
Mathematical Institute

Internship Report

Statistical Science for the Life and Behavioural Sciences

Internship Report
A Bird Mass Prediction Model for Schiphol

Airport

Author:
Bingjing Gu

Internal Supervisor:
Dr. T.A.L. van Erven

Mathematical Institute

External Supervisor:
Diederik Meijerink

Rok Mihevc
Data Innovation Lab Schiphol Group

Aug 2016

Contents

1 Background on the Data Innovation Lab 2

2 Prediction Project 3
2.1 Background . 3
2.2 Preliminaries . 3
2.3 Methods & Application . 4
2.4 Results . 6
2.5 Others . 6

3 Skills 7
3.1 Infrastructure . 7
3.2 Tools . 7
3.3 Others . 8

4 Conclusion 9

A Python Code 11

B Presentation 25

1

Chapter 1

Background on the Data Innovation
Lab

Schiphol Group is an enterprise that operates airports in the Netherlands, conducting interna-
tional activities and participates in airports abroad. Operating Amsterdam Airport Schiphol is
the Group’s largest activity.[1] Schiphol Group’s ambition is to continue to develop Amsterdam
Airport Schiphol into Europe’s preferred airport for travelers and airlines alike and to become
the best data driven digital airport in the world. Data science is the key to fulfilling this am-
bition. The Data Innovation Lab, which is part of the Business & Technology Center of the IT
department of Schiphol Group, aims to take maximum advantage of data to increase the business
value of Amsterdam Airport Schiphol through consolidating all its data in a scalable big data
infrastructure. The data infrastructure is set up and managed by GoDataDriven. All data from
Schiphol Group are consolidated in the Cloudera big data solution on Microsofts cloud hosting
platform Azure which is a ready to use platform with all the necessary tools for data scientists,
such as R,RStudio,Python and Jupyter notebook, By applying machine learning, deep learning,
statistical modeling and other advanced analytics, the Data Innovation Lab would extract more
value out of internal and external data sources and deliver new trends, insights and patterns
from it. To improve operational efficiency, Data Innovation Lab has already worked on the
assets project, like conveyor belts and elevators, security project, parking projects, capacity
project and so on. I started my internship at the Data Innovation Lab from February and was
involved in developing a predictive model to solve a so called ’Angry Birds’ project during this
six month internship.

2

Chapter 2

Prediction Project

2.1 Background

Birds can be a genuine risk for aircraft in the vicinity of the Amsterdam Airport Schiphol. To
ensure the highest possible degree of aviation safety, Schiphol takes measures to keep the birds
as far away from the aircraft as possible. Schiphol employs bird controllers only for this purpose
to keep the birds away at all hours of the night and day. However, bird control is currently
done based on expertise and intuition by manual observation and from radar images provided by
Robin Radar. Bird control might therefore be suboptimal since it is not a data driven operation.
The bird control team expect us to make a predictive model to avoid purposeless chase and
waiting. They prefer to know where they should go in the next several minutes to take measures
on those high risk birds.

2.2 Preliminaries

In the beginning, we set up a meeting among bird control team, Robin Radar who is the data
vendor on the bird data and us to thoroughly understand the demands of the bird control team
and the meaning and structure of the data from Robin Radar. Robin Radar tracking system
describes the flight path and corresponding information of an object or a group of objects
detected by radar. It is a good idea to predict the mass density or location point count density
in grid since the trajectory of birds shows they only fly through a short distance and short time
period while the bird control team still needs enough time to drive to the scene which means per
bird prediction is not practical in this case. In addition, the bird control team did not provide
clear predictive target. Therefore I start from predicting the numbers of location points and
then focus on the average mass in a certain area. Before starting to build the predictive model,
I should think about the idea of model structure and manipulate the data first. According
to the first law of geography, all things are related, but nearby things are more related than
distant things[2]. My idea is to make good use of spatial and non-spatial features to predict the
mass and location point numbers in the next several minutes. The runway area is extended by
calculating the maximum distance from two coordinates on spherical earth which the birds may
fly through and then divide into a 6 by 4 grid according to the demand and suggestion from
bird control team. After that, the features were aggregated by time and cells. Considering the
characteristics of birds moving, I set five minutes as rolling windows which means the predictors
was estimated by the previous five minutes features. I believe the weather condition would also
have influence on the predictors more or less. The weather data collected within every 10
minutes which was provided by air traffic control was also joined into the bird data as well.
Every grid cells share the same weather condition at the same moment. There are 468 features
and 357080 observations(8 cells in 31 days with 1440 minutes per day excluding the first five
minutes) in one month data after data preparation. The spatial features include the mean value

3

of velocity, airspeed, heading, vertical heading, peak mass, mass, mass correction, coordinates
and position count. Other features have not spatial properties, which means they share the same
value in different area, such as hours of the time, time slot of the day, visibility, cloud layer for
coverage, average forecasted winddirection, average forecasted windspeed, average forecasted
windspeed including gust and forecasted showers of rain, snow, thunderstorms.

