
BelgianDutch Algebraic Geometry seminarFebruary 1, Utrecht. See website. 
Intercity Number Theory SeminarMarch 1, Groningen. The first talk takes place in room 165 of the Bernoulliborg and the
three other talks take place in room 253.12:0013:00  Dino Festi (Mainz), A method to compute the geometric Picard lattice of a K3surface of degree 2 Abstract. K3 surfaces are surfaces of intermediate type, i.e., they
are in between surfaces whose arithmetic and geometry is fairly well
understood (rational and ruled surfaces) and surfaces that are still
largely mysterious (surfaces of general type). The Picard lattice of a
K3 surface contains much information about the surface, both from a
geometric and an arithmetic point of view. For example, it tells about
the existence of elliptic fibrations on the surface; if the surface is
over a number field, then by looking at the Picard lattice one can
have information about the Brauer group, and the potential density of
rational points. Although much effort, there is not yet a practical
algorithm that, given an explicit K3 surface, returns the Picard
lattice of the K3 surface. In this talk we are going to give an
overview on how practically compute the geometric Picard lattice of a
K3 surface of degree two over a field of characteristic zero.  13:4514:45  Florian Hess (Oldenburg), Partially euclidean global fields  15:0016:00  Marc Paul Noordman (Groningen), Algebraic first order differential equations Abstract. Autonomous algebraic first order differential equations (i.e.
differential equations of the form P(u, u') = 0 for P a polynomial
with constant coefficients) can be interpreted as rational
differential forms on an algebraic curve. In this talk, based on joint
work with Jaap Top and Marius van der Put, I will explain how this
perspective clarifies the possible algebraic relations between
solutions of such differential equations. In particular, we will see
that there are almost no algebraic relations between distinct
nonconstant solutions of the same differential equation, unless that
differential equation comes from a onedimensional group variety.  16:1517:15  Jan Vonk (Oxford), Singular moduli for real quadratic fields Abstract. The theory of complex multiplication describes finite
abelian extensions of imaginary quadratic number fields using singular
moduli, which are special values of modular functions at CM points. I
will describe joint work with Henri Darmon in the setting of real
quadratic fields, where we construct padic analogues of singular
moduli through classes of rigid meromorphic cocycles. I will discuss
padic counterparts for our proposed RM invariants of classical
relations between singular moduli and the theory of weak harmonic
Maass forms. 

Intercity Number Theory SeminarMarch 15, Utrecht. The morning lecture takes place in KGB Atlas (Koningsbergergebouw Budapestlaan 4ab, 3584 CD Utrecht) and in the afternoon we are in MIN 2.01 (Minnaertgebouw Leuvenlaan 4, 3584 CE Utrecht).11:0012:00  Efrat Bank (Technion, Israel), Primes in short intervals on curves over finite fields Abstract. We prove an analogue of the Prime Number Theorem for short intervals on a smooth proper curve of arbitrary genus over a finite field. Our main result gives a uniform asymptotic count of those rational functions, inside short intervals defined by a very ample effective divisor E, whose principal divisors are prime away from E.
In this talk, I will discuss the setting and definitions we use in order to make sense of such count, and will give a rough sketch of the proof.
This is a joint work with Tyler Foster.  13:1514:15  Francesca Balestrieri (MPIM Bonn, Germany), Arithmetic of zerocycles on products of Kummer varieties and K3 surfaces Abstract. The following is joint work with Rachel Newton. In the spirit of work by Yongqi Liang, we relate the arithmetic of rational points to that of zerocycles for the class of Kummer varieties over number fields. In particular, if X is any Kummer variety over a number field k, we show that if the BrauerManin obstruction is the only obstruction to the existence of rational points on X over all finite extensions of k, then the BrauerManin obstruction is the only obstruction to the existence of a zerocycle of any odd degree on X. Building on this result and on some other recent results by Ieronymou, Skorobogatov and Zarhin, we further prove a similar Liangtype result for products of Kummer varieties and K3 surfaces over k.  14:1515:15  Kęstutis Česnavičius (Orsay, France), Macaulayfication of Noetherian schemes Abstract. To reduce to resolving CohenMacaulay singularities, Faltings initiated the program of "Macaulayfying" a given Noetherian scheme X. Under various assumptions Faltings, Brodmann, and Kawasaki built the sought CohenMacaulay modifications without preserving the locus where X is already CohenMacaulay. We will discuss an approach that overcomes this difficulty and hence completes Faltings' program.  15:3016:30  Judith Ludwig (Heidelberg, Germany), Perfectoid Shimura varieties and applications Abstract. Given a tower of Shimura varieties (where the level at a fixed prime p grows) one may ask whether one can equip the inverse limit with a geometric structure.
