The ABC-conjecture

Frits Beukers

ABC-day, Leiden 9 september 2005

The ABC-conjecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

The riddle	The conjecture	Consequences	Evidence
ABC-hits			

The product of the distinct primes in a number is called the radical of that number. Notation: rad(). For example,

$$\operatorname{rad}(2^2\times 3^4)=2\times 3=6,\qquad \operatorname{rad}(2\times 3\times 5^2)=2\times 3\times 5=30.$$

The product of the distinct primes in a number is called the *radical* of that number. Notation: rad(). For example,

 $\operatorname{rad}(2^2 \times 3^4) = 2 \times 3 = 6$, $\operatorname{rad}(2 \times 3 \times 5^2) = 2 \times 3 \times 5 = 30$.

▶ Three positive integers A, B, C are called ABC-triple if they are coprime, A < B and

$$A+B=C$$

The product of the distinct primes in a number is called the radical of that number. Notation: rad(). For example,

 $\operatorname{rad}(2^2\times 3^4)=2\times 3=6,\qquad \operatorname{rad}(2\times 3\times 5^2)=2\times 3\times 5=30.$

► Three positive integers A, B, C are called ABC-triple if they are coprime, A < B and</p>

$$A+B=C$$

Compute rad(ABC) and check whether rad(ABC) < C. If this inequality is true we say that we have an ABC-hit!

The product of the distinct primes in a number is called the radical of that number. Notation: rad(). For example,

 $\operatorname{rad}(2^2\times 3^4)=2\times 3=6,\qquad \operatorname{rad}(2\times 3\times 5^2)=2\times 3\times 5=30.$

► Three positive integers A, B, C are called ABC-triple if they are coprime, A < B and</p>

$$A + B = C$$

- Compute rad(ABC) and check whether rad(ABC) < C. If this inequality is true we say that we have an ABC-hit!
- ► Among all 15 × 10⁶ ABC-triples with C < 10000 we have 120 ABC-hits.

The product of the distinct primes in a number is called the radical of that number. Notation: rad(). For example,

 $\operatorname{rad}(2^2\times 3^4)=2\times 3=6,\qquad \operatorname{rad}(2\times 3\times 5^2)=2\times 3\times 5=30.$

► Three positive integers A, B, C are called ABC-triple if they are coprime, A < B and</p>

$$A+B=C$$

- Compute rad(ABC) and check whether rad(ABC) < C. If this inequality is true we say that we have an ABC-hit!
- ► Among all 15 × 10⁶ ABC-triples with C < 10000 we have 120 ABC-hits.
- Among all 380×10^6 *ABC*-triples with *C* < 50000 we have 276 hits.

The riddle	The conjecture	Consequences	Evidence
More hits			

▶ Theorem: There are infinitely many ABC-hits.

- ▶ Theorem: There are infinitely many ABC-hits.
- ▶ Proof: Let us take A = 1 and $C = 3, 3^2, 3^4, 3^8, \dots, 3^{2^k}, \dots$ We determine how many factors 2 occur in $B = 3^{2^k} - 1$.

- ▶ Theorem: There are infinitely many ABC-hits.
- ▶ Proof: Let us take A = 1 and $C = 3, 3^2, 3^4, 3^8, \dots, 3^{2^k}, \dots$ We determine how many factors 2 occur in $B = 3^{2^k} - 1$.

Notice

$$\begin{array}{rcl} 3^{64}-1 &=& (3^{32}+1)(3^{32}-1)\\ &=& (3^{32}+1)(3^{16}+1)(3^{16}-1)\\ && \\ && \\ && \\ && \\ &=& (3^{32}+1)(3^{16}+1)(3^8+1)\cdots(3+1)(3-1)\\ \end{array}$$
 So $3^{64}-1$ is divisible by $2\cdot 2^8$.