2.3 Methods & Application

Denoting the mean mass of the specific area to be modelled by y(s, i) referring to area location
s and time i, we have the spatial temporal model y(s, i) = µ(s, i) + ν(i) + ε(s, i),where y(s, i)
denotes the spatio-temporal observations(mean mass here), µ(s, i) is the structured spatial
effect, ν(i) is the non-spatial effect and ε(s, i) is the residual. The spatial effect is modelled

as: µ(s, i) =
m∑
j=1

βjφj(s, i) where φ(s, i) are spatial covariates and βj are coefficients for the

spatial covariates. The non- spatial effect is modelled as: ν(i) =

q∑
j=1

γjϕj(i) where ϕ(i) are

non-spatial covariates and γj are coefficients for the non-spatial covariates. Since I already melt
the spatial effect into each spatial covariates during the data manipulation which would provide
temporal evolution at each spatial location. In particular, we derive a one-row expression for
each spatial effect and specify which area location they belong to. For instance, the spatial
effect velocity at some specific area would be derived into an area indicator and top-left, top-
middle, top-right, left, middle, right, bottom-left, bottom-middle, bottom-right velocity values
instead of a spatial correlation indicator matrix. This procedure would be applied into each
spatial effect. Moreover, we don’t introduce the interaction effect between the cells and spatial
effect here and only estimate the difference among the cells by the feature of cells indicator.
When combining these with non-spatial features together,we could have the final model as :

y(s, i) = yi(s) =

p∑
j=1

βjxij(s) +β0 + ε where yi(s) represents the mean mass value at time i for a

given cell s, xij(s) include spatial and non-spatial effect for a given cell s and β is the coefficients
for all the effects. Specifically, the xij would contain the nine spatial neighborhood effect in
velocity, airspeed, heading, vertical heading, peak mass, mass, mass correction, coordinates
and position count, and those non-spatial features such as: visibility, cloud layer for coverage,
average forecasted winddirection, average forecasted windspeed, average forecasted windspeed
including gust and forecasted showers of rain, snow, thunderstorms, hours of the time , time
slot of the day and the cell location indicator.

It is a natural choice for me to start from penalized regression model since there are too many
features here and some of them are strongly correlated. The shrinkage methods I implemented
include:

Ridge regression: β̂ridge = argmin
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2j }

Lasso regression: β̂lasso = argmin
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |}

Elastic regression: β̂elastic = argmin
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2j }

Adaptive Lasso regression: β̂adlasso = argmin
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |
1

|β̂j |γ
}

where βj is the ordinary least squares estimate and γ > 0[3]

4

MCP: β̂mcp = argmin
β
{
N∑
i=1

(yi− β0−
p∑
j=1

xijβj)
2 +

p∑
j=1

λ

∫ |βj |
0

(1− x

(γλ)
)+ dx} where γ > 0[4]

SCAD: β̂scad = argmin
β
{
N∑
i=1

(yi−β0−
p∑
j=1

xijβj)
2+



λ

p∑
j=1

|βj | if|βj | ≤ λ

p∑
j=1

−|βj |
2 − 2aλ|βj |+ λ2

2(a− 1)
if λ < |βj | ≤ aλ

p∑
j=1

(a+ 1)λ2

2
if |βj | > aλ

}

where a > 2 and λ > 0 [5]
Instead of cross validation, progress validation was performed to choose best penalized pa-

rameter because this is the time dependent data. The cross validation folds are randomly
assigned, and it is not feasible that the training set contains information that occurs after the
test set. So the procedure would be something like this:
• fold 1 : training (1), test (2)
• fold 2 : training (1 2), test (3)
• fold 3 : training (1 2 3), test (4)
• fold 4 : training (1 2 3 4), test (5)
• fold 5 : training (1 2 3 4 5), test (6)
. . .
The R and Python both provide parallel operation package to boost the running time.

