EXERCISES Introduction to Dynamical Systems '18-'19: Series III

Date: 12-11-'18.

Exercise 1.

A. Exercise 12, page 156 book (\longleftrightarrow exercise 12, page 162 first edition book).

B. Exercise 13, page 156 book (\longleftrightarrow exercise 13, page 163 first edition book).

C. Let $\phi(t; a)$ define a smooth *n*-dimensional flow in \mathbb{R}^n and let A be a subset of \mathbb{R}^n . The omega limit set of the set A is defined as the union of all $\omega(a)$ over all $a \in A$, i.e. $\omega(A) = \bigcup_{a \in A} \omega(a)$. Since for a given a_0 , $\omega(a_0)$ also is a subset of \mathbb{R}^n , one can thus define $\omega(\omega(a_0))$. Is it true that $\omega(\omega(a_0)) = \omega(a_0)$? If you agree, give a proof; if not, give a counter example.

Exercise 2. Consider the *complex* differential equation,

$$\dot{z}_0 = z_0 - (1+i)z_0|z_0|^2 \text{ with } z_0 : \mathbb{R} \to \mathbb{C}.$$
 (1)

- a-i) Transform (1) into a real two-dimensional system by introducing $(x_0(t), y_0(t)) : \mathbb{R} \to \mathbb{R}^2$ through $z_0 = x_0 + iy_0$ and deriving an equation for (\dot{x}_0, \dot{y}_0) .
- a-ii) Determine the periodic solution $\phi_r(t) = (x_r(t), y_r(t))$ of the real system found in (a-i): introduce polar coordinates $(r_0(t), \theta_0(t))$, sketch the phase portrait and determine an explicit expression for $\phi_r(t)$.
- a-iii) Show that $\phi_r(t)$ is asymptotically stable (<u>without</u> using Floquet theory and/or the subsequent exercises).
- b-i) Determine the (real) linearized system about $\phi_r(t)$, i.e. introduce $(\xi_0(t), \eta_0(t))$ by $x_0 = x_r + \xi_0$, $y_0 = y_r + \eta_0$ and linearize.
- b-ii) Show explicitly that $\dot{\phi}_r$ solves the (ξ_0, η_0) -system.
 - c) Determine the (two) Floquet exponents of the (ξ_0, η_0) -system.

The Floquet exponents can also be determined by directly working with complex system (1).

- d-i) Determine the solution $\phi_c(t): \mathbb{R} \to \mathbb{C}$ of (1) that corresponds to $\phi_r(t) \in \mathbb{R}^2$ as found in (a-ii).
- d-ii) Linearize about ϕ_c by setting $z_0 = \phi_c + \zeta_0$.
- d-iii) Introduce $w_0(t)$ by $\zeta_0 = e^{-it}w_0$. Show that w_0 is a solution of,

$$\dot{w}_0 = -(1+i)w_0 - (1+i)w_0^* \text{ with } w_0^* = \text{ the complex geconjugate of } w_0, \qquad (2)$$

a linear (complex) equation with constant coefficients.

- d-iv) Use (2) to determine the stability of $\phi_c(t)$.
- d-v) Explain in detail why the eigenvalues associated to (2) are equal to the Floquet exponents found in c).

Now consider the following extension of (1),

$$\begin{cases} \dot{z}_0 = z_0 - (1+i) \left[z_0 |z_0|^2 + 2z_1^2 z_0^* + 4z_0 |z_1|^2 \right], \\ \dot{z}_1 = \alpha z_1 - (1+i) \left[3z_1 |z_1|^2 + z_0^2 z_1^* + 2z_1 |z_0|^2 \right], \end{cases}$$
(3)

with $(z_0(t), z_1(t)) : \mathbb{R} \to \mathbb{C}^2$ and $\alpha \in \mathbb{R}$ a parameter.

- e-i) Show that $\phi_{c,2}(t) = (\phi_c(t), 0) \in \mathbb{C}^2$, with $\phi_c(t)$ as (d-i), is a periodic solution of (3).
- e-ii) Determine the Floquet exponents associated to the linearization of (3) about $\phi_{c,2}(t)$. Determine α_0 such that $\phi_{c,2}(t)$ is stable for $\alpha < \alpha_0$.