Standard models for finite fields: the definition

Bart de Smit and Hendrik W. Lenstra jr.
Mathematisch Instituut, Universiteit Leiden

Cyclotomic rings. Let r be a prime number and write $\mathbf{r}=r \cdot \operatorname{gcd}(r, 2)$. We write \mathbb{Z}_{r} for the ring of r-adic integers, \mathbb{Z}_{r}^{*} for its group of units, and Δ_{r} for the torsion subgroup of \mathbb{Z}_{r}^{*}; the group Δ_{r} is cyclic of order $\varphi(\mathbf{r})$, where φ denotes the Euler φ-function.

The ring A_{r} is defined to be the polynomial ring $\mathbb{Z}\left[X_{0}, X_{1}, X_{2}, \ldots\right]$ modulo the ideal generated by $\left\{\sum_{j=0}^{r-1} X_{0}^{j \mathbf{r} / r}, X_{k+1}^{r}-X_{k}: k \geq 0\right\}$. For $k \in \mathbb{Z}_{\geq 0}$, we write $\zeta_{\mathbf{r} r^{k}}$ for the residue class of X_{k} in A_{r}, which is a unit of multiplicative order $\mathbf{r} r^{k}$. For each $u \in \mathbb{Z}_{r}^{*}$ there is a unique ring automorphism of A_{r} that maps each
 $\zeta_{\mathbf{r} r^{k}}$ to $\zeta_{\mathbf{r} r^{k}}^{\bar{u}}$, where $\bar{u}=\left(u \bmod \mathbf{r} r^{k}\right)$; we denote this ring automorphism by σ_{u}.

The ring B_{r} is defined by $B_{r}=\left\{a \in A_{r}: \sigma_{u}(a)=a\right.$ for all $\left.u \in \Delta_{r}\right\}$. For $k \in \mathbb{Z}_{>0}$, $i \in\{0,1, \ldots, r-1\}$ the element $\eta_{r, k, i} \in B_{r}$ is defined by $\eta_{r, k, i}=\sum_{u \in \Delta_{r}} \sigma_{u}\left(\zeta_{\mathbf{r} r^{k}}^{1+\mathbf{r} r^{k-1}}\right)$.

Prime ideals. Let p, r be prime numbers with $p \neq r$, and let l be the number of factors r in the integer $\left(p^{\varphi(\mathbf{r})}-1\right) /\left(\mathbf{r}^{2} / r\right)$. Denote by $S_{p, r}$ the set of prime ideals \mathfrak{p} of B_{r} that satisfy $p \in \mathfrak{p}$. This set is finite of cardinality r^{l}, and for each $\mathfrak{p} \in S_{p, r}$ there exists a unique system $\left(a_{\mathfrak{p}, j}\right)_{0 \leq j<l r}$ of integers $a_{\mathfrak{p}, j} \in\{0,1, \ldots, p-1\}$ such that \mathfrak{p} is generated by p together with $\left\{\eta_{r, k+1, i}-a_{\mathfrak{p}, i+k r}: 0 \leq k<l, 0 \leq i<r\right\}$. We define a total ordering
on $S_{p, r}$ by putting $\mathfrak{p}<\mathfrak{q}$ if there exists $h \in\{0,1, \ldots, l r-1\}$ such that $a_{\mathfrak{p}, j}=a_{\mathfrak{q}, j}$ for all $j<h$ and $a_{\mathfrak{p}, h}<a_{\mathfrak{q}, h}$. The smallest element of $S_{p, r}$ in this ordering is denoted by $\mathfrak{p}_{p, r}$.

We define $\mathbb{F}_{p, r}$ to be the ring $B_{r} / \mathfrak{p}_{p, r}$, and for $k \in \mathbb{Z}_{>0}$ we define $\alpha_{p, r, k} \in \mathbb{F}_{p, r}$ to be the residue class of $\eta_{r, k+l, 0}$ modulo $\mathfrak{p}_{p, r}$.

Equal characteristic. Let p be a prime number and put $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Let the element $f=f(X, Y)$ of the polynomial ring $\mathbb{F}_{p}[X, Y]$ be defined by $f=X^{p}-1-Y \cdot \sum_{i=1}^{p-1} X^{i}$. We define $\mathbb{F}_{p, p}$ to be the polynomial ring $\mathbb{F}_{p}\left[X_{1}, X_{2}, X_{3}, \ldots\right]$ modulo the ideal generated by $\left\{f\left(X_{1}, 1\right), f\left(X_{k+1}, X_{k}\right): k>0\right\}$. For $k \in \mathbb{Z}_{>0}$ we denote the image of X_{k} in $\mathbb{F}_{p, p}$ by $\alpha_{p, p, k}$.

