EXERCISES Introduction to Dynamical Systems '18-'19: Series II

Date: 08-10-'18.

Exercise 1. Consider the *n*-dimensional system,

$$\dot{X} = AX + F(X),\tag{1}$$

with A an $n \times n$ constant coefficients matrix and F(X) a nonlinear expression that satisfies $||F(X)|| \le C||X||^2$ as $||X|| \to 0$, for some C > 0. Recall that we cannot draw any conclusions on the stability of the critical point $\bar{X}=0$ of (1) if A has eigenvalues λ with $\text{Re}(\lambda)=0$. Take n=2, $A=\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$, and write X as (x,y). Show that the critical point $\bar{X} = (\bar{x}, \bar{y}) = (0, 0)$ of (1) is,

- a) unstable for $F(X) \equiv 0$.
- a) stable for F(X) = F(x,y) = \$\begin{pmatrix} 0 \\ -x^3 \end{pmatrix}\$.
 Hint: Write (1) as equation in \$\begin{pmatrix} and determine a first integral V(x,y) of this equation, i.e. a function V(x,y) such that \$\frac{d}{dt}V(x,y) = 0\$ for solutions of the equation. Use this V(x,y) as Lyapunov function.
 c) asymptotically stable for F(X) = F(x,y) = \$\begin{pmatrix} -x^3 \\ -x^3 y^3 \end{pmatrix}\$.
 Hint: Use the Lyapunov function constructed in b).

Exercise 2. Consider the linear system,

$$\begin{cases} \dot{x} = Ax + B(t)x, & x \in \mathbb{R}^n, n \ge 1, \\ x(0) = x_0, \end{cases}$$
 (2)

with A a $n \times n$ matrix (with constant coefficients) and B(t) a $n \times n$ matrix with coefficients that depend continuously on time t; define $\phi(t;x_0)$ as the solution of (2). Moreover, it is given that there is a (positive) continuous function $C: \mathbb{R}^+ \to \mathbb{R}^+$ such that ||B(t)x|| < C(t)||x|| for all $x \in \mathbb{R}^n$ and $t \ge 0$. (Note: For given B(t), functions C(t) like defined here always exist; the infimum over all possible C(t)'s defines the norm ||B(t)|| of the matrix B(t).)

a) Explain why $\tilde{\phi}(t;x_0) = e^{At + \int_0^t B(s)ds} x_0$ is, in general, not a solution of (2).

Assume first that,

- all eigenvalues λ_j of A satisfy $\operatorname{Re}\lambda_j < 0$; (Ai)
- $\lim_{t\to\infty} C(t) = 0.$ (Bi)
- Show that it follows from assumptions (Ai) and (Bi) that $\lim_{t\to\infty}\phi(t;x_0)\to 0$ for all $x_0\in\mathbb{R}^n$ and that the critical point $x^* = 0$ of (2) is asymptotically stable (use the definition!). Hint. Apply the arguments of the proof of Theorem 4.17 (on page 117 in the book) with g(y) replaced by B(t)x. [For the first edition of the book: page 121-122 for the proof of Theorem 4.6.]

Now assume that,

- all eigenvalues λ_j of A satisfy $\operatorname{Re}\lambda_j \leq 0$; (Aii)
- the eigenvalues λ_i of A with $\text{Re}(\lambda_i) = 0$ do not coincide (i.e. these eigenvalues have algebraic and geometric – multiplicity 1); C(t) is integrable: $\int_0^\infty C(t) dt = D < \infty$.
- (Bii)
- Show that it follows from assumptions (Aii), (Aiii), and (Bii) that the critical point $x^* = 0$ of (2) is stable. Use the definition.
 - Note: You may use that (Aii) and (Aiii) together imply that there is a K > 0 such that $|e^{At}x_0| < K|x_0|$ for all $x_0 \in \mathbb{R}^n$ and $t \geq 0$.
- Additional assumption (Aiii) is not that strong and assumption (Bii) is only slightly stronger than (Bi): can you establish the result of c) under (slightly) weaker conditions, i.e. without (Aiii) and/or with (Bi)instead of (Bii)? Explain!