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Abstract. The Hawaiian earring is a topological space which is a countably infinite union of circles, that

are all tangent to a single line at the same point, and whose radii tend to zero. In this note a short proof is

given of a result of J.W. Morgan and I. Morrison that describes the fundamental group of this space. It is

also shown that this fundamental group is not a free group, unlike the fundamental group of a wedge of an

arbitrary number of circles.

Key words: Fundamental groups, Van Kampens theorem, free groups, projective limits.

1980 Mathematics subject classification (1985): 20E05, 20F34, 57M05.

1. Introduction.

For each positive integer n, let Cn ⊂ C be the the circle {z ∈ C : |z − 1
n
| = 1

n
}.

The union
⋃∞

n=1 Cn is a topological space H ⊂ C called the Hawaiian earring. On a

homework assignment to an algebraic topology course, M.W. Hirsch asked whether the

fundamental group π1(H) of H with base-point 0 is a free group. In the following an

algebraic description of π1(H) is given, and it is shown that it is torsion free, but not

free.

In a wedge X of an arbitrary number of circles each loop can only go around finitely

many circles, because a loop has a compact image, and consequently the fundamental

group of X is free on the obvious generators. In the case of the Hawaiian earring

however, we have a coarser topology admitting more loops. For instance, let f :

[0, 1]→ H be a loop that goes around C1 on the middle third part of the unit interval,

around C2 on the middle third part of each of the remaining intervals, etcetera. This

defines f as a map [0, 1]→ H, and f is continuous because any open neighborhood of

0 in H contains all Ci with i sufficiently large. Note that f−1(0) is the Cantor set in

the unit interval.

The results in this note are not new, but the proofs are. The algebraic descrip-

tion of the group π1(H) was first given in [1], but more recently J.W. Morgan and

I. Morrison found a flaw, and published an alternative proof (see [4]). In the purely

group-theoretical paper [2, section 6], G. Higman mentions the same group, and shows

that it is not free. A different argument, suggested by H.W. Lenstra, Jr., will be given

for this in section 3.
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For more background on free groups, free products and reduced words, we refer to

[3].

2. An algebraic description.

The space Hn =
⋃n

i=1 Cn is a wedge of n circles, and it follows from Van Kampen’s

theorem that the fundamental group π1(Hn) is a free group on n generators l1, . . . , ln,

where li is the homotopy class of a loop that wraps around Ci once (so li is a generator

of π1(Ci)).

For each n ≥ 0 we have a retraction H → Hn collapsing the loops Ci with i > n to

0. Therefore we may view Fn as a subgroup of π1(H), and the retraction induces a map

from π1(H) to Fn The restricted retractions Hn → Hn−1 induce group homomorphisms

Fn → Fn−1 fixing li for i < n, and mapping ln to 1. The groups Fn form a projective

system of groups, and we get a canonical group homomorphism

ϕ : π1(H) → F = lim
←−
n≥1

Fn.

Recall that the projective limit F is the subgroup of the product
∏∞

i=1 Fi consisting of

those elements (fi)i for which the map Fi → Fi−1 sends fi to fi−1 for all i > 1. We

will write down elements of F by specifying each coordinate.

It will turn out that ϕ maps π1(H) isomorphically to a subgroup π of F which can

be roughly described as the subgroup consisting of the elements (fi)i ∈ F for which

the following condition holds for each j ≥ 1: the number of times that lj occurs in the

reduced word representation of fi is a bounded function of i.

For a more precise formulation, define the j-weight wj(x) of an element x ∈ Fi as

follows: first write x as a reduced word x = g(1)a1g(2)a2 · · · g(s)as , where each ak is a

non-zero integer and g a map {1, 2, . . . , s} → {l1, l2, . . . , li} with g(k) 6= g(k + 1) for

any k. Now put

wj(x) =
∑

g(k)=lj

|ak|.

Note that wj(x) is well defined as the representation of x as a reduced word is unique.

Now let π be the subgroup of F consisting of all elements (xi)i ∈ F such that for every

j ∈ Z≥1 the function Z≥1 → Z defined by i 7→ wj(xi) is bounded.

For j > 0 define F≥j = {(xi)i ∈ F : wk(xi) = 0 for all i and all k < j}, and put

π≥j = π ∩ F≥j . The next lemma will turn out to be an instance of the Van Kampen

theorem, once we know that π is π1(H), but at this point we have to prove it by

group-theoretic means.

