EXERCISES Introduction to Dynamical Systems '17-'18: Series I

Date: 18-09-'17.

Exercise 1. Consider the planar system

$$
\ddot{x}-x+x^{2}=0 \text { or }\left\{\begin{array}{l}
\dot{x}=y, \tag{1}\\
\dot{y}=x-x^{2} .
\end{array}\right.
$$

This system defines a flow $\phi(t ; x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ parameterized by time $t: \phi\left(t ; x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ is the value of the solution of (1) with initial condition $\left(x_{0}, y_{0}\right)$ at time t; orbits are denoted by $\Gamma\left(x_{0}, y_{0}\right)$ or by $\Gamma^{ \pm}\left(x_{0}, y_{0}\right)$.
a) System (1) is integrable with Hamiltonian H, i.e. solutions of (1) are given as level sets of a function $H(x, y)$. Determine $H(x, y)$.
Hint: Apply the standard procedure: multiply $\ddot{x}-x+x^{2}=0$ by $\dot{x}(=y)$ and integrate over time.
b) Give a sketch of the phase portrait of (1), or equivalently, of the orbits of the flow generated by (1).
ci) Define $\mathcal{S}_{p} \subset \mathbb{R}^{2}$ as the set of all initial conditions such that the orbit $\Gamma\left(x_{0}, y_{0}\right)$ is periodic (in time, with minimal period $T>0$). Determine \mathcal{S}_{p} and give a sketch.
cii) Define $\mathcal{S}_{+} \subset \mathbb{R}^{2}$ as the set of all initial conditions such that the limit for $t \rightarrow \infty$ of the orbit $\Gamma^{+}\left(x_{0}, y_{0}\right)$ exists. Determine \mathcal{S}_{+}and give a sketch. Do the same for $\mathcal{S}_{-} \subset \mathbb{R}^{2}$ - the set of all initial conditions such that the limit $t \rightarrow-\infty$ of $\Gamma^{-}\left(x_{0}, y_{0}\right)$ exists.
ciii) Define $\mathcal{S}_{\infty} \subset \mathbb{R}^{2}$ as the set of all initial conditions such that both limits $t \rightarrow \infty$ and $t \rightarrow-\infty$ exist for the (full) orbit $\Gamma\left(x_{0}, y_{0}\right)$. Determine \mathcal{S}_{∞} and give a sketch.
d) The solutions $\gamma\left(t ;\left(x_{0}, y_{0}\right)\right)$ of (1) with $\left(x_{0}, y_{0}\right) \in \mathcal{S}_{\infty}$ can be determined explicitly. To see this, introduce $\tilde{\gamma}(t)=\alpha(\cosh \beta t)^{-2}$, with $\alpha, \beta \in \mathbb{R}$ parameters that can a priori be chosen freely (note that $\left.\lim _{t \rightarrow \pm \infty} \tilde{\gamma}(t)=0\right)$. Substitute $\tilde{\gamma}(t)$ in (1) and determine α and β. For these (special) values of α and β, a one-parameter family of solutions of (1) is determined by $\tilde{\gamma}(t-\tau), \tau \in \mathbb{R}$. Express $\gamma\left(t ;\left(x_{0}, y_{0}\right)\right)$ in terms $\tilde{\gamma}(t-\tau)$ (or more explicitly: express $\left(x_{0}, y_{0}\right)$ in terms of τ (or vice versa)).
e) The solutions $\gamma\left(t ;\left(x_{0}, y_{0}\right)\right)$ of (1) with $\left(x_{0}, y_{0}\right) \in \mathcal{S}_{-} \backslash \mathcal{S}_{\infty}$, i.e. solutions that have a well-defined limit as $t \rightarrow-\infty$ but not as $t \rightarrow \infty$, can also be determined along these lines. Show that these solutions blow up in a finite time T_{*}. Relate T_{*} to $\left(x_{0}, y_{0}\right)$.
Hint: Replace $\cosh \beta t$ in $\tilde{\gamma}(t)$ of (d) by $\sinh \beta t$.
f) It follows from (e) that the flow $\phi(t, x, y)$ is not defined for all $t \in \mathbb{R}$ for general (x_{0}, y_{0}) (!). Discuss whether this is also the case (or not?) for the system $\ddot{x}-x+x^{3}=0$. And for $\ddot{x}-x-x^{3}=0$?
Hint: The equivalents of the special solutions constructed in (d) and (e) can be found by considering $\check{\gamma}(t)=\alpha(\cosh \beta \text { or } \sinh \beta t)^{-n}$, with $\alpha, \beta \in \mathbb{R}, n>0$.

Exercise 2. Consider the non-autonomous equation,

$$
\begin{equation*}
\dot{x}=t^{2}+[\sin (x+t)] x, \text { with } x(0)=x_{0} \tag{2}
\end{equation*}
$$

and its autonomous equivalent,

$$
\left\{\begin{array}{l}
\dot{x}=y^{2}+[\sin (x+y)] x, \quad \text { with }(x(0), y(0))=\left(x_{0}, 0\right) . \tag{3}\\
\dot{y}=1,
\end{array}\right.
$$

Note that it is clear from the theory of Chapter 3 in the book that equation (2)/system (3) must have a uniquely defined solution on a certain time interval.
a) Explain why we cannot conclude from Theorems 4.3 and 4.5 (in the book) that equation (2)/system (3) defines a complete flow.
b) Use (2) to prove that $|x(t)| \leq|x(0)|+\frac{1}{3} t^{3}+\int_{0}^{t}|x(s)| d s$.
c) Introduce the functions $\alpha(t), z(t) \geq 0$ by $|x(t)|=z(t)-\alpha(t)$ and substitute this into the estimate in (b). Construct an explicit function $\alpha(t)$ in such a way that $z(t)$ satisfies the estimate $z(t) \leq K+\int_{0}^{t} z(s) d s$ for some $K>0$.
d) Apply Grönwall's Lemma (Lemma 3.13 in the book) to the estimate on $z(t)$ in (c) and conclude from that that $|x(t)| \leq K e^{t}$ for all $t \geq 0$.
e) Prove that equation (2)/system (3) defines a complete flow.

