EXERCISES Introduction to Dynamical Systems '17-'18: Series IV

Date: 11-12-'17.

Exercise 1. Consider the integrable problem,

$$
\begin{equation*}
\ddot{x}+x-x^{3}+C=0, \text { with } C \in \mathbb{R} . \tag{1}
\end{equation*}
$$

a) Determine the set $\mathcal{I}_{\text {hom }}$ such that system (1) has a homoclinic orbit if $C \in \mathcal{I}_{\text {hom }}$. For which $C=C_{\text {het }}$ does (1) have heteroclinic orbits? Give sketches of the phase portraits of (1) for C such that $C_{\text {het }}>C \in \mathcal{I}_{\text {hom }}, C=C_{\text {het }}, C_{\text {het }}<C \in \mathcal{I}_{\text {hom }}$, and $C_{\text {het }} \neq C \notin \mathcal{I}_{\text {hom }}$.
b) Now consider a more general version of (1),

$$
\begin{equation*}
\ddot{x}+x+A x^{2}+B x^{3}+C=0, \text { with } A, B, C \in \mathbb{R} . \tag{2}
\end{equation*}
$$

For which A, B, C does (2) have heteroclinic orbits?

Exercise 2.

Let $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given as a smooth (at least C^{2}) map; consider the associated gradient flow,

$$
\begin{equation*}
\dot{x}=-\nabla V(x), \quad \text { or } \quad \dot{x}_{i}=-\frac{\partial V}{\partial x_{i}}(x), i=1, \ldots, n \tag{3}
\end{equation*}
$$

Prove that system (3) cannot have a homoclinic solution.
Hint: Consider (and use) \dot{V}.

Exercise 3.

Consider the two-dimensional system,

$$
\left\{\begin{array}{l}
\dot{x}=x y-x^{3}-x y^{2}, \tag{4}\\
\dot{y}=-y+a x^{2}+b x^{2} y,
\end{array} \quad \text { with parameters } a, b \in \mathbb{R} .\right.
$$

Determine for all $a, b \in \mathbb{R}$ the stability of the critical point $(0,0)$ of (4).

Exercise 4.

Consider the system,

$$
\left\{\begin{array}{l}
\dot{x}=-x^{3} \tag{5}\\
\dot{y}=-y+x^{2}
\end{array}\right.
$$

The vector field, i.e. the righthand side of system (5), is - of course - analytic in x and y.
a) Show that the center manifold $W^{c}((0,0))$ associated to the critical point $(0,0)$ of (5) is not analytic. Hint: Let $W^{c}((0,0))$ be given by $y=h(x)$ and assume that $h(x)$ is analytic, i.e. assume that $h(x)$ can locally be represented by a (full) power series, $h(x)=\sum_{n=1}^{\infty} c_{n} x^{n}$; determine all coefficients c_{n}.
b) Is $W^{c}((0,0))$ determined uniquely? Explain!

Exercise 5.

Consider the 3-dimensional system,

$$
\left\{\begin{array}{l}
\dot{x}=-y+x z-x^{4} \tag{6}\\
\dot{y}=x+y z+x y z \\
\dot{z}=-z-x^{2}-y^{2}+z^{2}+\sin x^{3}
\end{array}\right.
$$

Determine the stability of the critical point $(0,0,0)$.
Hint: Determine the flow on the center manifold and use polar coordinates.

