Let A be a local ring (commutative with 1) with maximal ideal m. The projection maps $A \to A/m^n$ for $n = 1, 2, \ldots$, induce a local homomorphism of local rings

$$c_A : A \to \widehat{A} = \lim_{\leftarrow n} A/m^n.$$

We say that A is complete if c_A is an isomorphism. We denote the maximal ideal of \widehat{A} by \widehat{m}. Let M_i be the kernel of the surjective projection map $\widehat{A} \to A/m^i$.

Proposition 1 The local ring \widehat{A} is complete if and only if $M_n = \widehat{m}^n$ for each $n \geq 1$.

Proof. For each n the projection map $\widehat{A} \to A/m^n$ gives rise to a short exact sequence

$$0 \to (M_n/\widehat{m}^n) \to (\widehat{A}/\widehat{m}^n) \to (A/m^n) \to 0.$$

If we let n run this becomes a short exact sequence of projective systems. The projection map $\widehat{A} \to A/m^{n+1}$ sends \widehat{m}^n onto m^n/m^{n+1}, so $\widehat{m}^n + M_{n+1} = M_n$. This implies that the system on the left has surjective transition maps. By Mittag-Leffler we get a short exact sequence of projective limits:

$$0 \to \lim_{\leftarrow n} M_n/\widehat{m}^n \to \widehat{A} \xrightarrow{g_A} A \to 0.$$

It follows that g_A is an isomorphism if and only if all M_n/\widehat{m}^n are zero. But we have $g_Ac_A = \text{id}_\widehat{A}$, so g_A is an isomorphism if and only if c_A is an isomorphism. □

Proposition 2 For any local ring A for which \widehat{A} is not complete, the ring \widehat{A} is not complete either.

Proof. For each $n \geq 1$ we consider the diagram

$$
\begin{array}{ccccccc}
0 & \to & \lim_{\leftarrow n} M_n/\widehat{m}^n & \to & \widehat{A} & \xrightarrow{g_A} & A & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & M_n/\widehat{m}^n & \to & A/\widehat{m}^n & \to & A/m^n & \to & 0 \\
\end{array}
$$
in which the rows are exact and the vertical maps are surjective. By the snake lemma the kernel K_n of the middle vertical map maps surjectively to M_n. Thus, K_n/K_1^n surjects to M_n/M_1^n, and by the previous criterion, \hat{A} is not complete. \(\square\)

The next result is exercise 12 in Bourbaki, Commutative Algebra, Ch. II sec. 2 (p. 235/236).

Proposition 3 There is a local ring A so that \hat{A} is not complete.

Proof. Let K be a field. Let A_d be the localisation of $K[X_1, \ldots, X_d]$ at the maximal ideal (X_1, \ldots, X_d), and let A be the union of all A_d. Let m be the maximal ideal of A and let m_d be the maximal ideal of A_d. Note that \hat{A} is the power series ring $K[[X_1, X_2, \ldots]]$ in which all elements have only finitely many terms of each total degree. In particular, for any monomial in the variables X_1, X_2, \ldots we can consider the coefficient of an element of \hat{A} at that monomial.

We will show that $M_2 \neq \hat{m}^2$.

First note that for $a < b$ a polynomial map from affine a-space over K to affine b-space over K is not surjective on K-rational points (finite K: cardinality; infinite K: algebraic geometry).

We will construct a sufficient condition for an element of M_2 not being an n-term sum of products of two elements of \hat{m}. For each d and $n \geq 2$ we look at the image of a polynomial map of affine spaces over K:

$$f_d : (m_d/m_d^n \times m_d/m_d^n)^n \longrightarrow m_d^n/m_d^{n+1},$$

that sends $(x_i, y_i)_{i=1}^n$ to the degree n part of $\sum x_i y_i$. For fixed n the K-dimension of the affine space on the right is a polynomial of degree n in d with a positive leading coefficient and on the left it is a polynomial of degree $n - 1$ in d. (In fact, on the left it is $2n\binom{d+n-1}{n-1} - 1$, and on the right it is $\binom{d+n-1}{n}$. For given n this implies that for sufficiently large d there is a homogeneous polynomial s_n of degree n in d variables which is not in the image of f_d. By considering the map $\hat{A} \rightarrow A_d/m_d^{n+1}$ that sends all variables X_i with $i > d$ to zero we see that any power series in M_2 which has s_n as its degree-n-part is not a sum of n products of pairs of elements of \hat{m}. By summing the elements s_n over all $n \geq 2$ we find an element of M_2 that is not in \hat{m}^2. \(\square\)