Lemma. The group π is the free sum Fj−1 ∗ π≥j of its subgroups Fj−1 and π≥j .
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Proof. The subgroup of π generated by Fj−1 and π≥j is their free sum because of

the unique reduced word representation in the free groups Fi. If x = (xi)i ∈ F then

the condition x ∈ π implies that the number of occurrences of elements of Fj−1 in the

reduced representation of xi is a bounded function of i. Again by uniqueness of the

reduced word representation, it follows that x is a finite product of elements of Fj−1

and of π≥j . ¤

Proposition. The image of the homomorphism ϕ : π1(H)→ F is π.

Proof. Let f : [0, 1] → H be a loop at 0. By Van Kampens theorem, π1(H) =

F1 ∗ π1(C≥2), where C≥2 =
⋃

n≥2 Cn. So after a homotopy, we may assume that f is

a composition of loops f0 ∗ e1 ∗ f1 ∗ · · · ∗ es ∗ fs where the ei are loops in C1 and the

fi are loops in C≥2 =
⋃

n≥2 Cn. We have w1(ϕ(fi)) = 0 and for n > 1 this implies

w1(ϕ(f)n) ≤
∑s

i=1 w1(ϕ(ei)), which is a bounded function of n. Repeating the same

argument shows that for every i the function w2(ϕ(fi)n) of n is bounded, so that

w2(ϕ(f)n) is also bounded. Using induction we obtain that ϕ(f) ∈ π, so the image of

ϕ lies in π.

Now let x = (xi)i ∈ π. We will construct a loop f : [0, 1] → H such that

the homotopy class of f is mapped to x by ϕ. By the lemma we can write x as

y0e1y1e2y2 · · · esys with ei ∈ {l1, l
−1
1 } and yi ∈ π≥1. Accordingly, we divide the unit

interval in 2s + 1 intervals Ii = [ i
2s+1 , i+1

2s+1 ] where 0 ≤ i ≤ 2s, and define a map

f1 : [0, 1]→ H to be zero on the intervals I2i, and to go around C1 in the appropriate

direction on the interval I2i−1, so that the homotopy class of the loop f1|I2i−1 is ei for

i = 1, 2, . . . , s.

Next we break up each yi ∈ π≥2 into elements l±1
2 and elements of π≥3, and divide

the interval I2i accordingly. Then we define a map f2, that only differs from f1 on

subintervals of I2i, where it gives the l2-pattern in yi. This way we get a uniformly

convergent sequence f1, f2, . . . of loops in H, so they converge to a continuous loop f

in H. As the image of ϕ(f) in Fn is xn, it follows that ϕ(f) = x. ¤

Proposition. The canonical map ϕ : π1(H)→ F is injective.

Proof. Let f : [0, 1]→ H be a loop, whose image in F is 1. We want to construct null-

homotopy for f , i.e., a homotopy of f with the constant loop. As in the previous proof,

we first homotop f to a composition of loops f0∗e1∗f1∗· · ·∗es∗fs where the ei are loops

in C1 and the fi are loops in C≥2. Then ϕ(fi) ∈ π≥2 and ϕ(ei) ∈ F1, and since ϕ(f) = 1,

the word ϕ(f0)ϕ(e1)ϕ(f1) · · ·ϕ(es)ϕ(fs) in the free sum F1 ∗ π≥2 can be reduced to 1.

We can now make a null-homotopy for f by following the cancellation steps to reduce

this word to 1, provided that we can find a homotopy to the constant loop for loops

in C≥2 that are in the kernel of ϕ. In other words we can define the homotopy on
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part of [0, 1]× [0, 1], and on the remaining parts we still need to fill in a null-homotopy

for certain loops in C≥2 that we know to be null-homotopic. But to construct such

a homotopy we follow the same procedure to obtain a word in π1(C2) ∗ π≥3 that can

be reduced to 1, etcetera. Taking the union of the sequence of “partial homotopies”

obtained by this inductive procedure, we obtain the required null-homotopy for f . ¤

Since F is torsion free, this shows that π1(H) is torsion free.

3. Proof that the fundamental group is not free.

In this section, a group-theoretical proof is given that π is not free. First note that π is

uncountable. An uncountable free group F is free on uncountably many generators, and

therefore Hom(F, Z) is uncountable. So it suffices to show that Hom(π, Z) is countable.

We start with a lemma.

