$$

We can rearrange such that $n_1 = k_1 - n \geq \ldots \geq n_r = k_r - n$.

\square