EXERCISES Introduction to Dynamical Systems '17-'18: Series II

Date: 16-10-' 17.

Exercise 1. Consider the second order equation,

$$
\begin{equation*}
\ddot{x}+\alpha(t) \dot{x}+\beta(t) x=0, \tag{1}
\end{equation*}
$$

or, equivalently as two-dimensional system,

$$
\dot{\vec{x}}=\left(\begin{array}{rr}
0 & 1 \tag{2}\\
-\beta(t) & -\alpha(t)
\end{array}\right) \vec{x} \text { with } \vec{x}=\binom{x_{1}}{x_{2}}=\binom{x}{\dot{x}},
$$

where $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$ are continuous differentiable functions of t.
a-i) Consider $\alpha(t) \equiv 0$ and $\beta(t)$ such that $\lim _{t \rightarrow \infty} \beta(t)=1$. Thus, (1) approaches $\ddot{x}+x=0$ and we may expect the critical point $(0,0)$ of (2) to be stable. To study this we employ the method of 'variation of constants' and introduce $X(t)$ and $Y(t)$ by setting $x(t)=X(t) \cos t+Y(t) \sin t$. Show that the evolution of $(X(t), Y(t))$ is determined by

$$
\left\{\begin{align*}
\dot{X} & =(\beta(t)-1)\left[X \cos t \sin t+Y \sin ^{2} t\right] \tag{3}\\
\dot{Y} & =-(\beta(t)-1)\left[X \cos ^{2} t+Y \cos t \sin t\right]
\end{align*}\right.
$$

Hint. $\dot{x}=\dot{X} \cos t+\dot{Y} \sin t-X \sin t+Y \cos t=-X \sin t+Y \cos t$ by assuming that X, Y satisfy $\dot{X} \cos t+\dot{Y} \sin t=0$; the second equation for \dot{X}, \dot{Y} follows by plugging \ddot{x} into (1).
a-ii) Introduce $R(t)=X^{2}(t)+Y^{2}(t)$ and show that $R(t)=\|\vec{x}(t)\|^{2}$ with $\vec{x}(t)$ as in (2). Use (3) to show that,

$$
\begin{equation*}
\dot{R} \leq 4|\beta(t)-1| R \tag{4}
\end{equation*}
$$

a-iii) Use (4) to prove - directly by the definition of stability - that if $\int_{0}^{\infty}|\beta(t)-1| d s<\infty$ the critical point (0,0) of (2) indeed is stable.
Comment. This stability condition is sufficient, however, it is not necessary. On the other hand, Fatou's conjecture that $(0,0)$ is stable in (2) for any (smooth) $\beta(t)$ with $\lim _{t \rightarrow \infty} \beta(t)=1$ has also be shown to be incorrect.
b) Now consider $\alpha(t) \equiv \bar{\alpha}>0$ and $\beta(t)$ such that $\lim _{t \rightarrow \infty} \beta(t)=\bar{\beta}>0$ with $\bar{\alpha}, \bar{\beta}$ such that $\bar{\beta}-\frac{1}{4} \bar{\alpha}^{2}>0$. Show that $(0,0)$ is asymptotically stable stable as solution of (2).
Hint. Introduce $z(t)$ by $x(t)=z(t) e^{-\frac{1}{2} \bar{\alpha} t}, \omega$ by $\omega^{2}=\bar{\beta}-\frac{1}{4} \bar{\alpha}^{2}$ and τ by $\tau=\omega t$. Derive the differential equation for z as function of τ and follow the procedure of (a-i,ii,iii).
c) Consider $\alpha(t), \beta(t)$ such that $\lim _{t \rightarrow \infty} \alpha(t)=\bar{\alpha} \geq 0$ and $\lim _{t \rightarrow \infty} \beta(t)=\bar{\beta} \geq 0$ with (again) $\bar{\beta}-\frac{1}{4} \bar{\alpha}^{2}>0$. Assuming that $\lim _{t \rightarrow \infty} \dot{\alpha}(t)=0$, show that $(0,0)$ is asymptotically stable if $\bar{\alpha}>0$ and obtain a condition similar to the one in (a-iii) that establishes the stability - but not necessarily asymptotical stability - of $(0,0)$ if $\bar{\alpha}=0$.
Hint. Introduce $z(t)$ by the Liouville transform $x(t)=z(t) e^{-\frac{1}{2} \int_{0}^{t} \alpha(s) d s}$ and follow (a) and (b).
d) Consider as in (c) $\alpha(t), \beta(t)$ with $\lim _{t \rightarrow \infty} \alpha(t)=\bar{\alpha} \geq 0, \lim _{t \rightarrow \infty} \beta(t)=\bar{\beta} \geq 0$ and $\bar{\beta}-\frac{1}{4} \bar{\alpha}^{2}>0$, but now for functions $\alpha(t)$ for which $\dot{\alpha}(t)$ does not converge as $t \rightarrow \infty$. What goes wrong? Formulate a condition on $\dot{\alpha}(t)$ that guarantees asymptotic stability of $(0,0)$ (and provide a proof). Can you 'optimize' the condition, i.e. make it as weak and simple as possible (within the present approach)?
Note. A function $f(t)$ that converges as $t \rightarrow \infty$ does not necessarily have a converging derivative $\dot{f}(t)$ - consider for instance $f_{n}(t)=\frac{1}{t} \sin t^{n}$ for $n=1,2,3$.

