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Exercise 1.

Ia) Consider g : [0,∞) → R given by g(t) = cos t2

t+1 : show that limt→∞ g(t) exists, while limt→∞ ġ(t)(= dg
dt (t))

does not.
Ib) Consider the autonomous ODE ẋ = f(x), x ∈ Rn, with initial condition x(0) = x0 and f : Rn → Rn (at

least) continuously differentiable. Let ϕ(t;x0) be a solution such that limt→∞ ϕ(t;x0) = a for a certain
a ∈ Rn. Prove that a must be a critical point of the system.
Warning: Be aware of functions that behave like g(t) in (Ia).

Ic) Explain why g(t) of (Ia) cannot be a solution of a system as described in (Ib) (with n = 1).
Id) Can g(t) be a solution of a non-autonomous (smooth) system ẋ = f(x, t)? Explain! Is the situation

different from that of (Ib) and (Ic)? Why?

IIa) Consider the flow ϕ(t;x) : R×Rn → Rn. Prove ‘continuous dependence on initial conditions’ for flows,
i.e. let the initial condition x0 ∈ Rn be given and show that for all T > 0 and δ > 0 there is an ε > 0
such that ∥ϕ(T ;x0)− ϕ(T ; x̃0)∥ < δ for all x̃0 with ∥x0 − x̃0∥ < ε.
Note: This flow is not necessarily associated to an ODE.

IIb) Can you improve this result to a version that is uniform in t, i.e. to: for all T > 0 and δ > 0 there is an
ε > 0 such that ∥ϕ(t;x0)− ϕ(t; x̃0)∥ < δ for all x̃0 with ∥x0 − x̃0∥ < ε and all t ∈ [0, T ]?

IIc) Now establish the equivalent of (Ib) for flows: assume that ϕ(t;x0) → a ∈ Rn as t → ∞ (and x0 fixed),
show that ϕ(t; a) ≡ a i.e. that x = a is a fixed point of the flow ϕ.
Hint: Assume that ϕ(t; a) ̸≡ a so that ∥ϕ(T ; a)− a∥ = σ > 0 for some σ and T and apply (IIa).

Exercise 2.

Consider for n ∈ N, n ≥ 1, the planar – thus 2-dimensional – system,

ẍ+ xn = 0 or

{
ẋ = y,
ẏ = −xn.

(1)

This system defines a flow ϕ(t;x, y) : R × R2 → R2, parameterized by time t (a priori ∈ R); solutions of (1)
with initial condition (x0, y0) are denoted by (x(t;x0, y0), y(t;x0, y0)), orbits of the flow are denoted by Γ(x0, y0).

a) Explain why neither Theorem 4.6 nor Theorem 4.8 (in section 4.3 of the book) can be applied to system
(1) on the unbounded domain R2 to conclude that solutions of (1) exist for all t ∈ R, i.e. to conclude
that (1) generates a complete flow.
Note: Theorems 4.6 and 4.8 in the revised edition of the book correspond to Theorems 4.3 and 4.5 in
the original version of the book.

b) System (1) is integrable with Hamiltonian H, i.e. orbits of (1) are given as level sets of a function
H(x, y). Determine H(x, y).
Hint: Apply the standard procedure: multiply ẍ+ xn = 0 by ẋ (= y) and integrate over time.

c) Consider n odd: show that (1) generates a complete flow, i.e. show that all solutions
(x(t;x0, y0), y(t;x0, y0)) of (1) exist for all t ∈ R.
Hint: Give a sketch of the phase portrait of (1) – or equivalently, of the orbits of the flow generated by
(1) – and conclude that all orbits Γ(x0, y0) – with (x0, y0) ̸= (0, 0) – are closed. What does this mean?

d) Consider n even: define S+ ⊂ R2 as the set of all initial conditions such that the limit of t → ∞ for
solutions (x(t;x0, y0), y(t;x0, y0)) of (1) with (x0, y0) ∈ S+ exists (note that S+ coincides with the orbits
Γ(x0, y0) with (x0, y0) ∈ S+). Determine S+ explicitly. Do the same for S− ⊂ R2 – the set of all initial
conditions such that the limit t → −∞ of solutions (x(t;x0, y0), y(t;x0, y0)) of (1) exists.

e) (n even) Give a sketch of the phase portrait of (1), including S+ and S−.
f) (n even) The solutions (x(t;x0, y0), y(t;x0, y0)) of (1) with (x0, y0) ∈ S− can be determined explicitly.

Show that these solutions blow up in finite (positive) time.
g) (n even) Consider the solutions (x(t;x0, y0), y(t;x0, y0)) of (1) with (x0, y0) /∈ S+. Show that for all

K > 0 there is a T such x(t;x0, y0) < −K and y(t;x0, y0) < −K for all t ≥ T .
h) (n even) Show that – except for the trivial, critical point, solution (x(t; 0, 0), y(t; 0, 0)) ≡ (0, 0) – there

are no solutions (x(t;x0, y0), y(t;x0, y0)) of (1) that exist for all t ∈ R.
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