Neural Network was performed in the next step to check if the performance could be improved.
The output layer could either be k class classification or regression value.From input layer to
hidden layer, we could use an activation function to get the combinations of the units. For k
class classification,there are k units in the output layers, and typically, when k=1, it shifts to the
regression. Suppose a three-layers example, derived features Zm are created from combinations
of the inputs,and then the target Yk (mean mass here) is modeled as a function of combinations
of the Zm,

Zm = σ(α0m + αm
TX),m = 1, . . . ,M where X is all the spatial and non-spatial effects in

the model
Tk = β0k + βk

TZ, k = 1, . . . ,K
Yk = gk(T), k = 1, . . . ,K where Z = (Z1, Z2, . . . , ZM) and T = (T1, T2, . . . , Tk)[3]
The activation function is chosen to be the Tanh for classification and Rectifier for regression

in H2O package.
f(z) = tanh(z) = exp(z)−exp(z)

exp(z)+exp(z)

f(x) = max(0, x)
H2O package[6] both in R and Python is the best choice, which could provide more ar-

guments and parallel operation available. H2O, which is established by Java, is a multi-node
cluster with shared memory model. The layers of neural networks were implemented from two
to twelve in terms of this powerful package and the powerful cluster cloud platform. When pre-
dicting the mass value, we assume it follows the Gaussian distribution.Through setting cut-off
value, I shift the regression problem into classification in order to show how likely the mass
would be, which would follow Bernoulli distribution. The smaller the mass is, the less danger
the birds would lead to. The bird control team did not care about the exact mass value of the
birds while they only prefer to know where they should go. Because of such an enormous data
set, the support vector machine proved useless. The logistic regression with regularization and
deep neural network are implemented on the classification problem as well. All of the code for
the algorithm and methods was written in R and Python, as well as the data manipulation.
Some of the primary data acquisition and processing was written in Spark. During the whole
project, I kept contact with the coordinator of bird control team to discuss the progress of

5

my project routinely. Two demos were presented during the internship in front of the whole
department so as to get more inspiration and suggestion from brain storm.

2.4 Results

The three-layer neural network model shows better than those penalized regression model.
Nevertheless, it is still not the best choice since the average value and medium value of mean
mass are approximately 11 and the root mean square error and mean absolute error are still
6.4 and 4.6 respectively. It didn’t exhibit a competitive prediction ability. Some of the results
shows below:

Table 2.1: Model Results on predicting Mean Mass

Methods
Test

RMSE
Test
MAE

RIDGE 6.521 4.811

ELASTIC 6.519 4.802

LASSO 6.519 4.801

Neural Networks
(20-84-62)

6.429 4.600

Neural Networks
(127-180-10)

6.409 4.649

Then we found the mass value prediction would easily underestimated the extreme value
and the bird control team also indicated that they were actually not interested in the exact
mass value the bird are. Thus, I prefer to set a cut-off value to shift the regression question
to classification question and to show how likely the mass would be in a certain range. The
four-layer neural network stands out among two to twelve layers neural network and it gives
more than 75% accuracy rate in the test set. The best four-layer neural network shows below:

Table 2.2: 4-layer Neural Network Performance

Nodes (epochs=1)
Test

Accuracy rate

195-188-4-100 0.752

128-71-26-65 0.753

106-5-183-41 0.753

83-35-150-118 0.754

83-12-63-156 0.755

195-39-121-193 0.751

The results in detail could be found in Appendix B Presentation.

2.5 Others

Moreover, I also prepared the data for Kaggle and Hackathon competition. The data is de-
signed not only to meet the requirements of the competition, also to stimulate the creativity
and imagination of those competitors, which may allow us gain a variety of ideas. The data
structure for the competition essentially is quite different from mine since we should make sure
those competitor are not able to get results directly from comparing the raw data set and the
aggregated data set.

6

Chapter 3

Skills

3.1 Infrastructure

The whole project is implemented on the Cloudera Impala running on Apache Hadoop with data
science necessary tools such as Jupyter notebook, R and Python. The fundamental knowledge
I would learn is the basic operation on Impala query and Jupyter notebook. I grasp a basic
understanding on the big data infrastructure. Hadoop is essentially an open source framework
for processing, storing and analyzing data. Cloud computing would increase efficiency and
help to collaborate in a team. I also configure the docker which is the worlds leading software
containerization platform in my own computer to run python on it. With respect to data
manipulation, I need to learn pyspark to do primary data acquisition and processing. The
knowledge is totally fresh for me. Its very interesting to know this latest stuff and understand
the structure and environment of big data project in business area. It could also allow me to
know how to start my own data science project in my spare time.