As I will explain in the talk, this is possible in many cases. The geometric structure is that of a perfectoid space.
I will then show you the impact of this results by explaining some applications. 

Intercity Number Theory SeminarMarch 28, Leiden. This is a Thursday. All talks will be held in the Pieter de la Courtgebouw, room A547, which is walking distance from the train station. The PhD defense of Anna Somoza takes place in the Academiegebouw.11:0012:00  Christophe Ritzenthaler (Rennes), Reduction of plane quartics Abstract. Given a smooth plane quartic over a discrete valuation field K, we give a characterization of its reduction type (i.e. smooth plane quartic, hyperelliptic genus 3 curve or bad) over K in terms of the existence of a special plane quartic model and over the algebraic closure in terms of the valuations of the DixmierOhno invariants of C. Joint work with Qing Liu, Elisa Lorenzo García and Reynald Lercier.  12:4513:45  Pınar Kılıçer (Groningen), Modular invariants for genus3 hyperelliptic curves Abstract. We discuss the connection between invariants of binary octics and Siegel modular forms of genus 3. Using this
connection, we describe certain modular functions for hyperelliptic curves of genus 3 whose denominators are
divisible by the primes of bad reduction for the associated hyperelliptic curves. We hope that this research will
lead to an analogue of the Igusa invariants for hyperelliptic curves of genus 3. This is a joint work with Sorina
Ionica, Kristin Lauter, Elisa Lorenzo Garcia, Maike Massierer, Adelina Manzateaunu and Christelle Vincent.  14:0015:00  Elisa LorenzoGarcía (Rennes), Modular expressions for Shioda invariants Abstract. Let C be a genus 3 hyperelliptic curve. It isomorphism class is determined by the socalled Shioda invariants J_{2},J_{3},...,J_{10}. By using some previous results and alternative invariants of Tsuyumine, we give a modular expresion (in term of theta constants) for the products J_{i}*D^{i} where D is the discriminant of the curve C. As as a consequence we present a set of absolute invariants of C as Siegel modular functions. In the special case in which C has CM, we give an easy computable criterium for determining the type of bad reduction of a prime dividing the denominator of any of these absolute invariants (by Kilicer's talk results we already know that such a prime is of bad reduction).  16:1517:15  Anna Somoza (Leiden), PhD defense 

Seminarium Computer Algebra Nederland / Intercity Number Theory SeminarApril 12, UvA Amsterdam. The first three lectures will be in room C0.110 in Science Park 904. Tim Dokchitser's inaugural lecture will be in the Aula. 10:1511:15  Steffen Löbrich (UvA), On cycle integrals of meromorphic modular forms Abstract. In joint work in progress with Markus Schwagenscheidt, we study cycle integrals of meromorphic modular forms associated to quadratic forms of negative discriminant. In particular, we relate them to evaluations of locally harmonic Maass forms at CMpoints. This allows us to generalize a recent theorem by AlfesNeumann, Bringmann, and Schwagenscheidt on the rationality of these cycle integrals in several directions.  11:3012:30  Alex Bartel (Glasgow), Torsion homology and regulators of isospectral manifolds Abstract. It is well known by now that two drums that sound the same
need not look the same. But how different can they really look? There
are two general constructions of such pairs of "drums", a representation
theoretic one due to Sunada, and a number theoretic one due to Vigneras.
