Finiteness of Symmetric Ideals

Duong Hoang Dung

1 Introduction

It is well-known by Hilbert’s Basis Theorem that if A is a Noetherian ring, then the ring $A[x]$ of polynomials in one variable x and coefficients from A is also Noetherian. We find by induction that the polynomial ring $R = A[x_1, x_2, \cdots, x_n]$ in finitely many variables is Noetherian. Moreover the notion of Grobner Basis allows us to do effective computations in R/I, where I is an ideal in S.

The situation changes dramatically when one considers polynomial rings in infinitely variables. For instance, the ring $A[x_1, x_2, \cdots]$ is not Noetherian, since the ideal (x_1, x_2, \cdots) does not have a finite set of generators.

However, if we have some special action of some special group on the ring R, we may occur finitely generation of invariant ideals. Indeed, if we let $X = \{x_1, x_2, \cdots\}$, and let $G = \text{Sym}(X)$ be the group of permutations of X. The group G acts on R in a natural way: if $\sigma \in G$ and $f \in R = A[x_1, x_2, \cdots, x_n]$, where $x_i \in X$, then

$$\sigma f(x_1, \cdots, x_n) = f(\sigma x_1, \cdots, \sigma x_n) \in R$$

and this in turn gives R the structure of a left module over the left group ring $R[G] = \{\sum_{i=1}^{m} r_i \sigma_i : r_i \in R, \sigma_i \in G\}$ with multiplication given by $f \sigma g \tau = (f \sigma(g)) (\sigma \tau)$ for all $f, g \in R, \sigma, \tau \in G$. An ideal $I \subseteq R$ is called invariant under G if

$$GI := \{\sigma f : \sigma \in G, f \in I\} \subseteq I$$

Notice that invariant ideals are simply the $R[G]$—submodules of R. We have the main theorem accordingly to Aschenbrenner and Hillar ([1]) as follows:

In this talk, we will try to understand the proof of the theorem by replacing a field K for the Noetherian ring A due to the talk of J.Draisma ([3]). We first start by introducing some basic notions of well-partial-ordering, in particular the shift-ordering on monomials in $K[X]$ in section 2. Next we going to prove in section 3 the main (reduced—) theorem. Finally, we close the talk in section
4 by showing some more results related to the main theorem, and some other questions as well.

2 Well-partial-odering

2.1 Preliminaries

A quasi-ordering on a set S is a binary relation \leq on S which is reflexive and transitive. A quasi-ordered set is a pair (S, \leq) consisting of a set S and a quasi-ordering. If in addition, the relation \leq is anti-symmetric then \leq is called partial ordering on the set S. A trivial ordering on S is given by $s \leq t \iff s = t$ for all $s, t \in S$. A quasi-ordering \leq on S induces a partial ordering on the set $S/\sim = \{s/\sim: s \in S\}$ of equivalence classes of the equivalence relation $s \sim t \iff s \leq t \land t \leq s$ on S.

An antichain of S is a subset $A \subseteq S$ such that $s \not\leq t$ and $t \not\leq s$ for all $s \not\sim t$ in A. A final segment of a quasi-ordered set (S, \leq) is a subset $F \subseteq S$ which is closed upwards : $s \leq t \land s \in F \Rightarrow t \in F$.

A quasi-ordered set S is said to be well-founded if there is no infinite strictly decreasing sequence $s_1 > s_2 > \cdots$ in S, and well-quasi-ordered (well-partial-ordered if in addition every antichain of S is finite. An infinite sequence s_1, s_2, \cdots in S is called good if $s_i \leq s_j$ for some indices $i < j$, and bad otherwise. We have the following characterization of well-partial-orderings as follows (see [4]).

Proposition 2.1 The following are equivalent, for a quasi-ordered set S:

1. S is well-partial-ordered.
2. Every infinite sequence in S is good.
3. Every infinite sequence in S contains an infinite increasing subsequence.
4. Any final segment of S is finitely generated.
5. $(F(S), \supseteq)$, where $F(S)$ is the set of final segments of S, is well-founded (i.e., the ascending chain condition holds for final segments of S).

Let (S, \leq_S) and (T, \leq_T) be quasi-ordered, the cartesian product $S \times T$ can be turned into a quasi-ordered set by using the cartesian product of \leq_S and \leq_T:

$$(s, t) \leq (s', t') :\iff s \leq_S s' \land t \leq_T t', \quad \text{for } s, s', t, t' \in T$$

From the proposition 2.1 we easily obtain that the cartesian product of two well-partial-ordered sets is again well-partial-ordered.