- Theorem: There are infinitely many ABC-hits.
- ▶ Proof: Let us take A = 1 and $C = 3, 3^2, 3^4, 3^8, \dots, 3^{2^k}, \dots$ We determine how many factors 2 occur in $B = 3^{2^k} - 1$.
- In general $3^{2^k} 1$ is divisible by 2^{k+2} . So

$$\operatorname{rad}(B) = \operatorname{rad}(3^{2^k} - 1) \le (3^{2^k} - 1)/2^k < C/2^{k+1}$$

We conclude

$$\operatorname{rad}(ABC) = 3 \cdot \operatorname{rad}(B) < 3C/2^{k+1}.$$

The riddle	I he conjecture	Consequences	Evidence
More hits			
 The Proc We In group 	prem: There are infinitely of: Let us take $A = 1$ and determine how many fact eneral $3^{2^k} - 1$ is divisible	<i>c</i> many ABC-hits. If $C = 3, 3^2, 3^4, 3^8, \dots, 3^{2^k}$ cors 2 occur in $B = 3^{2^k} - 3^{2^k}$ by 2^{k+2} . So	í, 1.
	$\mathrm{rad}(B)=\mathrm{rad}(3^{2^k}-1)$	$\leq (3^{2^k} - 1)/2^k < C/2^{k+1}$	-1
We	conclude		
	$rad(ABC) = 3 \cdot$	$\operatorname{rad}(B) < 3C/2^{k+1}.$	

▶ In other words, $C > rad(ABC) \cdot 2^{k+1}/3$. So when $k \ge 1$ we have an *ABC*-hit.

- Theorem: There are infinitely many ABC-hits.
- ▶ Proof: Let us take A = 1 and $C = 3, 3^2, 3^4, 3^8, \dots, 3^{2^k}, \dots$ We determine how many factors 2 occur in $B = 3^{2^k} - 1$.
- In general $3^{2^k} 1$ is divisible by 2^{k+2} . So

$$\operatorname{rad}(B) = \operatorname{rad}(3^{2^k} - 1) \le (3^{2^k} - 1)/2^k < C/2^{k+1}$$

We conclude

$$\operatorname{rad}(ABC) = 3 \cdot \operatorname{rad}(B) < 3C/2^{k+1}.$$

- In other words, C > rad(ABC) · 2^{k+1}/3. So when k ≥ 1 we have an ABC-hit.
- ▶ But we have shown more. For any number M > 1 there exist infinitely many ABC-triples such that C > M · rad(ABC).

The riddle	The conjecture	Consequences	Evidence
Super hite			

 Instead of something linear in rad(ABC) let us take something quadratic.
 Question: Are there ABC-triples such that C > rad(ABC)² ?

- Instead of something linear in rad(ABC) let us take something quadratic.
 Question: Are there ABC-triples such that C > rad(ABC)² ?
- Answer: Unknown

- Instead of something linear in rad(ABC) let us take something quadratic.
 Question: Are there ABC-triples such that C > rad(ABC)² ?
- Answer: Unknown
- Working hypothesis: For every ABC-triple: $C < rad(ABC)^2$.

- Instead of something linear in rad(ABC) let us take something quadratic.
 Question: Are there ABC-triples such that C > rad(ABC)² ?
- Answer: Unknown
- Working *hypothesis*: For every *ABC*-triple: $C < rad(ABC)^2$.
- ► Consequence: Let x, y, z, n be positive integers such that gcd(x, y, z) = 1 and xⁿ + yⁿ = zⁿ. Then the hypothesis implies n < 6.</p>

- Instead of something linear in rad(ABC) let us take something quadratic.
 Question: Are there ABC-triples such that C > rad(ABC)² ?
- Answer: Unknown
- Working hypothesis: For every ABC-triple: $C < rad(ABC)^2$.
- ► Consequence: Let x, y, z, n be positive integers such that gcd(x, y, z) = 1 and xⁿ + yⁿ = zⁿ. Then the hypothesis implies n < 6.</p>
- ▶ Proof: Apply the *hypothesis* to the triple $A = x^n, B = y^n, C = z^n$. Notice that $rad(x^ny^nz^n) \le xyz < z^3$. So, $z^n < (z^3)^2 = z^6$. Hence n < 6. Fermat's Last Theorem for $n \ge 6$ follows!

The riddle	The conjecture	Consequences	Evidence
Formulation			

• Question: Are there ABC-triples such that $C > rad(ABC)^{1.5}$?

Question: Are there ABC-triples such that C > rad(ABC)^{1.5}?
or C > rad(ABC)^{1.05}?

- Question: Are there ABC-triples such that $C > rad(ABC)^{1.5}$?
- or $C > \operatorname{rad}(ABC)^{1.05}$?
- or $C > rad(ABC)^{1.005}$?

- Question: Are there ABC-triples such that $C > rad(ABC)^{1.5}$?
- or $C > \operatorname{rad}(ABC)^{1.05}$?
- or $C > rad(ABC)^{1.005}$?
- We expect at most finitely many instances.