After introducing the general setting and recalling the two
constructions, I will discuss what can be said about the homology groups
of such isospectral manifolds, e.g. for what primes p the ptorsion in
the homology can differ. The answers in the two settings look very
different... until one looks more closely! This is joint work with Aurel
Page, and, fittingly for the occasion, it was originally inspired by the
work of Tim and Vladimir Dokchitser on the Birch and SwinnertonDyer
conjecture.  13:3014:30  Maarten Derickx (MIT), Modularity of elliptic curves over totally real cubic fields Abstract. The key ingredient in Wiles' proof of Fermat's last theorem is his proof that all semistable elliptic curves over Q are modular. Wiles' techniques were later extended by Breuil, Conrad, Diamond and Taylor to prove modularity of all elliptic curves over Q. Using improvements in modularity lifting techniques Freitas, Le Hung and Siksek later proved that all elliptic curves over real quadratic fields are modular. In this talk I will discuss how the techniques for real quadratic fields together with new modularity lifting results due to Thorne and to Kalyanswamy can be used to prove modularity of elliptic curves over totally real cubic fields.  16:0017:00  Tim Dokchitser (Bristol / UvA), Inaugural lecture 

Intercity Number Theory SeminarMay 10, Leiden. The first talk will take place in room B3 of the Snellius building. The afternoon talks take place in room 412 and will be followed by the awarding of the Compositio Prize 20142016 to James Maynard, and a reception. 11:0012:00  Guido Lido (Leiden, Roma), Computations in the Poincaré torsor and the quadratic Chabauty method Abstract. Joint work with Bas Edixhoven.
Faltings's theorem states that a curve C of genus g>1 defined over the
rationals has only finitely many rational points. In practice there is
no general procedure to provably compute the set C(Q). When the rank
of the MordellWeil group J(Q) (with J the Jacobian of C) is smaller
than g we can use Chabauty's method, i.e. we can embed C in J and,
after choosing a prime p, we can view C(Q) as a subset of the
intersection of C(Q_{p}) and the closure of J(Q) inside the padic
manifold J(Q_{p}); this intersection is finite and computable up to
finite precision. Minhyong Kim has generalized this method inspecting
(possibly nonabelian) quotients of the fundamental group of C. His
ideas have been made effective in some new cases by Balakrishnan,
Dogra, Muller, Tuitman and Vonk: their "quadratic Chabauty method"
works when the rank of the MordellWeil group is strictly less than
g+s1 (with s the rank of the NeronSeveri group of J). In this
lecture we will give a reinterpretation of the quadratic Chabauty
method, only using the Poincaré torsor of J and a little of formal
geometry, and we will show how to make it effective.
 13:1514:15  Damaris Schindler (Utrecht), On prime values of binary quadratic forms with a thin variable Abstract. A result of Fouvry and Iwaniec states that there are
infinitely many primes of the form x^2+y^2 where y is a prime
number. In this talk we will see a generalization of this theorem to
the situation of an arbitrary primitive positive definite binary
quadratic form. This is joint work with Peter ChoHo Lam and Stanley
Xiao.
 14:3015:30  Peter Koymans (Leiden), The spin of prime ideals and applications Abstract. Let K be a cyclic, totally real extension of Q of degree at
least 3, and let σ be a generator of Gal(K/Q). We further assume that
the totally positive units are exactly the squares of units. In this
case, Friedlander, Iwaniec, Mazur and Rubin define the spin of an odd
principal ideal a to be spin(σ, a) = (α/σ(α))_{K}, where α is a totally
positive generator of a and (*/*) is the quadratic residue symbol in
K. Friedlander, Iwaniec, Mazur and Rubin prove equidistribution of
spin(σ, p) as p varies over the odd principal prime ideals of K. In
this talk I will show how to extend their work to more general
fields. I will then give various arithmetic applications.This is joint work with Djordjo Milovic.
 15:4516:45  James Maynard (Oxford), Dense clusters of primes in subsets Abstract. We discuss how one can generalize weak versions of the prime
ktuples conjecture to apply to arbitrary welldistributed sets of
integers and primes, with good uniformity in the results. This has
several consequences for large gaps between primes, strings of
congruent primes, and many primes in short intervals.


Intercity Number Theory SeminarSeptember 6, Nijmegen. The morning talks will be held in HG00.307, the informal discussions in leg HG03.07 (3rd floor), and the afternoon talk in room HG00.062.11:0012:00  Riccardo Pengo (Copenhagen), Mahler’s measure and elliptic curves with complex multiplication Abstract. Elliptic curves with complex multiplication have historically formed a fertile test ground for many conjectures on the arithmetic of elliptic curves.