Of course, the total ordering \leq is well-partial-ordered if and only if it is well-founded, in this case \leq is called well-ordering.
2.2 Setting up

In this talk, we simply consider the ring $R = \mathbb{C}[x_0, x_1, \ldots]$ of polynomials in infinitely indeterminates x_0, x_1, \ldots.

Definition 2.2 For any map $\pi : \mathbb{N} \to \mathbb{N}$ and $r \in R$, we write πr for the image of r under the homomorphism $R \to R$ sending x_i to $x_{\pi i}$.

Definition 2.3 We define an order \preceq on monomials in x_0, x_1, \ldots as follows: it is the smallest relation on monomials satisfying $1 \preceq 1$ and $u \preceq v \implies u \preceq x_0^a \sigma v$ and $x_0^a \sigma u \preceq x_0^b \sigma v$ for all u, v and $0 \leq a \leq b$. Here, as in the rest of this talk, $\sigma : \mathbb{N} \to \mathbb{N}, i \mapsto i + 1$.

Definition 2.4 For u a monomials we write $|u|$ for the largest i such that x_i appears in u. For $u = 1$ we write $|u| = -\infty$.

Lemma 2.5 $u \preceq v$ if and only if there is an increasing map $\pi : \{0, \ldots, |u|\} \to \mathbb{N}$ such that πu divides v.

Proof. (\Rightarrow) Follows by induction: If π does the trick for $u \preceq v$, i.e. we have $\pi u \preceq v$, then $\sigma \pi$ does the trick for $u \preceq v$ since $\pi u \preceq v$. Then the map $\varphi : \{0, \ldots, |u|\} \to \mathbb{N}$ defined as follows does the trick for $x_0^a u \preceq x_0^b v$, where $0 \leq a \leq b$.

(\Leftarrow) From the increasing map π as above. We easily construct a sequence of relations that deduce $u \preceq v$ from $1 \preceq 1$. For example, for $u = x_0^a_0 x_1^a_1 x_2^a_2$, $|u| = 2$, and π is defined as

$$\pi(0) = 5, \pi(1) = 9, \pi(2) = 11$$

So $\pi u = x_0^{a_0} x_1^{a_1} x_2^{a_2}$. Since $\pi(2) = 11$, then $|u| \geq 11$, we may assume

$$v = x_0^{b_0} x_1^{b_1} \cdots x_{12}^{b_{12}}$$

where $a_0 \leq b_5, a_1 \leq b_9, a_2 \leq b_{11}$ because $\pi u \preceq v$. From $1 \preceq 1$, we have the following procedure to create the sequence as required:

1. $1 \preceq 1$
2. $1 \preceq x_0^{b_{12}}$
3. $x_0^{a_2} \preceq x_0^{b_{10}} x_1^{b_{12}} x_2^{b_{12}}$ (apply $x_0^a \sigma u \preceq x_0^b \sigma v$)
4. $x_0^{a_2} \preceq x_0^{b_{10}} x_1^{b_{12}} x_2^{b_{12}}$ (apply $u \preceq x_0^b \sigma v$)
5. $x_0^{a_2} x_1^{a_2} \preceq x_0^{b_9} x_1^{b_9} x_2^{b_{11}} x_3^{b_{12}}$ (apply $x_0^a \sigma u \preceq x_0^b \sigma v$)

Continuing this procedure, we obtain $u \preceq v$ as required. \blacksquare
Remark 2.6 This lemma implies that \(\lesssim \) is a partial order.

Reflexive: \(u \lesssim u \) by the identity map.

Transitive: Assume that \(u \lesssim v \) via \(\pi \) and \(v \lesssim w \) via \(\chi \pi \), since the composition of two increasing maps is an increasing map, and \(\pi u|v|, \chi v|w| \), so \(\chi \pi u|\chi v|w \).

Anti-symmetric: Assume that \(u \lesssim v \) via \(\pi \), and \(v \lesssim \) via \(\chi \). Then \(\pi \chi v|v \) and \(\chi \pi u|u \) which imply that \(\chi \pi \) and \(\pi \chi \) are identities, hence \(u \approx v \).

