EXERCISES Introduction to Dynamical Systems '18-'19: Series IV

Date: 10-12-'18.
Exercise 1. Consider the 2-dimensional system,

$$
\left\{\begin{array}{l}
\dot{x}=1+y-x^{2}-y^{2}, \tag{1}\\
\dot{y}=1-x-x^{2}-y^{2} .
\end{array}\right.
$$

a) Determine the critical points of (1) and their local character; show that the flow generated by (1) is symmetric with respect to the line $\{x+y=0\}$.
b) Show that system (1) is integrable by constructing an integral $K(x, y)$.

Hint: Introduce new variables $u=x-y$ and $v=x+y$ that exploit the symmetry found in (a), write (1) as system in u and v, and determine an integral $\tilde{K}(u, v)$ for this system by introducing $w=v^{2}$ and solving the equation for $\frac{d w}{d u}$.
c) Sketch the phase portrait associated to (1) and conclude that system (1) has a homoclinic solution.
Now consider a more general version of (1),

$$
\left\{\begin{array}{l}
\dot{x}=1+y-x^{2}-y^{2}+h(x, y), \tag{2}\\
\dot{y}=1-x-x^{2}-y^{2}+h(x, y),
\end{array} \quad \text { with } h: \mathbb{R}^{2} \rightarrow \mathbb{R}, h(0,0)=0, \quad\right. \text { 'sufficiently smooth'. }
$$

d) Take $h(x, y)=\varepsilon(x+y)$ with $0<\varepsilon \ll 1$: show that the homoclinic orbit of system (1) does not survive the perturbation of (2).
Hint: Determine \dot{K} or $\dot{\tilde{K}}$.
e) Take $h(x, y)=\alpha(x-y)^{3}, \alpha \in \mathbb{R}$: show that system (2) is integrable by deriving an integral $K_{\alpha}(x, y)\left(\right.$ or $\left.\tilde{K}_{\alpha}(u, v)\right)$ such that $K_{0}(x, y)=K(x, y)$, with $K(x, y)$ as in (b).
f) Take $h(x, y)$ as in (e) with $\alpha=\varepsilon$ and $0<\varepsilon \ll 1$: show that system (1) has a homoclinic orbit and give a sketch of the phase portrait.
g) Take $h(x, y)$ as in (e) with $\alpha=A \gg 1$: show that system (1) does not have a homoclinic orbit and give a sketch of the phase portrait.

Exercise 2. Consider for $\beta \in \mathbb{R}$ the 2-dimensional system

$$
\left\{\begin{align*}
\dot{x} & =\beta x y-x^{3}+y^{2}, \tag{3}\\
\dot{y} & =-y+x^{2}+x y .
\end{align*}\right.
$$

Determine the center manifold $W^{c}((0,0))$ up to and including terms of order three. Determine the (approximate) flow on $W^{c}((0,0))$ near $(0,0)$. Determine the stability of $(0,0)$ for all $\beta \in \mathbb{R}$.

Exercise 3. Consider for $\gamma \in \mathbb{R}$ the 2-dimensional system

$$
\left\{\begin{align*}
\dot{x} & =-x^{3} \tag{4}\\
\dot{y} & =-y+x^{2}+\gamma x^{4} .
\end{align*}\right.
$$

a) Take $\gamma=-2$. Determine the stable manifold $W^{s}((0,0))$ and the center manifold(s) $W^{c}((0,0))$ explicitly by solving the appropriate equations. Is $W^{c}((0,0))$ uniquely determined? Is it analytic? If so, give an expression of $W^{c}((0,0))$ in terms of a power series.
b) Sketch, for γ still equal to -2 , the phase portrait, including the manifolds $W^{s}((0,0))$ and $W^{c}((0,0))$.
c) Consider the general case $\gamma \in \mathbb{R}$. What can you say about $W^{c}((0,0))$? Is it unique? Is it analytic? Can you give an explicit expression, or a power series expansion?

