EXERCISES Introduction to Dynamical Systems '17-'18: Series I

Date: 18-09-'17.

Exercise 1. Consider the planar system

$$\ddot{x} - x + x^2 = 0 \text{ or } \begin{cases} \dot{x} = y, \\ \dot{y} = x - x^2. \end{cases}$$
 (1)

This system defines a flow $\phi(t;x,y):\mathbb{R}^2\to\mathbb{R}^2$ parameterized by time $t:\phi(t;x_0,y_0)\in\mathbb{R}^2$ is the value of the solution of (1) with initial condition (x_0, y_0) at time t; orbits are denoted by $\Gamma(x_0, y_0)$ or by $\Gamma^{\pm}(x_0, y_0)$.

- System (1) is integrable with Hamiltonian H, i.e. solutions of (1) are given as level sets of a function H(x,y). Determine H(x,y). Hint: Apply the standard procedure: multiply $\ddot{x} - x + x^2 = 0$ by $\dot{x}(=y)$ and integrate over time.
- Give a sketch of the phase portrait of (1), or equivalently, of the orbits of the flow generated by (1).
- Define $S_p \subset \mathbb{R}^2$ as the set of all initial conditions such that the orbit $\Gamma(x_0, y_0)$ is periodic (in time, with minimal period T > 0). Determine S_p and give a sketch.
- Define $S_+ \subset \mathbb{R}^2$ as the set of all initial conditions such that the limit for $t \to \infty$ of the orbit $\Gamma^+(x_0, y_0)$ cii) exists. Determine S_+ and give a sketch. Do the same for $S_- \subset \mathbb{R}^2$ – the set of all initial conditions such that the limit $t \to -\infty$ of $\Gamma^-(x_0, y_0)$ exists.
- Define $S_{\infty} \subset \mathbb{R}^2$ as the set of all initial conditions such that both limits $t \to \infty$ and $t \to -\infty$ exist for ciii) the (full) orbit $\Gamma(x_0, y_0)$. Determine \mathcal{S}_{∞} and give a sketch.
- The solutions $\gamma(t;(x_0,y_0))$ of (1) with $(x_0,y_0)\in\mathcal{S}_{\infty}$ can be determined explicitly. To see this, introduce $\tilde{\gamma}(t) = \alpha(\cosh \beta t)^{-2}$, with $\alpha, \beta \in \mathbb{R}$ parameters that can a priori be chosen freely (note that $\lim_{t\to\pm\infty}\tilde{\gamma}(t)=0$). Substitute $\tilde{\gamma}(t)$ in (1) and determine α and β . For these (special) values of α and β , a one-parameter family of solutions of (1) is determined by $\tilde{\gamma}(t-\tau)$, $\tau \in \mathbb{R}$. Express $\gamma(t;(x_0,y_0))$ in terms $\tilde{\gamma}(t-\tau)$ (or more explicitly: express (x_0,y_0) in terms of τ (or vice versa)).
- The solutions $\gamma(t;(x_0,y_0))$ of (1) with $(x_0,y_0)\in\mathcal{S}_-\setminus\mathcal{S}_\infty$, i.e. solutions that have a well-defined limit as $t \to -\infty$ but not as $t \to \infty$, can also be determined along these lines. Show that these solutions blow up in a finite time T_* . Relate T_* to (x_0, y_0) . *Hint:* Replace $\cosh \beta t$ in $\tilde{\gamma}(t)$ of (d) by $\sinh \beta t$.
- It follows from (e) that the flow $\phi(t, x, y)$ is not defined for all $t \in \mathbb{R}$ for general (x_0, y_0) (!). Discuss whether this is also the case (or not?) for the system $\ddot{x} - x + x^3 = 0$. And for $\ddot{x} - x - x^3 = 0$? Hint: The equivalents of the special solutions constructed in (d) and (e) can be found by considering $\check{\gamma}(t) = \alpha(\cosh \beta \text{ or } \sinh \beta t)^{-n}, \text{ with } \alpha, \beta \in \mathbb{R}, n > 0.$

Exercise 2. Consider the non-autonomous equation,

$$\dot{x} = t^2 + [\sin(x+t)]x$$
, with $x(0) = x_0$, (2)

and its autonomous equivalent,

$$\begin{cases} \dot{x} = y^2 + [\sin(x+y)]x, \\ \dot{y} = 1, \end{cases} \text{ with } (x(0), y(0)) = (x_0, 0).$$
 (3)

Note that it is clear from the theory of Chapter 3 in the book that equation (2)/system (3) must have a uniquely defined solution on a certain time interval.

- Explain why we cannot conclude from Theorems 4.3 and 4.5 (in the book) that equation (2)/system (3) a) defines a complete flow.
- b)
- Use (2) to prove that $|x(t)| \le |x(0)| + \frac{1}{3}t^3 + \int_0^t |x(s)| ds$. Introduce the functions $\alpha(t), z(t) \ge 0$ by $|x(t)| = z(t) \alpha(t)$ and substitute this into the estimate in (b). Construct an explicit function $\alpha(t)$ in such a way that z(t) satisfies the estimate $z(t) \leq K + \int_0^t z(s)ds$ for some K > 0.
- Apply Grönwall's Lemma (Lemma 3.13 in the book) to the estimate on z(t) in (c) and conclude from that that $|x(t)| \leq Ke^t$ for all $t \geq 0$.
- Prove that equation (2)/system (3) defines a complete flow.