EXERCISES Introduction to Dynamical Systems '18-'19: Series I

Date: 17-09-'18.

Exercise 1.

- Consider $g:[0,\infty)\to\mathbb{R}$ given by $g(t)=\frac{\cos t^2}{t+1}$: show that $\lim_{t\to\infty}g(t)$ exists, while $\lim_{t\to\infty}\dot{g}(t)(=\frac{dg}{dt}(t))$
- Consider the autonomous ODE $\dot{x} = f(x), x \in \mathbb{R}^n$, with initial condition $x(0) = x_0$ and $f: \mathbb{R}^n \to \mathbb{R}^n$ (at Ib) least) continuously differentiable. Let $\phi(t;x_0)$ be a solution such that $\lim_{t\to\infty}\phi(t;x_0)=a$ for a certain $a \in \mathbb{R}^n$. Prove that a must be a critical point of the system. Warning: Be aware of functions that behave like q(t) in (Ia).
- Explain why g(t) of (Ia) cannot be a solution of a system as described in (Ib) (with n=1). Ic)
- Can g(t) be a solution of a non-autonomous (smooth) system $\dot{x} = f(x,t)$? Explain! Is the situation different from that of (Ib) and (Ic)? Why?
- Consider the flow $\phi(t;x): \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$. Prove 'continuous dependence on initial conditions' for flows, IIa) i.e. let the initial condition $x_0 \in \mathbb{R}^n$ be given and show that for all T > 0 and $\delta > 0$ there is an $\varepsilon > 0$ such that $\|\phi(T; x_0) - \phi(T; \tilde{x}_0)\| < \delta$ for all \tilde{x}_0 with $\|x_0 - \tilde{x}_0\| < \varepsilon$. *Note:* This flow is not necessarily associated to an ODE.
- Hb) Can you improve this result to a version that is uniform in t, i.e. to: for all T>0 and $\delta>0$ there is an $\varepsilon > 0$ such that $\|\phi(t; x_0) - \phi(t; \tilde{x}_0)\| < \delta$ for all \tilde{x}_0 with $\|x_0 - \tilde{x}_0\| < \varepsilon$ and all $t \in [0, T]$?
- Now establish the equivalent of (Ib) for flows: assume that $\phi(t; x_0) \to a \in \mathbb{R}^n$ as $t \to \infty$ (and x_0 fixed), show that $\phi(t; a) \equiv a$ i.e. that x = a is a fixed point of the flow ϕ . *Hint:* Assume that $\phi(t;a) \not\equiv a$ so that $\|\phi(T;a) - a\| = \sigma > 0$ for some σ and T and apply (IIa).

Exercise 2.

Consider for $n \in \mathbb{N}$, $n \ge 1$, the planar – thus 2-dimensional – system,

$$\ddot{x} + x^n = 0 \text{ or } \begin{cases} \dot{x} = y, \\ \dot{y} = -x^n. \end{cases}$$
 (1)

This system defines a flow $\phi(t;x,y): \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$, parameterized by time t (a priori $\in \mathbb{R}$); solutions of (1) with initial condition (x_0, y_0) are denoted by $(x(t; x_0, y_0), y(t; x_0, y_0))$, orbits of the flow are denoted by $\Gamma(x_0, y_0)$.

- Explain why neither Theorem 4.6 nor Theorem 4.8 (in section 4.3 of the book) can be applied to system (1) on the unbounded domain \mathbb{R}^2 to conclude that solutions of (1) exist for all $t \in \mathbb{R}$, i.e. to conclude that (1) generates a complete flow.
 - Note: Theorems 4.6 and 4.8 in the revised edition of the book correspond to Theorems 4.3 and 4.5 in the original version of the book.
- System (1) is integrable with Hamiltonian H, i.e. orbits of (1) are given as level sets of a function H(x,y). Determine H(x,y).
 - Hint: Apply the standard procedure: multiply $\ddot{x} + x^n = 0$ by $\dot{x} (= y)$ and integrate over time.
- Consider n odd: show that (1) generates a complete flow, i.e. show that all solutions $(x(t; x_0, y_0), y(t; x_0, y_0))$ of (1) exist for all $t \in \mathbb{R}$.
 - Hint: Give a sketch of the phase portrait of (1) or equivalently, of the orbits of the flow generated by
- (1) and conclude that all orbits $\Gamma(x_0, y_0)$ with $(x_0, y_0) \neq (0, 0)$ are closed. What does this mean? Consider n even: define $\mathcal{S}_+ \subset \mathbb{R}^2$ as the set of all initial conditions such that the limit of $t \to \infty$ for solutions $(x(t; x_0, y_0), y(t; x_0, y_0))$ of (1) with $(x_0, y_0) \in S_+$ exists (note that S_+ coincides with the orbits $\Gamma(x_0, y_0)$ with $(x_0, y_0) \in \mathcal{S}_+$). Determine \mathcal{S}_+ explicitly. Do the same for $\mathcal{S}_- \subset \mathbb{R}^2$ – the set of all initial conditions such that the limit $t \to -\infty$ of solutions $(x(t; x_0, y_0), y(t; x_0, y_0))$ of (1) exists.
- (n even) Give a sketch of the phase portrait of (1), including S_+ and S_- .
- (n even) The solutions $(x(t; x_0, y_0), y(t; x_0, y_0))$ of (1) with $(x_0, y_0) \in \mathcal{S}_-$ can be determined explicitly. Show that these solutions blow up in finite (positive) time.
- (n even) Consider the solutions $(x(t;x_0,y_0),y(t;x_0,y_0))$ of (1) with $(x_0,y_0) \notin \mathcal{S}_+$. Show that for all g) K > 0 there is a T such $x(t; x_0, y_0) < -K$ and $y(t; x_0, y_0) < -K$ for all $t \ge T$.
- (n even) Show that except for the trivial, critical point, solution $(x(t;0,0),y(t;0,0)) \equiv (0,0)$ there h) are no solutions $(x(t; x_0, y_0), y(t; x_0, y_0))$ of (1) that exist for all $t \in \mathbb{R}$.