3.2 Tools

In the perspective of data aggregation per location and per time step in grid, this work was
both implemented in R and python. Since I am familiar with R and totally new on python,
all the code was completed in R first and then transferred to python equivalently which help
me not only to enhance the R skills, also to master another popular data science tools. The
penalized regression I implemented in R include but not limited to those we learned from sta-
tistical learning course, for instance ridge regression, lasso regression, elastic regression[7]. It
also contains adaptive lasso, minimax concave penalty[4], smoothly clipped absolute deviation
penalty[5]. Those grouped regularization methods were also applied into searching the best
results, like group lasso, group ridge etc. Thus, I must be acquainted with all of those algo-
rithms and their implementations in R and Python. Afterwards, the deep neural network was
introduced into it. The four layers with random nodes stand out among two to twelve layers
test. The results from regression underestimated those extreme values which may result into
some problem on the decision. For example, those underestimated large birds may threaten
the aircraft more than those normal birds which are correctly estimated. After discussion with
the bird control team, they actually dont need to know the exact value the bird mass is and
those big birds are always the priority. Consequently, I dichotomize continuous mass variable
and set a cut off value, shifting the regression question to classification question and implement
the penalized logistic regression, support vector machine and neural networks to look for the
best performance. I strengthened the use of those methods and study the implementation of
H2O package mainly. The plenty of online tutorial could allow me to develop and and refine
my understanding of application on this package and deep neural networks. Having said that,
the included algorithms in H2O (Deep Neural Networks, Random Forest, GBM, K-Means, PCA

7

etc) are solid for most of the common data mining tasks. With the superb memory management
and the full integration with multi-node big data platforms, I am sure H2O engine is the most
powerful deep learning tools. To speed up the computation, the parallel operation knowledge
was also covered here. Some of the R packages did not provide the parallel computing, so
the packages providing parallel facilities make it remarkably easy like doParallel. It must be a
crucial knowledge for dealing with extremely large data set.

3.3 Others

The Data Innovation Lab team has experienced data scientists who are proficient in python,
spark and those data infrastructures. Their inspiration, suggestion and ideas give me a solid
understanding on how to deal with a business data project. In the meantime, they help me to
cross the threshold on Python. It is very important to make full use of the resource around me
and upgrade myself in a powerful team. The two demos I presented to the whole department
help me to improve the effective communication skills as well. In order to present an easy
understanding and non-academic demos, I must translate machine learning terms into words
that the ordinary people can understand and provide some concrete examples which could show
their relevance to the projects. I also join in many other project demos from other teams to
broaden my horizon. My team leader arranged a bird control tour to experience how those guys
work and close observe the moving behavior of birds. It helps me to thoroughly understand the
data we have and the need they require.

8

Chapter 4

Conclusion

It is an extremely great experience for a foreign student to do an internship in Schiphol Group.
I am really appreciated Data innovation lab in Schiphol Group could give me this opportunity
of a life-time to apply theory into practice. Data is the foundation of any business, especially for
the innovation and artificial intelligence area. Many unexpected challenge and obstacle would
be met in the practical application fields. In this circumstance, knowledge and experience
are particularly important. The knowledge from school could develop analytical and problem
solving skills. Nevertheless, how to link the knowledge with the practical closely is only to be
fostered in practice. Data Innovation Lab gives a latest data science platform while I could be
instructed and mentored by experienced data scientist as well. Data science is keeping rapidly
development, so too many new skills and packages ought to be acquired and mastered so as
to keep up with the pace of the times. New knowledge and skills could be developed and
strengthened constantly during the different kind of data science projects in business fields.
it must be admitted that the gain in this half year internship grows quadratically. Referring
to this project, I think the model based on Markov Chain may be another choice to improve
the performance. XGboost[8], which is widely used for kaggle competitions and gives good
results for most data sets, may be an alternative algorithm. Furthermore, there should be some
other ideas to solve this problem and kaggle competition would inspire and surprise me. If the
model would be implemented into user interface, how to make a real time project and boost the
computing speed is still the challenge. In my experience, it would take such a long time to search
the best performance results from one month data (468 features, 357080 Observations) even if
we have a quite power cluster machine which means we could not updated the parameters of
model in real time. However the bird control team needs the timely prediction data as reference
to take measures immediately. Indeed, it is an interesting project and great experience, leading
me to the data science fields. According to Harvard Business review, data scientist is the sexiest
job of the 21st century[9]. The road to a good data scientist just started.

