EXERCISES Introduction to Dynamical Systems '18-'19: Series III

Date: 12-11-'18.

Exercise 1.

A. Exercise 12, page 156 book (\longleftrightarrow exercise 12, page 162 first edition book).
B. Exercise 13, page 156 book (\longleftrightarrow exercise 13, page 163 first edition book).
C. Let $\phi(t ; a)$ define a smooth n-dimensional flow in \mathbb{R}^{n} and let A be a subset of \mathbb{R}^{n}. The omega limit set of the set A is defined as the union of all $\omega(a)$ over all $a \in A$, i.e. $\omega(A)=\cup_{a \in A} \omega(a)$. Since for a given $a_{0}, \omega\left(a_{0}\right)$ also is a subset of \mathbb{R}^{n}, one can thus define $\omega\left(\omega\left(a_{0}\right)\right)$. Is it true that $\omega\left(\omega\left(a_{0}\right)\right)=\omega\left(a_{0}\right)$? If you agree, give a proof; if not, give a counter example.

Exercise 2. Consider the complex differential equation,

$$
\begin{equation*}
\dot{z}_{0}=z_{0}-(1+i) z_{0}\left|z_{0}\right|^{2} \text { with } z_{0}: \mathbb{R} \rightarrow \mathbb{C} . \tag{1}
\end{equation*}
$$

a-i) Transform (1) into a real two-dimensional system by introducing $\left(x_{0}(t), y_{0}(t)\right): \mathbb{R} \rightarrow \mathbb{R}^{2}$ through $z_{0}=x_{0}+i y_{0}$ and deriving an equation for $\left(\dot{x}_{0}, \dot{y}_{0}\right)$.
a-ii) Determine the periodic solution $\phi_{r}(t)=\left(x_{r}(t), y_{r}(t)\right)$ of the real system found in (a-i): introduce polar coordinates $\left(r_{0}(t), \theta_{0}(t)\right)$, sketch the phase portrait and determine an explicit expression for $\phi_{r}(t)$.
a-iii) Show that $\phi_{r}(t)$ is asymptotically stable (without using Floquet theory and/or the subsequent exercises).
b-i) Determine the (real) linearized system about $\phi_{r}(t)$, i.e. introduce $\left(\xi_{0}(t), \eta_{0}(t)\right)$ by $x_{0}=$ $x_{r}+\xi_{0}, y_{0}=y_{r}+\eta_{0}$ and linearize.
b-ii) Show explicitly that $\dot{\phi}_{r}$ solves the (ξ_{0}, η_{0})-system.
c) Determine the (two) Floquet exponents of the $\left(\xi_{0}, \eta_{0}\right)$-system.

The Floquet exponents can also be determined by directly working with complex system (1).
d-i) Determine the solution $\phi_{c}(t): \mathbb{R} \rightarrow \mathbb{C}$ of (1) that corresponds to $\phi_{r}(t) \in \mathbb{R}^{2}$ as found in (a-ii).
d-ii) Linearize about ϕ_{c} by setting $z_{0}=\phi_{c}+\zeta_{0}$.
d-iii) Introduce $w_{0}(t)$ by $\zeta_{0}=e^{-i t} w_{0}$. Show that w_{0} is a solution of,

$$
\begin{equation*}
\dot{w}_{0}=-(1+i) w_{0}-(1+i) w_{0}^{*} \text { with } w_{0}^{*}=\text { the complex geconjugate of } w_{0}, \tag{2}
\end{equation*}
$$

a linear (complex) equation with constant coefficients.
d-iv) Use (2) to determine the stability of $\phi_{c}(t)$.
d-v) Explain in detail why the eigenvalues associated to (2) are equal to the Floquet exponents found in c).

Now consider the following extension of (1),

$$
\left\{\begin{array}{l}
\dot{z}_{0}=z_{0}-(1+i)\left[z_{0}\left|z_{0}\right|^{2}+2 z_{1}^{2} z_{0}^{*}+4 z_{0}\left|z_{1}\right|^{2}\right] \tag{3}\\
\dot{z}_{1}=\alpha z_{1}-(1+i)\left[3 z_{1}\left|z_{1}\right|^{2}+z_{0}^{2} z_{1}^{*}+2 z_{1}\left|z_{0}\right|^{2}\right]
\end{array}\right.
$$

with $\left(z_{0}(t), z_{1}(t)\right): \mathbb{R} \rightarrow \mathbb{C}^{2}$ and $\alpha \in \mathbb{R}$ a parameter.
e-i) Show that $\phi_{c, 2}(t)=\left(\phi_{c}(t), 0\right) \in \mathbb{C}^{2}$, with $\phi_{c}(t)$ as (d-i), is a periodic solution of (3).
e-ii) Determine the Floquet exponents associated to the linearization of (3) about $\phi_{c, 2}(t)$. Determine α_{0} such that $\phi_{c, 2}(t)$ is stable for $\alpha<\alpha_{0}$.