- Question: Are there ABC-triples such that $C > rad(ABC)^{1.5}$?
- or $C > \operatorname{rad}(ABC)^{1.05}$?
- or $C > rad(ABC)^{1.005}$?
- We expect at most finitely many instances.
- ► ABC-Conjecture (Masser-Oesterlé, 1985): Let κ > 1. Then, with finitely many exceptions we have C < rad(ABC)^κ.

The Fermat-Catalan equation $x^p + y^q = z^r$ in x, y, z coprime positive integers. Of course we assume p, q, r > 1. We distinguish three cases.

The Fermat-Catalan equation $x^{p} + y^{q} = z^{r}$ in x, y, z coprime positive integers. Of course we assume p, q, r > 1. We distinguish three cases.

▶ 1) ¹/_p + ¹/_q + ¹/_r > 1. It is an exercise to show that (p, q, r) is a permutation of one of (2, 2, k), (2, 3, 3), (2, 3, 4), (2, 3, 5). In any such case the number of solutions is infinite.

The Fermat-Catalan equation $x^{p} + y^{q} = z^{r}$ in x, y, z coprime positive integers. Of course we assume p, q, r > 1. We distinguish three cases.

- ▶ 1) $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$. It is an exercise to show that (p, q, r) is a permutation of one of (2, 2, k), (2, 3, 3), (2, 3, 4), (2, 3, 5). In any such case the number of solutions is infinite.
- ▶ 2) ¹/_p + ¹/_q + ¹/_r = 1. Again it is an exercise to show that (p, q, r) is a permutation of one of (2, 4, 4), (2, 3, 6), (3, 3, 3). There are finitely many solutions.

The Fermat-Catalan equation $x^p + y^q = z^r$ in x, y, z coprime positive integers. Of course we assume p, q, r > 1. We distinguish three cases.

- ▶ 1) $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$. It is an exercise to show that (p, q, r) is a permutation of one of (2, 2, k), (2, 3, 3), (2, 3, 4), (2, 3, 5). In any such case the number of solutions is infinite.
- ▶ 2) ¹/_p + ¹/_q + ¹/_r = 1. Again it is an exercise to show that (p, q, r) is a permutation of one of (2, 4, 4), (2, 3, 6), (3, 3, 3). There are finitely many solutions.
- > 3) ¹/_p + ¹/_q + ¹/_r < 1. There are infinitely many possible triples (p, q, r). For any such triple the number of solutions is at most finite (Darmon-Granville, 1995).

Consequences

Numeric results

$$1^{k} + 2^{3} = 3^{2} (k > 6), \qquad 13^{2} + 7^{3} = 2^{9}, \qquad 2^{7} + 17^{3} = 71^{2}$$

$$2^{5} + 7^{2} = 3^{4}, \qquad 3^{5} + 11^{4} = 122^{2}, \qquad 17^{7} + 76271^{3} = 21063928^{2}$$

$$1414^{3} + 2213459^{2} = 65^{7}, \qquad 33^{8} + 1549034^{2} = 15613^{3}$$

$$43^{8} + 96222^{3} = 30042907^{2}, \qquad 9262^{3} + 15312283^{2} = 113^{7}.$$

Consequence of *ABC*-conjecture:

The set of triples x^p , y^q , z^r with x, y, z coprime positive integers such that $x^p + y^q = z^r$ and 1/p + 1/q + 1/r < 1, is finite.

Consequence of *ABC*-conjecture:

The set of triples x^p , y^q , z^r with x, y, z coprime positive integers such that $x^p + y^q = z^r$ and 1/p + 1/q + 1/r < 1, is finite.

• Observation, 1/p + 1/q + 1/r < 1 implies $1/p + 1/q + 1/r \le 1 - 1/42$.

Consequence of *ABC*-conjecture:

The set of triples x^p , y^q , z^r with x, y, z coprime positive integers such that $x^p + y^q = z^r$ and 1/p + 1/q + 1/r < 1, is finite.

- Observation, 1/p + 1/q + 1/r < 1 implies $1/p + 1/q + 1/r \le 1 1/42$.
- Apply ABC with κ = 1.01 to A = x^p, B = y^q, C = z^r. Notice that rad(x^ry^qz^r) ≤ xyz < z^{r/p}z^{r/q}z.