Exercise 2. Consider for $p, q \in \mathbb{R}$ the nonlinear planar system,

$$
\begin{equation*}
\left(p-q \dot{x}^{2}\right) \ddot{x}=f(x), \tag{5}
\end{equation*}
$$

with $f(0)=0$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ analytic as function of x in a neighborhood of 0 - i.e. $f(x)$ has a converging Taylor series expansion around $x=0$. As in exercise 1 , (5) can be interpreted as a two-dimensional system in $\vec{x}=\left(x_{1}, x_{2}\right)=(x, \dot{x})$. For $(p, q) \neq(0,0),(0,0)$ is a critical point of the two-dimensional flow associated to (5).
a) Linearize around $(0,0)$ in the \vec{x}-system associated to (5) and conclude that $(0,0)$ is unstable if $p f^{\prime}(0)>0$.
b) Show that $V\left(x_{1}, x_{2}\right)=\frac{1}{2} p x_{2}^{2}-\frac{1}{4} q x_{2}^{4}-F\left(x_{1}\right)$, with $F(x)=\int_{0}^{x} f(\xi) d \xi$, is a constant of motion for (5), i.e. show that $\frac{d}{d t} V\left(x_{1}(t), x_{2}(t)\right)=\frac{d}{d t} V(x(t), \dot{x}(t)) \equiv 0$ for solutions of (5).
c) Assume that $p \neq 0$ and $f^{\prime}(0) \neq 0$ and show that $(0,0)$ is stable if $p f^{\prime}(0)<0$.

Hint. Use $\pm V\left(x_{1}, x_{2}\right)$ as a Lyapunov function (for $\left(x_{1}, x_{2}\right)$ sufficiently close to $\left.(0,0)\right)$.
d) Assume that $p \neq 0$ that $f(x)$ is such that $f^{\prime}(0)=0$ and $f^{\prime \prime}(0) \neq 0$. Show that $(0,0)$ is unstable.

Hint. By (b), orbits of the flow associated to (5) lie on level sets $V\left(x_{1}, x_{2}\right)=h$ of V. Determine the local structure of the level sets of V near $(0,0)$ and the direction of the flow on these level sets. (Give a sketch!) Argue that $(0,0)$ cannot be stable by the definition of (in)stability.
e) Assume that $p=0$ and show that $(0,0)$ is stable if $q f^{\prime}(0)>0$ and unstable if $q f^{\prime}(0)<0$.
f) Determine the stability of $(0,0)$ for general $p, q \in \mathbb{R}$ (with $(p, q) \neq(0,0))$ and general $f(x)$ (analytic near 0 with $f(0)=0)$.

