EXERCISES Introduction to Dynamical Systems '18-'19: Series II

Date: 08-10-'18.
Exercise 1. Consider the n-dimensional system,

$$
\begin{equation*}
\dot{X}=A X+F(X) \tag{1}
\end{equation*}
$$

with A an $n \times n$ constant coefficients matrix and $F(X)$ a nonlinear expression that satisfies $\|F(X)\| \leq C\|X\|^{2}$ as $\|X\| \rightarrow 0$, for some $C>0$. Recall that we cannot draw any conclusions on the stability of the critical point $\bar{X}=0$ of (1) if A has eigenvalues λ with $\operatorname{Re}(\lambda)=0$. Take $n=2, A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, and write X as (x, y). Show that the critical point $\bar{X}=(\bar{x}, \bar{y})=(0,0)$ of (1) is,
a) unstable for $F(X) \equiv 0$.
a) stable for $F(X)=F(x, y)=\binom{0}{-x^{3}}$.

Hint: Write (1) as equation in \ddot{x} and determine a first integral $V(x, y)$ of this equation, i.e. a function $V(x, y)$ such that $\frac{d}{d t} V(x, y)=0$ for solutions of the equation. Use this $V(x, y)$ as Lyapunov function.
c) asymptotically stable for $F(X)=F(x, y)=\binom{-x^{3}}{-x^{3}-y^{3}}$.

Hint: Use the Lyapunov function constructed in b).

Exercise 2. Consider the linear system,

$$
\left\{\begin{align*}
\dot{x} & =A x+B(t) x, \quad x \in \mathbb{R}^{n}, n \geq 1 \tag{2}\\
x(0) & =x_{0},
\end{align*}\right.
$$

with A a $n \times n$ matrix (with constant coefficients) and $B(t)$ a $n \times n$ matrix with coefficients that depend continuously on time t; define $\phi\left(t ; x_{0}\right)$ as the solution of (2). Moreover, it is given that there is a (positive) continuous function $C: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $\|B(t) x\|<C(t)\|x\|$ for all $x \in \mathbb{R}^{n}$ and $t \geq 0$.
(Note: For given $B(t)$, functions $C(t)$ like defined here always exist; the infimum over all possible $C(t)$'s defines the norm $\|B(t)\|$ of the matrix $B(t)$.)
a) Explain why $\tilde{\phi}\left(t ; x_{0}\right)=e^{A t+\int_{0}^{t} B(s) d s} x_{0}$ is, in general, not a solution of (2).

Assume first that,
(Ai) all eigenvalues λ_{j} of A satisfy $\operatorname{Re} \lambda_{j}<0$;
(Bi) $\lim _{t \rightarrow \infty} C(t)=0$.
b) Show that it follows from assumptions (Ai) and (Bi) that $\lim _{t \rightarrow \infty} \phi\left(t ; x_{0}\right) \rightarrow 0$ for all $x_{0} \in \mathbb{R}^{n}$ and that the critical point $x^{*}=0$ of (2) is asymptotically stable (use the definition!).
Hint. Apply the arguments of the proof of Theorem 4.17 (on page 117 in the book) with $g(y)$ replaced by $B(t) x$. [For the first edition of the book: page 121-122 for the proof of Theorem 4.6.]
Now assume that,
(Aii) all eigenvalues λ_{j} of A satisfy $\operatorname{Re} \lambda_{j} \leq 0$;
(Aiii) the eigenvalues λ_{j} of A with $\operatorname{Re}\left(\lambda_{j}\right)=0$ do not coincide (i.e. these eigenvalues have - algebraic and geometric - multiplicity 1);
(Bii) $C(t)$ is integrable: $\int_{0}^{\infty} C(t) d t=D<\infty$.
c) Show that it follows from assumptions (Aii), (Aiii), and (Bii) that the critical point $x^{*}=0$ of (2) is stable. Use the definition.
Note: You may use that (Aii) and (Aiii) together imply that there is a $K>0$ such that $\left|e^{A t} x_{0}\right|<K\left|x_{0}\right|$ for all $x_{0} \in \mathbb{R}^{n}$ and $t \geq 0$.
d) Additional assumption (Aiii) is not that strong and assumption (Bii) is only slightly stronger than (Bi): can you establish the result of c) under (slightly) weaker conditions, i.e. without (Aiii) and/or with (Bi) instead of (Bii)? Explain!