Consequence of *ABC*-conjecture:

The set of triples x^p , y^q , z^r with x, y, z coprime positive integers such that $x^p + y^q = z^r$ and 1/p + 1/q + 1/r < 1, is finite.

- Observation, 1/p + 1/q + 1/r < 1 implies $1/p + 1/q + 1/r \le 1 1/42$.
- Apply ABC with κ = 1.01 to A = x^p, B = y^q, C = z^r. Notice that rad(x^ry^qz^r) ≤ xyz < z^{r/p}z^{r/q}z.
- Hence, with finitely many exceptions we get

$$z^r < z^{\kappa(r/p+r/q+1)}$$

Consequence of *ABC*-conjecture:

The set of triples x^p , y^q , z^r with x, y, z coprime positive integers such that $x^p + y^q = z^r$ and 1/p + 1/q + 1/r < 1, is finite.

- Observation, 1/p + 1/q + 1/r < 1 implies $1/p + 1/q + 1/r \le 1 1/42$.
- Apply ABC with κ = 1.01 to A = x^p, B = y^q, C = z^r. Notice that rad(x^ry^qz^r) ≤ xyz < z^{r/p}z^{r/q}z.
- Hence, with finitely many exceptions we get

$$z^r < z^{\kappa(r/p+r/q+1)}$$

▶ This implies $r < \kappa(r/p + r/q + 1)$ and hence $1 < \kappa(1/p + 1/q + 1/r)$. But this is impossible because $\kappa = 1.01$ and $1/p + 1/q + 1/r \le 1 - 1/42$.

Catalan

As a special case we see that $x^p - y^q = 1$ has finitely many solutions.

But this was shown in 1974 by Tijdeman and completely solved in 2002 by Michailescu.

Mordell's conjecture

Consider a diophantine equation P(x, y) = 0 in the unknown rational numbers x, y.

For example

$$x^5 + 3x^2y - y^3 + 1 = 0$$
, $x^4 + y^4 + 3xy + x^3 - y^3 = 0$, etc.

Mordell's conjecture

Consider a diophantine equation P(x, y) = 0 in the unknown rational numbers x, y.

For example

$$x^{5} + 3x^{2}y - y^{3} + 1 = 0$$
, $x^{4} + y^{4} + 3xy + x^{3} - y^{3} = 0$, etc.

Noam Elkies (1991) observed:

The ABC-conjecture implies: If genus(P) > 1 then the number of rational solutions to P(x, y) = 0 is at most finite.

Mordell's conjecture

Consider a diophantine equation P(x, y) = 0 in the unknown rational numbers x, y.

For example

$$x^{5} + 3x^{2}y - y^{3} + 1 = 0$$
, $x^{4} + y^{4} + 3xy + x^{3} - y^{3} = 0$, etc.

Noam Elkies (1991) observed:

The ABC-conjecture implies: If genus(P) > 1 then the number of rational solutions to P(x, y) = 0 is at most finite.

Previously known as Mordell's conjecture (1923) and Faltings' theorem (1983).

An integer n is called a *perfect power* if it is either a square, a cube, a fourth power, etc of another integer.

- An integer n is called a perfect power if it is either a square, a cube, a fourth power, etc of another integer.
- ► Let P(x) be a polynomial with integer coefficients and at least three simple zeros.

- An integer n is called a *perfect power* if it is either a square, a cube, a fourth power, etc of another integer.
- ► Let P(x) be a polynomial with integer coefficients and at least three simple zeros.
- Theorem (Schinzel-Tijdeman, 1976) Among the numbers P(1), P(2), P(3),... there are at most finitely many perfect powers.

- An integer n is called a *perfect power* if it is either a square, a cube, a fourth power, etc of another integer.
- ► Let P(x) be a polynomial with integer coefficients and at least three simple zeros.
- Theorem (Schinzel-Tijdeman, 1976) Among the numbers P(1), P(2), P(3),... there are at most finitely many perfect powers.
- ► Example: $P(x) = x^3 + 17$. We have $2^3 + 17 = 5^2$, $4^3 + 17 = 9^2$, $8^3 + 17 = 23^2$, $43^3 + 17 = 282^2$ $52^3 + 17 = 375^2$, $5234^3 + 17 = 378661^2$.

Schinzel-Tijdeman conjecture

An integer n is called *powerfull* if all of its prime divisors occur with exponent 2 or higher in the prime factorisation.