Proposition 2.7 The partial order \(\lesssim \) does not have infinite antichains.

Proof. Suppose that there exists infinite antichains, then there exists an infinite never-increasing sequence (by proposition 2.1)

\[
u_1, u_2, \cdots, u_n, \cdots
\]

that is the sequence such that \(u_i \not\lesssim u_j \) for all \(i < j \). Moreover, we may take such a sequence with the additional property that \(|u_n| \) is minimal among all \(u_n \) such that \(u_1, \cdots, u_n \) can be extended to an infinite never-increasing sequence.

For all \(i \) let \(a_i \) be the exponent of \(x_0 \) in \(u_i \). Now there is an infinite sequence \(1 \leq i_1 < i_2 < \cdots \) such that

\[
a_{i_1} \leq a_{i_2} \leq \cdots
\]

(take \(i_1 \) such that \(a_{i_1} \) is minimal, then take \(i_2 > i_1 \) such that \(a_{i_2} \) is minimal, etc.). But then consider the antichain

\[
u_1, \cdots, u_{i_1-1}, u_{i_1}, u_{i_2}, \cdots
\]

Let \(\alpha \) be the homomorphism that sends \(x_{i+1} \) to \(x_i \) for \(i \geq 0 \) and send 0 to 1. Consider the sequence

\[
u_1, \cdots, u_{i_1-1}, \alpha(u_{i_1}), \alpha(u_{i_2}), \cdots
\]

By the minimality of \(|u_{i_1}| \), this sequence is not never-increasing. Hence either there exist \(i < i_1 \) and \(j \geq 1 \) such that

\[
u_i \not\lesssim \alpha(u_j)
\]

or there exist \(1 \leq j \leq k \) such that

\[
\alpha(u_j) \not\lesssim \alpha(u_k)
\]

But in the first case we have

\[
u_i \not\lesssim u_j
\]

by the first inductive property of \(\lesssim \), and in the second case we have

\[
u_{i_j} \geq u_{i_k}
\]

by the second inductive property of \(\lesssim \) and the fact that \(a_{i_j} \leq a_{i_k} \). We get a contradiction, hence the proposition is proved. ■
3 Proof of the main theorem

Theorem 3.1 Let $G = \text{Sym}(\mathbb{N})$ act on the algebra $R = \mathbb{C}[x_0, x_1, \cdots]$ by permutations. Then any G–stable ideal I of R is finitely generated as G–stable ideal, that is, there exists finitely many $f_1, \cdots, f_k \in I$ such that I is the smallest G–stable ideal containing f_1, \cdots, f_k.

Proof. Let I be a G–stable ideal. To any $f \in R$ we associate its leading monomial $lm(f)$ in the lexicographic order, where $x_1 < x_2 < \cdots$. Now consider the set M of all \preceq–minimal elements of the set $\{lm(f) : f \in I\}$. This is an antichain by definition, hence finite by the proposition 2.7. So there exist (monic) $f_1, \cdots, f_k \in I$ such that $M = \{lm(f_1), lm(f_2), \cdots, lm(f_k)\}$. We claim that I equals the smallest G–stable ideal J containing f_1, \cdots, f_k.

Suppose that I contains a monic counterexample $f \notin J$. We may assume that $lm(f)$ lexicographically minimal among counterexamples (since the lexicographic order is a well-ordered). By construction, there exists an i such that $lm(f_i) \preceq lm(f)$. Set $n = |lm(f_i)|$ and let $\pi : \{1, \cdots, n\} \to \mathbb{N}$ be increasing such that $\pi(lm(f_i)) | lm(f)$, say $lm(f) = u\pi lm(f_i)$. Then $\pi(f_i) \in J$ by G–stability, and

$$f' := f - u\pi(f_i) \notin J$$

We claim that the $lm(f')$ is lexicographically smaller than $lm(f)$, contradicting the minimality of the latter. But this is clear from $lm(\pi(f_i)) = \pi(lm(f_i))$, so that $lm(\pi(f_i)) = u\pi(lm(f_i)) = lm(f)$.

Comment 3.2 In the main theorem due to Aschenbreiner and Hillar, we consider the case $R = A[X]$ where A is the Noetherian ring, and the proof is a bit different, since we can not choose the monic polynomials f_1, \cdots, f_k as above. But now then we use the Noetherianity of the ring A to create the finite set of coefficients serving for our proof along with defining a new order on monomials by attaching the old-ordering with conditions on ideals of coefficients $J_u = \{a \in A : a = lc(g), g \in I, lm(g) = u\}$ ([1]).