In this talk, we will explore one instance of this phenomenon by looking at the conjectures relating special values of Lfunctions to the Mahler measure of polynomials in multiple variables.
These conjectures, initiated by the work of Boyd on Lehmer’s problem, can be approached for elliptic curves with complex multiplication using the proof of the conjectures of Bloch and Kato for Hecke characters, due to Deninger and Kings.  12:1513:15  Alina Ostafe (Sydney), On some unlikely intersections for values and orbits of rational functions Abstract. For given rational functions f_{1},dots,f_{s} defined over a number field K, Bombieri, Masser and Zannier (1999) proved that the algebraic numbers α for which the values f_{1}(α),dots,f_{s}(α) are multiplicatively dependent are of bounded height (unless this is false for an obvious reason).Motivated by this, we present recent finiteness results on multiplicative relations of values of rational functions at arguments restricted to the maximal abelian extension of K. We go even further and discuss the presence of multiplicative relations modulo finitely generated groups, posing some open questions. If time allows, we will present some finiteness results regarding the presence of powers of Sintegers in orbits of polynomial dynamical systems.  14:0015:15  , informal discussions at math department  15:2016:20  Berend Ringeling (Utrecht), Zeros of modular forms and congruences Abstract. For p a prime larger than 7, the Eisenstein series of weight p1 has some remarkable congruence properties modulo p.
Those imply, for example, that the jinvariants of its zeros (which are known to be real algebraic numbers in the interval [0,1728]), are at most quadratic over the field with p elements and are congruent modulo p to the zeros of a certain truncated hypergeometric series.
In my thesis, I introduce the "theta modular form" of weight k as the unique modular form of weight k, for which the first dimM_{k} Fourier coefficients are identical to those of the Jacobi theta series. Theta modular forms modulo p relate to the average weight enumerators in coding theory. In my talk, I will show that theta modular forms of weight (p+1)/2 behave in many ways like Eisenstein series: the jinvariants of their zeros all belong to the interval [0,1728], are modulo p all in the ground field with p elements, and are congruent modulo p to the zeros of a truncated hypergeometric sum. 

Intercity Number Theory SeminarOctober 18, Utrecht. The morning lecture is in Minnaert 201, the first two afternoon lectures In Koningsberger Atlas, and the final lecture in Buys Ballot 001 (all these buildings are connected internally)11:0011:50  Andrew Schopieray (Sydney/Berkeley), Quadratic dnumbers Abstract. In the context of conformal field theory, Moore and Seiberg claimed the study of modular tensor categories "should be viewed as a generalization of group theory". In this analogy the order of the group is the category's dimension, now taking values outside the natural numbers, which begs the question: what is the set of possible dimensions? This question is almost entirely open.
In this talk we focus on the numbertheoretic condition that dimensions generate Galoisinvariant ideals in the ring of algebraic integers (socalled "algebraic dnumbers"). We will show how the simplicity of the unit groups of quadratic extensions of the rational numbers allows us to constructively classify all quadratic dnumbers, and provide a discrete list of potential dimensions. Discussion of higher extensions and other generalizations will follow with a hope to spark interest in these rare and valuable algebraic integers.  13:1514:05  Andrew Bridy (Yale), The arboreal finite index problem Abstract. Let K be a global field, f in K[x], and b in K. Let K_{n} be the splitting field of f^{n}(x)−b, where f^{n} denotes nfold composition. The projective limit of the groups Gal(K_{n}/K) embeds into the automorphism group of an infinite rooted tree. A major problem in arithmetic dynamics, motivated by Serre's open image theorem, is to determine when the index is finite. I discuss the solution of the problem for K a function field and f a low degree polynomial by classifying all obstructions to finite index. When K is a number field the solutions are conditional on deep conjectures from diophantine geometry.  14:1015:00  Jakub Byszewski (Krakow), Automatic sequences: structure and randomness Abstract. Automatic sequences (generated by finite automata) constitute one of the basic complexity classes and arise naturally in various contexts in mathematics and computer science. In the talk we will study their uniformity. We show that any automatic sequence can be separated into a structured part and a pseudorandom part. The structured part is described explicitly (in particular, for sequences produced by strongly connected automata, it is rational almost periodic); the pseudorandom part has exponentially decaying Gowers uniformity norms of all orders, and so, roughly speaking, does not correlate with nilsequences. This provides explicit examples of Gowersuniform sequences. As an application, we obtain asymptotic counts of the number of solutions of linear equations in automatic sets. The talk is based on joint work with Jakub Konieczny (Jerusalem) and Clemens Müllner (Vienna).  15:2016:10  Vandita Patel (Manchester), A Galois property of even degree Bernoulli polynomials Abstract. Let k be an even integer such that k is at least 2. We give a (natural) density result to show that for almost all d at least 2, the equation (x+1)^{k} + (x+2)^{k} + ... + (x+d)^{k} = y^{n} with n at least 2, has no integer solutions (x,y,n). The proof relies upon some Galois theory and group theory, whereby we deduce some interesting properties of the Bernoulli polynomials. This is joint work with Samir Siksek (University of Warwick). 

