Problems

On the discrete logarithm system

Problem 1.1
Users A and B want to use the Diffie-Hellman to fix a common key over a public channel. They use \(\mathbb{GF}(p) \), with \(p = 541 \) and primitive element \(\alpha = 2 \).
User B makes \(c_B = 123 \) public. If \(m_A = 432 \), what will be the common key \(k_{A,B} \) that A and B use for their communication?

Problem 1.2
Demonstrate the special case version of the Pohlig-Hellman algorithm, that computes logarithms in finite fields of size \(q = 2^n + 1 \), by evaluating \(\log_{3} (142) \) in \(\mathbb{GF}(257) \).

Problem 1.3
Find a solution of \(\log_{44} 55 \) in \(\mathbb{GF}(197) \) by means of the Baby-Step Giant Step method, when only 15 field elements can be stored.

Problem 1.4
Check that \(\alpha = 662 \) is a primitive 2003-th root of unity in \(\mathbb{GF}(4007) \) (note that 4007 is a prime number). Let \(G \) be the multiplicative subgroup \(G \) of order 2003 in \(\mathbb{GF}(4007) \) generated by \(\alpha \).
Check that 2124 is an element of \(G \).
Determine \(\log_{662} 2124 \) by the Pollard-\(\rho \) method.

Problem 1.5
Check that \(g = 996 \) is a generator of the multiplicative group \(\mathbb{Z}_{4007}^* \). Set up the index-calculus method with a factor base of size 6 and determine \(\log_{996} 1111 \).

On elliptic curve cryptosystems

Problem 2.1
How many points lie on the elliptic curve defined by the equation \(y^2 = x^3 + \alpha x + 1 \) over \(\mathbb{GF}(2^4) = \mathbb{GF}(2)[\alpha] / (1 + \alpha^3 + \alpha^4) \)?

Problem 2.1
Find the intersection points over \(\mathbb{Z}_{31} \) of the lines \(y = 4x + 20 \) and \(y = 4x + 21 \) with the elliptic curve \(y^2 = x^3 + 25x + 10 \).

Problem 2.3
Consider the elliptic curve \(\mathcal{E} \) defined by \(y^2 = x^3 + 11x^2 + 17x + 25 \) over \(\mathbb{Z}_{31} \).
Check that the points \(P = \{12, 10\} \) and \(Q = \{25, 14\} \) lie on \(\mathcal{E} \). What is \(-P \)? Compute the sum of \(P \) and \(Q \) without using the Mathematica procedure presented before.

Problem 2.4
Consider (again) the elliptic curve \(\mathcal{E} \) defined by \(y^2 = x^3 + 11x^2 + 17x + 25 \) over \(\mathbb{Z}_{31} \).
Determine the orders of \(P = \{27, 10\} \) and \(Q = \{24, 28\} \). What can you conclude about the cardinality of \(\mathcal{E} \)?
What is the cardinality of \mathcal{E}?
Construct a point of maximal order from P and Q.