4 Further

For $r \in \mathbb{N}$, let $[r] = \{1, 2, \cdots, r\}$, we consider the action of Π on $K[X_{[r] \times \mathbb{N}}]$ by its action on the second index of the indeterminates $X_{[r] \times \mathbb{N}}$:

$$\pi x_{i,j} := x_{i,\pi(j)}, \quad \pi \in \Pi$$

We have the following result

Theorem 4.1 The column-wise lexicographic term order $x_{i,j} \preceq x_{k,l}$ if $j < l$ or $(j = l \land i \leq k)$ is well-partial-order with respect to Π, and the ring $K[X_{[r] \times \mathbb{N}}]$
is \(\Pi\)-Noetherian.

So when \(r = 1\), we certainly have the case above. But when \(r = \infty\), which means we consider the ring \(K[N \times N]\) with the action of \(G = \text{Sym}(N)\) by permuting the indices simultaneously (i.e. \(\pi_{i,j} = x_{\pi(i),\pi(j)}\)), then \(R\) is not \(G\)-Noetherian. We may obtain the result by constructing the bad sequence of monomials as follows:

\[
\begin{align*}
s_3 & = x_{(1,2)}x_{(3,2)}x_{(3,4)} \\
s_4 & = x_{(1,2)}x_{(3,2)}x_{(4,3)}x_{(4,5)} \\
s_5 & = x_{(1,2)}x_{(3,2)}x_{(4,3)}x_{(5,4)}x_{(6,7)} \\
& \quad \vdots \\
s_n & = x_{(1,2)}x_{(3,2)}x_{(4,3)} \cdots x_{(n,n-1)}x_{(n,n+1)} \\
& \quad \vdots
\end{align*}
\]

For any \(n < m\) and any \(\sigma \in G\), the monomial \(\sigma s_n\) does not divide \(s_m\). Otherwise, notice that \(x_{(1,2)}x_{(3,2)}\) is the only pair of indeterminates which divides \(s_n\) or \(s_m\) and has form \(x_{(i,j)}x_{(i,j)}\). Therefore \(\sigma(2) = 2\), and either \(\sigma(1) = 1, \sigma(3) = 3\) or \(\sigma(3) = 1, \sigma(1) = 3\). But since 1 does not appear as the second component of a factor \(x_{(i,j)}\) of \(s_m\), we have \(\sigma(1) = 1, \sigma(3) = 3\). Since \(x_{(4,3)}\) is the only indeterminate dividing \(s_n\) or \(s_m\) of the form \(x_{(1,3)}\), we get \(\sigma(4) = 4\). Since \(x\) if the only indeterminate dividing \(s_n\) or \(s_m\) of the form \(x_{(1,4)}\), we get \(\sigma(5) = 5\), etc. So we get \(\sigma(i) = i\) for all \(i = 1, 2, \ldots, n\). But the only indeterminate dividing \(s_m\) of the form \(x_{(n,j)}\) is \(x_{(n,n-1)}\), hence the factor \(\sigma x_{(n,n+1)} = x_{n,\sigma(n+1)}\) of \(\sigma s_n\) does not divide \(s_m\). This shows that \(s_3, s_4, \cdots\) is a bad sequence, as required.

Remark 4.2 In fact, \(R = K[N \times N \times \cdots \times N]\), with \(k\) indices \(N\), is not \(G\)-Noetherian for all \(k \geq 2\). Indeed, if we denote \(R(k)\) the ring \(K[N \times N \times \cdots \times N]\) in \(k\) indices, then

\[x_{u_1, \ldots, u_k, u_{k+1}} \mapsto x_{u_1, \ldots, u_k}\]

defines the surjective \(K\)-algebra homomorphism \(\pi_k : R^{(k+1)} \to R^{(k)}\) with invariant kernel. Hence if \(R^{(k+1)}\) is \(G\)-Noetherian, then so is \(R^{(k)}\).

However, if we let \(R_{\leq d}\) denote the \(G\)-module of polynomials of degree at most \(d\), we do have the following result ([3])

Lemma 4.3 The \(G\)-module \(R_{\leq d}\) is Noetherian, i.e., every \(G\)-submodule of it is finitely generated.
References