Lemma. For each positive integer j let x(j) = (x
(j)
i )i be an element of F such that

x
(j)
i = 1 for all i < j. Then there is a homomorphism f : F → F sending lj to x(j) for

all j. If x(j) ∈ π≥j for all j, then f(π) ⊂ π.

Proof. As Fn is a free group on l1, . . . , ln, there are unique group homomorphisms

fn : Fn → Fn sending lj to x
(j)
n for j ≤ n. As we have x

(j)
i = 1 for i < j, we have a

commutative diagram:
F1 ´ F2 ´ F3 ´ · · ·

↓ ↓ ↓

F1 ´ F2 ´ F3 ´ · · ·

This induces a homomorphism f : F → F of the projective limits, that satisfies the

conditions.

Now suppose y = (yi)i ∈ F and fix k ≥ 1 then

wk(f(y)n) = wk(fn(yn)) ≤
n∑

j=1

wj(yn)wk(fn(lj)) =
n∑

j=1

wj(yn)wk(x(j)
n ).

If x(j) ∈ π≥j for each j, then the terms with j > k on the right hand side vanish. If

in addition y ∈ π then the remaining k terms are all bounded functions of n, so that

wk(f(y)n) is a bounded function of n and f(y) ∈ π. This shows the last statement. ¤

Proposition. Let f be a homomorphism from π to Z. Then f(li) = 0 for all sufficiently

large i.

Proof. Suppose that f(li1), f(li2), . . . are non-zero for some i1 < i2 < · · ·. By the

lemma there is a homomorphism g : π → π mapping lj to l±3
ij

where the sign in the

exponent is chosen to be the sign of f(lij
). By replacing f by f ◦ g we may now assume

that f(li) ≥ 3. Put ai = f(li).
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For every j ≥ 1 define the element x(j) = (x
(j)
i )i ∈ π by x

(j)
i =1 if i < j, and for

i ≥ j:

x
(j)
i = lj(lj+1(· · · (li−1l

ai−1

i )ai−2 · · ·)aj+1)aj .

The integer f(x(1)) now satisfies congruence conditions that are too strong to hold for

any integer. First note that x(j) = lj(x
(j+1))aj , so f(x(j)) = aj +ajf(x(j+1)). If follows

that

f(x(1)) = a1 + a1a2 + · · ·+ a1a2 · · · an + a1a2 · · · anf(x(n)).

Put bn = a1 +a1a2 + · · ·+a1a2 · · · an−1 and cn = a1a2 · · · an, then f(x(1)) ≡ bn mod cn.

Now bn < cn and bn tends to infinity. If f(x(1)) ≥ 0 then f(x(1)) ≥ bn for all n, which

is a contradiction. If f(x(1)) < 0, then f(x(1)) ≤ bn − cn, and we get a contradiction

too, because it follows from the fact that ai ≥ 3 that cn − bn also tends to infinity. ¤

Proposition. Let g be a homomorphism from π to Z such that g(li) = 0 for all i.

Then g = 0.

Proof. Suppose that g(x) 6= 0 for some x ∈ π, then we can write x = f1y1f2y2 · · · fsys

with fi ∈ Fj−1 and yi ∈ π≥j . Now put x≥j = y1y2 · · · ys, then g(x≥j) = g(x) 6= 0 as

g(fi) = 0 for i = 1, . . . , s. By the lemma there is a homomorphism π → π mapping lj

to x≥j . Composing with g, we get a homomorphism π → Z mapping all li to non-zero

integers, contradicting the previous proposition. ¤

These two propositions imply that the homomorphism Hom(π, Z)→
∏

i≥1 Z that sends

a homomorphism g to the tuple (g(l1), g(l2), . . .), maps the group Hom(π, Z) injectively

to
⊕

i≥1 Z, which is countable. This concludes the proof that π is not free.

As subgroups of free groups are free, this implies that the projective limit F of free

groups can not be free either. This can also be shown by replacing π with F is the

above proof, with a slight adaptation in the proof of the last proposition (cf. [2]).

It follows from the proof that all homomorphisms from π to Z factor over Fn for

some n (in other words, all algebraic homomorphism are continuous if we give Z and

Fn the discrete topology and π the induced topology from
∏

n≥1 Fn). Again, the same

is true with F instead of π.

The first homology group of the Hawaiian earring (the abelianized group πab) is

uncountable too, and as it has the same group of homomorphisms to Z as π, the proof

also implies that πab is not free abelian.
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