9

Bibliography

[1] Schiphol.nl.(2016) online Available at: http://www.schiphol.nl/SchipholGroup/Company1/Profile.htm
[Accessed 5 Aug. 2016].

[2] Waldo R. Tobler A computer movie simulating urban growth in the Detroit region 1970.

[3] Jerome H. Friedman, Trevor Hastie, Rob Tibshirani The Elements of Statistical Learn-
ing,Data Mining,Inference and Prediction 2009.

[4] Cun-Hui Zhang Nearly Unbiased Variable Selection Under Minimax Concave Penalty 2010.

[5] J Fan Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties 2001.

[6] H2O.AI - AI FOR BUSINESS online Available at: http://www.h2o.ai/docs/ [Accessed 5
Aug. 2016].

[7] Jerome H. Friedman, Trevor Hastie, Rob Tibshirani Regularization Paths for Generalized
Linear Models via Coordinate Descent 2010.

[8] T Chen XGBoost: A Scalable Tree Boosting System 2016.

[9] Harvard Business Review. (2012) online Available at: https://hbr.org/2012/10/data-
scientist-the-sexiest-job-of-the-21st-century [Accessed 5 Aug. 2016].

10

Appendix A

Python Code

11

Birds Project

#import package
import findspark
findspark.init('/data/spark-1.6.0-bin-hadoop2.6')
from pyspark import SparkContext, HiveContext
from pyspark.sql import functions as F
from pyspark.sql import Window as w
%matplotlib inline
import seaborn as sns
import datetime as datetime
import pandas as pd
import numpy as np
import math
import time
from pyspark.sql.functions import UserDefinedFunction
from pyspark.sql.types import StringType, DoubleType, IntegerType
from shapely.wkb import loads
from shapely import wkt
from numpy.lib.stride_tricks import as_strided
from pyspark.sql import SQLContext

load Spark and HiveContext
sc = SparkContext()
hc = HiveContext(sc)

Set the area of Polderbaan and calculate the max relative distance of target bird in each trajectory
Extend the Polderbaan area in terms of the max distance

the area of Polderbaan
l_lon = 4.706
t_lat = 52.368
r_lon = 4.717
b_lat = 52.325
dlon = r_lon-l_lon
dlat = t_lat-b_lat
length0 = r_lon*111.699 * np.cos(t_lat * np.pi/180) - l_lon*111.699 * np.cos(t_lat
* np.pi/180)
length = (int(np.ceil(length0*10)))/10.
width0 = t_lat*110.574 - b_lat*110.574
width = (int(np.ceil(width0*10)))/10.

the potential extended distance in terms of the max relative distance in each
trajectory
read track table which contanis trajectory and only extract the high risk birds
track_table = "birds.track"
track = (hc.read.table(track_table).where("classification_id != 1")
 .where("classification_id != 4")
 .where("classification_id != 5")
 .where("classification_id != 9")
 .where("classification_id != 10"))

define the function for calculate the max relative distance on the basis of a

spherical earth
def max_dist(b):
 return max(((np.array(b)[1:,0]*111.321*np.cos(np.array(b)[1:,1]*np.pi/180)
 - b[0][0]*111.321*np.cos(b[0][1]*np.pi/180))**2 +
 ((np.array(b)[1:,1] - b[0][1])*111)**2)**.5)

def do_something_to_cell(geo_string):
 return np.array([cell.split(' ') for cell in
str(geo_string[14:-1]).split(',')]).astype(float)

udf = UserDefinedFunction(lambda x: str(max_dist(do_something_to_cell(x))),
StringType())

track_trajectory = (track

.select('st_astext','classification_id','timestamp_start','timestamp_end')
 .dropna()
 .withColumn('max_dist', udf(F.col('st_astext')))
 .withColumn('max_dist', F.col('max_dist').astype('float'))
 .select('max_dist','classification_id')
)

nth_percentile = math.ceil(track_trajectory
 .sort(track_trajectory.max_dist.desc())
 .limit(int((1-0.95) * track_trajectory.count()))
 .sort(track_trajectory.max_dist.asc())
 .first()[0]
)
calculate the 95% largest distance and to extend the exist area in terms of this
value
drop those crazy large distance

extend the area in terms of the max relative distance
lat_det = nth_percentile/111
lon_det = nth_percentile/(np.cos(b_lat*np.pi/180)*111.321)
bound_x = [(l_lon-lon_det,b_lat-lat_det)]
bound_y = [(r_lon+lon_det,t_lat+lat_det)]
print nth_percentile

