1. The wreath product

By a permutation group we mean a group G together with a G-set X. An embedding of permutation groups $(G, X) \to (G', X')$ is an injective group homomorphism $G \to G'$ together with a bijection $X \to X'$ which is G-equivariant. When a group G acts on a set Y we denote the image of G in $\text{Sym}(Y)$ by $G|_Y$.

Suppose that (G, X) and (H, Y) are permutation groups. Then the product group $G \times Y = \text{Map}(Y, G)$ acts on $X \times Y$, by acting only on the first coordinate: we have $f(x, y) = (f(y)x, y)$ for all $x \in X$, $y \in Y$ and $f \in \text{Map}(Y, G)$. The group H acts on $X \times Y$ by acting only on the second coordinate. The group H also acts on $G \times Y$ by permuting coordinates: $(hf)(y) = f(h^{-1}(y))$ when $h \in H$, $y \in Y$ and $f \in \text{Map}(Y, G)$. Thus the semidirect product $G \times Y \rtimes H$ acts on $X \times Y$. This permutation group is called the wreath product of (G, X) and (H, Y) and it is denoted by $G \wr H$.

Let (G, Z) be a permutation group and suppose that $p: Z \to Y$ is a surjective map of G-sets, with Y transitive. We define W to be the subgroup of $\text{Sym}(Z)$ that consists of all permutations w of Z that satisfy two conditions:

- w permutes the fibers of p and the induced element of $\text{Sym}(Y)$ lies in $G|_Y$;
- on each fiber of p the map w is multiplication by some element of G.

The first condition says $\exists g \in G \forall z \in Z: p(w(z)) = gp(z)$, and the second condition is $\forall y \in Y \exists g \in G \forall z \in p^{-1}(y): w(z) = gz$.

Clearly, W is a permutation group on Z, and $G|_Z$ is a permutation subgroup of W. Let $H \subset G$ be the stabilizer of a point $y_0 \in Y$ and put $X = p^{-1}(y_0)$.

Theorem 1. The permutation group (W, Z) is isomorphic to $H|_X \wr G|_Y$. The permutation group $(G|_Z, Z)$ can be embedded in $H|_X \wr G|_Y$.

Let us sketch the proof. Choose a right-inverse $s: Y \to G$ of the surjective map $G \to Y$ given by $g \mapsto gy_0$, so we have $s(y)y_0 = y$ for all $y \in Y$. Now consider the map $X \times Y \to Z$ given by $(x, y) \mapsto s(y)x$. Note that for each $y \in Y$ the image of $X \times \{y\}$ in Z is $s(y)X = p^{-1}(y)$. It follows that the map is a bijection and it gives rise to an embedding $H|_X \wr G|_Y \to \text{Sym}(Z)$. To show that its image is contained in W we check that for all $y \in Y$ the
elements \(f \in \text{Map}(Y, H|_X) \) and \(\overline{g} \in G|_Y \) acts on \(s(y)X \) in the same way as some element of \(G \). For \(f \) we may take \(s(y)hs(y)^{-1} \in G \) where \(h \in H \) acts as \(f(y) \) on \(X \), and for \(\overline{g} \) we take \(s(\overline{g}y)s(y)^{-1} \in G \).

To see that the map \(H|_X \wr G|_Y \to W \) is surjective, note first that both surject to \(G|_Y \). It remains to show that any \(w \in W \) which acts trivially on \(Y \) acts on \(Z \) in the same way as some element \(f \in \text{Map}(Y, H|_X) \). To see this, not that for each \(y \) there is a \(g_y \in G \) with \(w(s(y)x) = g_y s(y)x \) for all \(x \in X \). For each \(y \in Y \) the element \(h_y = s(y)^{-1}g_ys(y) \) fixes \(y_0 \), so we have \(h_y \in H \), and we take \(f(y) \) to be the image of \(h_y \) in \(H|_X \). This proves the first statement of the theorem. The second statement is an immediate consequence.

2. The Galois group of a tower of field extensions

Let \(K \) be a field and let \(K \subset L \) be a finite separable field extension. By a normal closure of \(L \) over \(K \) we mean a normal field extension \(N \) of \(K \) that is generated by the images of the \(K \)-embeddings \(L \to N \). The Galois group of \(L \) over \(K \) is the permutation group \((G_{L/K}, X_{L/K}) \) where \(G_{L/K} \) is the Galois group of a normal closure \(N \) of \(L \) over \(K \), and \(X_{L/K} = \text{Hom}_K(L, N) \) is the \(G_{L/K} \)-set of \(K \)-embeddings of \(L \) into \(N \). Note that the choice of \(N \) does not affect the isomorphism type of \((G_{L/K}, X_{L/K}) \).

Recall that \(X_{L/K} \) is a transitive \(G_{L/K} \)-set whose cardinality is the degree of \(L \) over \(K \). We can also think of \(X_{L/K} \) as the set of zeroes in \(N \) of a defining irreducible polynomial for \(L \).

Theorem 2. Let \(K \subset L \subset M \) be finite separable field extensions. Then the Galois group \(G_{M/K} \) of \(M \) over \(K \) can be embedded as a permutation group into the wreath product \(G_{M/L} \wr G_{L/K} \).

To see how this follows from the first theorem, first fix a normal closure \(N \) of \(M \) over \(K \) that contains \(L \). Then \(G = \text{Gal}(N/K) \) acts transitively on \(Z = \text{Hom}_K(M, N) \) which has a quotient \(G \)-set \(Y = \text{Hom}_K(L, N) \). Let \(H \) be the stabilizer in \(G \) of the inclusion map \(y_0 \) in \(Y \). Then the fiber \(X \) over \(y_0 \) in \(Z \) is \(\text{Hom}_L(M, N) \), and it has an action of \(H \). Now apply theorem 1 and use that \((G, Z) \) is the Galois group of \(M \) over \(K \), and that \((H|_X, X) \) is the Galois group of \(M \) over \(L \) and that \((G|_Y, Y) \) is the Galois group of \(L \) over \(K \).

Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, Netherlands
E-mail address: desmit@math.leidenuniv.nl