## **EXERCISES** Introduction to Dynamical Systems '18-'19: Series IV

Date: 10-12-'18.

Exercise 1. Consider the 2-dimensional system,

$$\begin{cases} \dot{x} = 1 + y - x^2 - y^2, \\ \dot{y} = 1 - x - x^2 - y^2. \end{cases}$$
 (1)

- a) Determine the critical points of (1) and their local character; show that the flow generated by (1) is symmetric with respect to the line  $\{x + y = 0\}$ .
- b) Show that system (1) is integrable by constructing an integral K(x, y).

  Hint: Introduce new variables u = x y and v = x + y that exploit the symmetry found in (a), write (1) as system in u and v, and determine an integral  $\tilde{K}(u, v)$  for this system by introducing  $w = v^2$  and solving the equation for  $\frac{dw}{dv}$ .
- c) Sketch the phase portrait associated to (1) and conclude that system (1) has a homoclinic solution.

Now consider a more general version of (1),

$$\begin{cases} \dot{x} &= 1 + y - x^2 - y^2 + h(x, y), \\ \dot{y} &= 1 - x - x^2 - y^2 + h(x, y), \end{cases} \text{ with } h : \mathbb{R}^2 \to \mathbb{R}, h(0, 0) = 0, \text{ 'sufficiently smooth'}. (2)$$

- d) Take  $h(x,y) = \varepsilon(x+y)$  with  $0 < \varepsilon \ll 1$ : show that the homoclinic orbit of system (1) does not survive the perturbation of (2).
  - *Hint:* Determine  $\dot{K}$  or  $\tilde{K}$ .
- e) Take  $h(x,y) = \alpha(x-y)^3$ ,  $\alpha \in \mathbb{R}$ : show that system (2) is integrable by deriving an integral  $K_{\alpha}(x,y)$  (or  $\tilde{K}_{\alpha}(u,v)$ ) such that  $K_0(x,y) = K(x,y)$ , with K(x,y) as in (b).
- f) Take h(x,y) as in (e) with  $\alpha = \varepsilon$  and  $0 < \varepsilon \ll 1$ : show that system (1) has a homoclinic orbit and give a sketch of the phase portrait.
- g) Take h(x, y) as in (e) with  $\alpha = A \gg 1$ : show that system (1) does not have a homoclinic orbit and give a sketch of the phase portrait.

**Exercise 2.** Consider for  $\beta \in \mathbb{R}$  the 2-dimensional system

$$\begin{cases} \dot{x} = \beta xy - x^3 + y^2, \\ \dot{y} = -y + x^2 + xy. \end{cases}$$

$$(3)$$

Determine the center manifold  $W^c((0,0))$  up to and including terms of order three. Determine the (approximate) flow on  $W^c((0,0))$  near (0,0). Determine the stability of (0,0) for all  $\beta \in \mathbb{R}$ .

**Exercise 3.** Consider for  $\gamma \in \mathbb{R}$  the 2-dimensional system

$$\begin{cases} \dot{x} = -x^3, \\ \dot{y} = -y + x^2 + \gamma x^4. \end{cases} \tag{4}$$

- a) Take  $\gamma = -2$ . Determine the stable manifold  $W^s((0,0))$  and the center manifold(s)  $W^c((0,0))$  explicitly by solving the appropriate equations. Is  $W^c((0,0))$  uniquely determined? Is it analytic? If so, give an expression of  $W^c((0,0))$  in terms of a power series.
- b) Sketch, for  $\gamma$  still equal to -2, the phase portrait, including the manifolds  $W^s((0,0))$  and  $W^c((0,0))$ .
- c) Consider the general case  $\gamma \in \mathbb{R}$ . What can you say about  $W^c((0,0))$ ? Is it unique? Is it analytic? Can you give an explicit expression, or a power series expansion?