Divided the extended area into grid (6 by 4)

x_n= 4
y_n= 6

x_cells_index = pd.RangeIndex(0,x_n,1)
y_cells_index = pd.RangeIndex(0,y_n,1)
x_cells=pd.qcut(([l_lon-lon_det,r_lon+lon_det]),x_n,retbins=True)[1:]
y_cells=pd.qcut(([b_lat-lat_det,t_lat+lat_det]),y_n,retbins=True)[1:]
determine the bound of each cells and the index

bins_x=np.array(x_cells).tolist()[0]
bins_y=np.array(y_cells).tolist()[0]
get the bound value
interval_lon = (r_lon+lon_det-(l_lon-lon_det))/x_n

interval_lat = (t_lat+lat_det-(b_lat-lat_det))/y_n
min_lon = l_lon-lon_det
min_lat = b_lat-lat_det

Get the coordinates of each position

read trackestimate table which contanis each location
trackestimate_table = "birds.trackestimate"
trackestimate = hc.read.table(trackestimate_table)
track_subset =trackestimate.persist()
transform the time format to drop those half seconds
trackestimate_subset = track_subset.withColumn('dt', F.date_format('timestamp',
'yyyy-MM-dd HH:mm'))
define function to get the coordinates
udf_x = UserDefinedFunction(lambda x:
str(loads(x,hex=True).__geo_interface__['coordinates'][0]), StringType())
udf_y = UserDefinedFunction(lambda x:
str(loads(x,hex=True).__geo_interface__['coordinates'][1]), StringType())
def do_something_to_cell(geo_string):
 return [cell.split(' ') for cell in str(geo_string[9:-1]).split(' ')]

udf_x = UserDefinedFunction(lambda x: do_something_to_cell(x)[0][0], StringType())
udf_y = UserDefinedFunction(lambda x: do_something_to_cell(x)[1][0], StringType())
transform the coordinates and the datatype
trackestimate_subset_coord=trackestimate_subset.withColumn('position_x',
udf_x(F.col('st_astext')).astype('float'))
trackestimate_subset_coord=trackestimate_subset_coord.withColumn('position_y',udf_y
(F.col('st_astext')).astype('float'))

Assign the coordinates into cells

read track table which contanis trajectory and join the classification
information with each coordinates
track_table = "birds.track"
track = hc.read.table(track_table) # input track table which contanis trajectory
track = track.select('id','classification_id')
track_join = (trackestimate_subset_coord
 .join(track,on=track.id==trackestimate_subset_coord.track_id)
 .drop(track.id)
 .drop(trackestimate_subset_coord.st_astext)
)
track_grid = (track_join.filter(track_join.position_x > bound_x[0][0])
 .filter(track_join.position_x < bound_y[0][0])
 .filter(track_join.position_y > bound_x[0][1])
 .filter(track_join.position_y < bound_y[0][1])).persist()
track_grid = track_grid[track_grid['classification_id'].isin(2,3,6,7,8)]

check the mean position change to see if the change is stable or not
data_kernal = track_grid.select("dt","position_x","position_y")

data_kernal = data_kernal.withColumn('date', F.date_format('dt', 'yyyy-MM-dd'))
data_kernal_mean=data_kernal.groupBy('date').mean('position_x','position_y')
data_kernal_group=(data_kernal.join(data_kernal_mean,data_kernal.date==data_kernal_
mean.date,"inner").drop(data_kernal_mean.date)

.withColumn('subX',(F.col('position_x')-F.col('avg(position_x)'))**2)

.withColumn('subY',(F.col('position_y')-F.col('avg(position_y)'))**2)
)
data_kernal_group=data_kernal_group.groupBy('date').mean('subX','subY')
data_kernal_group=data_kernal_group.withColumn('sdist',(F.col('avg(subX)')+F.col('a
vg(subY)'))**0.5)
kernal =
data_kernal_group.join(data_kernal_mean,data_kernal_group.date==data_kernal_mean.da
te).drop(data_kernal_mean.date)
kernal = kernal.withColumn('dates', F.date_format('date', 'yyyy-MM-dd'))

