EXERCISES Introduction to Dynamical Systems '17-'18: Series IV

Date: 11-12-'17.

Exercise 1. Consider the integrable problem,

$$\ddot{x} + x - x^3 + C = 0, \text{ with } C \in \mathbb{R}.$$

- a) Determine the set \mathcal{I}_{hom} such that system (1) has a homoclinic orbit if $C \in \mathcal{I}_{\text{hom}}$. For which $C = C_{\text{het}}$ does (1) have heteroclinic orbits? Give sketches of the phase portraits of (1) for C such that $C_{\text{het}} > C \in \mathcal{I}_{\text{hom}}$, $C = C_{\text{het}}$, $C_{\text{het}} < C \in \mathcal{I}_{\text{hom}}$, and $C_{\text{het}} \neq C \notin \mathcal{I}_{\text{hom}}$.
- b) Now consider a more general version of (1),

$$\ddot{x} + x + Ax^2 + Bx^3 + C = 0, \text{ with } A, B, C \in \mathbb{R}.$$
 (2)

For which A, B, C does (2) have heteroclinic orbits?

Exercise 2.

Let $V:\mathbb{R}^n\to\mathbb{R}$ be given as a smooth (at least C^2) map; consider the associated gradient flow,

$$\dot{x} = -\nabla V(x)$$
, or $\dot{x}_i = -\frac{\partial V}{\partial x_i}(x)$, $i = 1, ..., n$. (3)

Prove that system (3) cannot have a homoclinic solution.

Hint: Consider (and use) \dot{V} .

Exercise 3.

Consider the two-dimensional system,

$$\begin{cases} \dot{x} = xy - x^3 - xy^2, \\ \dot{y} = -y + ax^2 + bx^2y, \end{cases}$$
 with parameters $a, b \in \mathbb{R}$. (4)

Determine for all $a, b \in \mathbb{R}$ the stability of the critical point (0,0) of (4).

Exercise 4.

Consider the system,

$$\begin{cases} \dot{x} = -x^3, \\ \dot{y} = -y + x^2. \end{cases}$$
 (5)

The vector field, i.e. the righthand side of system (5), is – of course – analytic in x and y.

- a) Show that the center manifold $W^c((0,0))$ associated to the critical point (0,0) of (5) is **not** analytic. Hint: Let $W^c((0,0))$ be given by y=h(x) and assume that h(x) is analytic, i.e. assume that h(x) can locally be represented by a (full) power series, $h(x) = \sum_{n=1}^{\infty} c_n x^n$; determine all coefficients c_n .
- b) Is $W^c((0,0))$ determined uniquely? Explain!

Exercise 5.

Consider the 3-dimensional system,

$$\begin{cases} \dot{x} = -y + xz - x^4, \\ \dot{y} = x + yz + xyz, \\ \dot{z} = -z - x^2 - y^2 + z^2 + \sin x^3. \end{cases}$$
 (6)

Determine the stability of the critical point (0,0,0).

Hint: Determine the flow on the center manifold and use polar coordinates.