Intercity Number TheoryNovember 1, Leiden. Room 312 of the Snellius building11:0012:00  Martin Bright (Leiden), A walk on the wild side: ptorsion in the Brauer group Abstract. The Brauer group of a variety over a number field is a powerful tool for studying failures of the Hasse principle. To apply this, one needs to understand the function obtained by evaluating a given element of the Brauer group at the padic points of the variety. For elements of order coprime to p, this evaluation map factors through reduction modulo p. For elements of order p, the situation is much more intricate: one may need to look at the points to higher padic precision. We relate the resulting filtration on the Brauer group to one defined by Bloch–Kato, and show that Kato's refined Swan conductor controls the local behaviour of the evaluation map. This is joint work with Rachel Newton.  13:3014:30  Leila Schneps (Jussieu, Paris), GrothendieckTeichmüller theory, a crossroads between geometry and number theory. Abstract. GrothendieckTeichmüller theory was originated by Alexander Grothendieck as a way to study the
absolute Galois group of the rationals by considering its action on fundamental groups of varieties,
in particular of moduli spaces of curves with marked points: the special properties of the Galois
action with respect to inertia generators and the fact of respecting the relations in the fundamental
group gave rise to the definition of the group GT which contains G_{Q}.The group GT is profinite, but its defining relations can also be used to give a prounipotent avatar,
and an associated graded Lie algebra grt. The study of the Lie algebra grt reveals many unexpected
relations with number theory that are completely invisible in the profinite situation. We will show how
Bernoulli numbers, cusp forms on SL_{2}(Z) and multiple zeta values arise in the Lie algebra context.  14:5015:50  Pierre Lochak (Jussieu, Paris), A topological version of GrothendieckTeichmüller theory. Abstract. After recalling some basic features of G.T. theory, mainly with a view to emphasize
its "nonlinear" versus "linear" aspects, I will take the topological (and nonlinear) path, introducing
in particular the profinite completions of various simplicial complexes (curve an arc complexes
mainly, as well as some closely related graphs) which feature farreaching generalizations of the
socalled "dessins d'enfants" and enable one to build a topological version of G.T. (valid in
every genus) which may (or may not) be rather close to the blueprint appearing in Grothendieck's
famous Esquisse d'un programme.  16:1017:10  Igor Shparlinski (Sydney), Integers of prescribed arithmetic structure in residue classes Abstract. We give an overview of recent results about the distribution some special integers
in residues classes modulo a large integer q. Questions of this type were introduced by
Erdos, Odlyzko and Sarkozy (1987), who considered products of two primes as a relaxation
of the classical question about the distribution of primes in residue classes. Since that time,
numerous variations have appeared for different sequences of integers. The types of
numbers we discuss include smooth, squarefree, squarefull and almost primes integers.
We also expose the wealth of different techniques behind these results: sieve methods,
bounds of short Kloosterman sums, bounds of short character sums and many others. 

Belgian Dutch Algebraic Geometry DayNovember 8, Antwerpen. 
DIAMANT SymposiumNovember 29, De Bilt. The is part of a twoday event, November 2829. 
Intercity Number Theory SeminarDecember 13, UvA and VU Amsterdam. At the VU. 