Aggregate time into one minutes and join all the features

assign each location to the cells index and aggregate to each minutes
track_grid_x = track_grid.withColumn('x_categories', F.ceil((F.col('position_x') -
min_lon)/interval_lon))
data = track_grid_x.withColumn('y_categories', F.ceil((F.col('position_y') -
min_lat)/interval_lat))
data = data.fillna(0).drop('radar_id')
data =
data.withColumn("location_index",F.concat(data.y_categories,data.x_categories)).dro
p('x_categories').drop('y_categories')
aggregate to each minutes and join the attribute features
data_count=data.groupBy('location_index', 'dt').count()
attribute=data.groupBy('location_index', 'dt').mean('position_x','position_y',
 'velocity','airspeed',
 'heading','heading_vertical',

'peak_mass','mass','mass_correction')
cond = [data_count.location_index == attribute.location_index,
 data_count.dt == attribute.dt]
data_grid = (attribute.join(data_count, cond, 'inner')
 .drop(attribute.dt)
 .drop(attribute.location_index)
)
data_grid = data_grid.orderBy('dt','location_index')
oldColumns = data_grid.schema.names
newColumns =
["position_x","position_y","velocity","airspeed","heading","heading_vertical",
 "peak_mass","mass","mass_correction","location_index","dt","count"]

data_grid_new = reduce(lambda data_grid, idx:
data_grid.withColumnRenamed(oldColumns[idx], newColumns[idx]),
xrange(len(oldColumns)), data_grid)

data_grid_new = data_grid_new.where("dt < '2016-04-20 00:00:00'")

EXAMPLE

Reshape and cast count as example and aggregate it into neighboorhood cell information structure

count example
extract the count of location points
grid_space = data_grid_new.select('location_index','dt','count').withColumn('dt',
F.date_format('dt', 'yyyy-MM-dd HH:mm:ss'))
grid_space =
grid_space.groupBy('dt').pivot('location_index').avg('count').fillna(0).sort('dt')

data = grid_space.toPandas()
def transform(arr,time):
 submatrix = []
 for i in range(0,4):
 for j in range(0,2):
 submatrix.append((arr.reshape(6,4)[i:i+3,j:j+3]).flatten())
 submatrix = np.array(submatrix)
 location = ("loc22","loc23","loc32","loc33","loc42","loc43","loc52","loc53")
 timestep = np.repeat(time,8)
 location = np.array(location)
 neighboor = np.c_[timestep,location,submatrix]
 return neighboor
nrow = data.shape[0]
trans=[]
for k in range(0,nrow):
 trans.append(transform(data.iloc[k,1:],data.iloc[k,0]))
df = np.concatenate(np.array(trans))
dfindex = pd.DataFrame(df).iloc[:,0:2]
zeros = np.zeros((8,9))
df1=pd.DataFrame(np.concatenate((zeros,df[:-8,2:])))
df2=pd.DataFrame(np.concatenate((zeros,zeros,df[:-16,2:])))
df3=pd.DataFrame(np.concatenate((zeros,zeros,zeros,df[:-24,2:])))
df4=pd.DataFrame(np.concatenate((zeros,zeros,zeros,zeros,df[:-32,2:])))
df5=pd.DataFrame(np.concatenate((zeros,zeros,zeros,zeros,zeros,df[:-40,2:])))
alldf = pd.concat([dfindex,df1, df2, df3, df4, df5],
axis=1).iloc[40:,].reset_index(drop=True)
alldf.columns = ['timestep', 'location',
 'lt1','lm1','lb1','mt1','mm1','mb1','rt1','rm1','rb1',
 'lt2','lm2','lb2','mt2','mm2','mb2','rt2','rm2','rb2',
 'lt3','lm3','lb3','mt3','mm3','mb3','rt3','rm3','rb3',
 'lt4','lm4','lb4','mt4','mm4','mb4','rt4','rm4','rb4',
 'lt5','lm5','lb5','mt5','mm5','mb5','rt5','rm5','rb5']