Schinzel-Tijdeman conjecture

- An integer n is called *powerfull* if all of its prime divisors occur with exponent 2 or higher in the prime factorisation.
- ► Gary Walsh (1998) observed that the ABC-conjecture implies the Schinzel-Tijdeman conjecture: among the numbers P(1), P(2), P(3),... there are at most finitely many powerful numbers.

Schinzel-Tijdeman conjecture

- An integer n is called *powerfull* if all of its prime divisors occur with exponent 2 or higher in the prime factorisation.
- ► Gary Walsh (1998) observed that the ABC-conjecture implies the Schinzel-Tijdeman conjecture: among the numbers P(1), P(2), P(3),... there are at most finitely many powerful numbers.
- ► Example: $P(x) = x^3 + 17$. We have $2^3 + 17 = 5^2$, $4^3 + 17 = 9^2$, $8^3 + 17 = 23^2$, $43^3 + 17 = 282^2$ $52^3 + 17 = 375^2$, $5234^3 + 17 = 378661^2$.

Consequences

State of knowledge

What do we know about ABC?

The ABC-conjecture

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Consequences

State of knowledge

What do we know about ABC?

Stewart, Kunrui Yu (1996): For any $\epsilon > 0$:

$$C < \exp\left(\gamma \mathrm{rad}(ABC)^{1/3+\epsilon}\right)$$

where γ depends on the choice of ϵ .

Why do we believe in ABC ?

Why do we believe in ABC ?

There is an analogy with polynomials with rational numbers as coefficients: $\mathbb{Q}[x]$.

Why do we believe in ABC ?

There is an analogy with polynomials with rational numbers as coefficients: $\mathbb{Q}[x]$.

A polynomial F(x) with rational coefficients and leading coefficient 1 is called *prime* if it cannot be factored into polynomials with rational coefficients and lower degree.

Why do we believe in ABC ?

There is an analogy with polynomials with rational numbers as coefficients: $\mathbb{Q}[x]$.

A polynomial F(x) with rational coefficients and leading coefficient 1 is called *prime* if it cannot be factored into polynomials with rational coefficients and lower degree.

Theorem: Any polynomial with rational numbers as coefficient can be written in a unique way as a constant times a product of prime polynomials.

Factors of polynomials

For example: $x^2 + 1$, whereas $x^2 - 1$ is reducible. Example of a factorisation:

$$\begin{array}{ll} x^{21}-1 &=& (x^6+x^5+x^4+x^3+x^2+x+1)\times \\ && (x-1)(x^2+x+1)\times \\ && (x^{12}-x^{11}+x^9-x^8+x^6-x^4+x^3-x+1). \end{array}$$

Degree of a polynomial F: deg(F).

The *radical* of a polynomial F(x) is the product of the prime polynomials dividing F(x). Notation rad(F).

PQR-Theorem

PQR-Theorem (Hurwitz, Stothers, Mason): Let P, Q, R be coprime polynomials, not all constant, such that P + Q = R. Suppose that $\deg(R) \ge \deg(P), \deg(Q)$. Then

 $\deg(R) < \deg(\operatorname{rad}(PQR)).$

The ABC-conjecture

PQR-Theorem

PQR-Theorem (Hurwitz, Stothers, Mason): Let P, Q, R be coprime polynomials, not all constant, such that P + Q = R. Suppose that $\deg(R) \ge \deg(P), \deg(Q)$. Then

 $\deg(R) < \deg(\operatorname{rad}(PQR)).$

Translation to *ABC*: Replace *P*, *Q*, *R* by *A*, *B*, *C* and deg by log. Note the analogy: deg(PQ) = deg(P) + deg(Q) for polynomials and log(ab) = log(a) + log(b) for numbers. We get:

 $\log(C) < \log(\operatorname{rad}(ABC)).$

Consequences

Proof of PQR, I

Observe that for any polynomial F,

$$\operatorname{rad}(F) = F/\operatorname{\mathsf{gcd}}(F,F')$$

Observe that for any polynomial F,

$$\operatorname{rad}(F) = F/\operatorname{gcd}(F,F')$$

Example, $F = x^3(x-1)^5$. Then $F' = (8x-5)x^2(x-1)^4$. Hence $gcd(F, F') = x^2(x-1)^4$ and F/gcd(F, F') = x(x-1).