An algebraic closure. Let p be a prime number. Then for any prime number r it is true that the ring $\mathbb{F}_{p, r}$ is a field containing \mathbb{F}_{p}; that for each $k \in \mathbb{Z}_{>0}$, the element $\alpha_{p, r, k}$ of $\mathbb{F}_{p, r}$ is algebraic of degree r^{k} over \mathbb{F}_{p}; and that one has $\mathbb{F}_{p, r}=\mathbb{F}_{p}\left(\alpha_{p, r, 1}, \alpha_{p, r, 2}, \ldots\right)$.

We write $\overline{\mathbb{F}}_{p}$ for the tensor product, over \mathbb{F}_{p}, of the rings $\mathbb{F}_{p, r}$, with r ranging over the set of all prime numbers. For any prime number r and $k \in \mathbb{Z}_{>0}$, the image of $\alpha_{p, r, k}$ under the natural ring homomorphism $\mathbb{F}_{p, r} \rightarrow \overline{\mathbb{F}}_{p}$ is again denoted by $\alpha_{p, r, k}$.

The ring $\overline{\mathbb{F}}_{p}$ is a field containing \mathbb{F}_{p}, and it is an algebraic closure of \mathbb{F}_{p}. We have $\overline{\mathbb{F}}_{p}=\mathbb{F}_{p}\left(\alpha_{p, r, k}: r\right.$ prime, $\left.k \in \mathbb{Z}_{>0}\right)$, each $\alpha_{p, r, k}$ being algebraic of degree r^{k} over \mathbb{F}_{p}.
A vector space basis. Let p be a prime number. For each $s \in \mathbb{Q} / \mathbb{Z}$, the element $\epsilon_{s} \in \overline{\mathbb{F}}_{p}$ is defined as follows. There exists a unique system of integers $\left(c_{r, k}\right)_{r, k}$, with r ranging over the set of prime numbers and k over $\mathbb{Z}_{>0}$, such that each $c_{r, k}$ belongs to $\{0,1, \ldots, r-1\}$ and s equals the residue class of $\sum_{r, k} c_{r, k} / r^{k}$ modulo \mathbb{Z}, the sum being finite in the sense that $c_{r, k}=0$ for all but finitely many pairs r, k. With that notation, ϵ_{s} is defined to be the finite product $\prod_{r, k} \alpha_{p, r, k}^{c_{r, k}}$.

The system $\left(\epsilon_{s}\right)_{s \in \mathbb{Q} / \mathbb{Z}}$ is a vector space basis of $\overline{\mathbb{F}}_{p}$ over \mathbb{F}_{p}. In addition, for each $s \in \mathbb{Q} / \mathbb{Z}$ the degree of ϵ_{s} over \mathbb{F}_{p} equals the order of s in the additive group \mathbb{Q} / \mathbb{Z}.

For any $n \in \mathbb{Z}_{>0}$, the \mathbb{F}_{p}-span of $\left\{\epsilon_{s}: s \in \mathbb{Q} / \mathbb{Z}, n s=0\right\}$ is the unique subfield of $\overline{\mathbb{F}}_{p}$ of cardinality p^{n}; it is denoted by $\mathbb{F}_{p^{n}}$.

Standard models for finite fields. Let p be a prime number and let n be a positive integer. Denote by $e_{0}, e_{1}, \ldots, e_{n-1}$ the standard basis of \mathbb{F}_{p}^{n} over \mathbb{F}_{p}, and write ψ for the unique \mathbb{F}_{p}-vector space isomorphism $\mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p^{n}}$ sending e_{i} to $\epsilon_{i / n \bmod \mathbb{Z}}$, for $0 \leq i<n$. Define a multiplication map on \mathbb{F}_{p}^{n} by $v \cdot w=\psi^{-1}(\psi(v) \cdot \psi(w))$, for $v, w \in \mathbb{F}_{p}^{n}$. Together with vector addition, this multiplication makes \mathbb{F}_{p}^{n} into a field with unit element e_{0}. This field is defined to be the standard model for a finite field of cardinality p^{n}.