Observe that for any polynomial F,

rad(
$$F$$
) = $F/ \operatorname{gcd}(F, F')$
Example, $F = x^3(x-1)^5$. Then $F' = (8x-5)x^2(x-1)^4$. Hence
 $\operatorname{gcd}(F, F') = x^2(x-1)^4$ and $F/\operatorname{gcd}(F, F') = x(x-1)$.
Start with

$$P + Q = R$$

and differentiate:

$$P'+Q'=R'$$

The ABC-conjecture

Observe that for any polynomial F,

$$\operatorname{rad}(F) = F/\operatorname{\mathsf{gcd}}(F,F')$$

Example,
$$F = x^3(x-1)^5$$
. Then $F' = (8x-5)x^2(x-1)^4$. Hence $gcd(F, F') = x^2(x-1)^4$ and $F/gcd(F, F') = x(x-1)$.

Start with

$$P + Q = R$$

and differentiate:

$$P'+Q'=R'$$

Muliply first equality by P', second equality by P and subtract,

$$P'Q - pQ' = P'R - PR'$$

Consequences

Proof of PQR, II

$$P'Q - pQ' = P'R - PR'$$

The ABC-conjecture

●●● ● ●●● ●●● ●●●

$$P'Q - pQ' = P'R - PR'$$

So, gcd(R, R') divides P'Q - PQ'. A fortiori, gcd(R, R') divides $\frac{P'Q - PQ'}{gcd(P, P')gcd(Q, Q')}$.

$$P'Q - pQ' = P'R - PR'$$

So, gcd(R, R') divides P'Q - PQ'. A fortiori, gcd(R, R') divides $\frac{P'Q - PQ'}{gcd(P, P') gcd(Q, Q')}$.

Consequently, if $P'Q - pQ' \neq 0$,

 $\mathsf{deg}(\mathsf{gcd}(R,R') < \mathsf{deg}(\mathrm{rad}(P)) + \mathsf{deg}(\mathrm{rad}(Q)) = \mathsf{deg}(\mathrm{rad}(PQ)).$

$$P'Q - pQ' = P'R - PR'$$

So, gcd(R, R') divides P'Q - PQ'. A fortiori, gcd(R, R') divides $\frac{P'Q - PQ'}{gcd(P, P') gcd(Q, Q')}.$

Consequently, if $P'Q - pQ' \neq 0$,

 $\mathsf{deg}(\mathsf{gcd}(R,R') < \mathsf{deg}(\mathrm{rad}(P)) + \mathsf{deg}(\mathrm{rad}(Q)) = \mathsf{deg}(\mathrm{rad}(PQ)).$

Add $\deg(R/\gcd(R, R')) = \deg(\operatorname{rad}(R))$ to get

 $\deg(R) < \deg(\operatorname{rad}(PQR)).$

$$P'Q - pQ' = P'R - PR'$$

So, gcd(R, R') divides P'Q - PQ'. A fortiori, gcd(R, R') divides $\frac{P'Q - PQ'}{gcd(P, P')gcd(Q, Q')}$.

Consequently, if $P'Q - pQ' \neq 0$,

 $\mathsf{deg}(\mathsf{gcd}(R,R') < \mathsf{deg}(\mathrm{rad}(P)) + \mathsf{deg}(\mathrm{rad}(Q)) = \mathsf{deg}(\mathrm{rad}(PQ)).$

Add deg(R/gcd(R, R')) = deg(rad(R)) to get

 $\deg(R) < \deg(\operatorname{rad}(PQR)).$

If P'Q - PQ' = 0, then P/Q is constant and all of P, Q, R are constant.

Consequences

Evidence

The quest

Main questions

The ABC-conjecture

●●● ● ●●● ●●● ●●●

The quest

Main questions

If the ABC-conjecture is true, there should be a minimal number κ such that C ≥ rad(ABC)^κ for all ABC-triples. What is the value of κ ?

The quest

Main questions

- If the ABC-conjecture is true, there should be a minimal number κ such that C ≥ rad(ABC)^κ for all ABC-triples. What is the value of κ ?
- ► How does the number of ABC-hits with C < X grow as X → ∞ ? Are there distribution laws? How are the ratios log(C)/log(rad(ABC)) distributed?

The quest

Main questions

- If the ABC-conjecture is true, there should be a minimal number κ such that C ≥ rad(ABC)^κ for all ABC-triples. What is the value of κ ?
- ► How does the number of ABC-hits with C < X grow as X → ∞ ? Are there distribution laws? How are the ratios log(C)/log(rad(ABC)) distributed?

Happy hunting, or fishing!