Aggregate all features into neighboorhood cell information structure

attr = data_grid_new.toPandas()
attr=attr.rename(columns = {'dt':'timestep'})

attr['timestep'] = pd.to_datetime(attr['timestep'], format='%Y-%m-%d %H:%M:%S')
attr['location_index'] = "loc"+ attr['location_index'].astype(str)
time =pd.date_range(attr['timestep'].min(),attr['timestep'].max(), freq='min')
timestep = pd.DataFrame(np.repeat(time, 24))
timestep = pd.DataFrame(np.repeat(time, 24))
loc = ("loc11","loc12","loc13","loc14",
 "loc21","loc22","loc23","loc24",
 "loc31","loc32","loc33","loc34",
 "loc41","loc42","loc43","loc44",
 "loc51","loc52","loc53","loc54",
 "loc61","loc62","loc63","loc64")
location=pd.DataFrame(np.tile(loc,time.shape[0]))
datapre = pd.concat((timestep,location),axis=1)
datapre.columns=['timestep','location_index']
attr['location_index'] = attr['location_index'].astype(str)
alldata = pd.merge(datapre, attr,
on=['location_index','timestep'],how="left").fillna(0)

ts =pd.date_range(attr['timestep'].min() +
pd.Timedelta(minutes=5),attr['timestep'].max(), freq='min')
timestep = pd.DataFrame(np.repeat(ts, 8))
loc = ("loc22","loc23",
 "loc32","loc33",
 "loc42","loc43",
 "loc52","loc53")
timediff = attr['timestep'].max() - (attr['timestep'].min() +
pd.Timedelta(minutes=5))
timediff = timediff / np.timedelta64(1, 'm') +1
location=pd.DataFrame(np.tile(loc,timediff))
pre = pd.concat((timestep,location),axis=1)
pre.columns=['timestep','location_index']

def transform(arr,time):
 submatrix = []
 for i in range(0,4):
 for j in range(0,2):
 submatrix.append((arr.reshape(6,4)[i:i+3,j:j+3]).flatten())
 submatrix = np.array(submatrix)
 location = ("loc22","loc23","loc32","loc33","loc42","loc43","loc52","loc53")
 timestep = np.repeat(time,8)
 location = np.array(location)
 neighboor = np.c_[timestep,location,submatrix]
 return neighboor

for m in range(2,alldata.shape[1]):
 col = [0,1,m]
 subdata = alldata.iloc[:,col]
 subdata = subdata.pivot(index='timestep', columns='location_index',
values=subdata.columns[2])
 subdata.reset_index(inplace=True)
 nrow = subdata.shape[0]
 trans=[]
 for k in range(0,nrow):
 trans.append(transform(subdata.iloc[k,1:],subdata.iloc[k,0]))

 df = np.concatenate(np.array(trans))
 dfindex = pd.DataFrame(df).iloc[:,0:2]
 zeros = np.zeros((8,9))
 df1=pd.DataFrame(np.concatenate((zeros,df[:-8,2:])))
 df2=pd.DataFrame(np.concatenate((zeros,zeros,df[:-16,2:])))
 df3=pd.DataFrame(np.concatenate((zeros,zeros,zeros,df[:-24,2:])))
 df4=pd.DataFrame(np.concatenate((zeros,zeros,zeros,zeros,df[:-32,2:])))
 df5=pd.DataFrame(np.concatenate((zeros,zeros,zeros,zeros,zeros,df[:-40,2:])))
 alldf = pd.concat([dfindex,df1, df2, df3, df4, df5], axis=1).iloc[40:,2:]
 columns =['lt1','lm1','lb1','mt1','mm1','mb1','rt1','rm1','rb1',
 'lt2','lm2','lb2','mt2','mm2','mb2','rt2','rm2','rb2',
 'lt3','lm3','lb3','mt3','mm3','mb3','rt3','rm3','rb3',
 'lt4','lm4','lb4','mt4','mm4','mb4','rt4','rm4','rb4',
 'lt5','lm5','lb5','mt5','mm5','mb5','rt5','rm5','rb5']
 columns = [s + alldata.columns.values[m] for s in columns]
 alldf.columns = columns
 pre = pd.concat([pre,alldf.reset_index(drop=True)],axis=1)

total =
pre.merge(attr[['location_index','timestep','peak_mass']],how="left",on=['location_
index','timestep']).fillna(0)

Join weather information to the features

weather table
ts =pd.date_range(attr['timestep'].min() +
pd.Timedelta(minutes=5),attr['timestep'].max(), freq='min')
timediff = attr['timestep'].max() - (attr['timestep'].min() +
pd.Timedelta(minutes=5))
timediff = timediff / np.timedelta64(1, 'm') +1
index =range(timediff.astype('int'))
timestep = pd.DataFrame({'timestep': np.repeat(ts, 8),'index': np.repeat(index, 8)})
loc = ("loc22","loc23",
 "loc32","loc33",
 "loc42","loc43",
 "loc52","loc53")
location=pd.DataFrame(np.tile(loc,timediff))
pre_weather = pd.concat((timestep,location),axis=1)
pre_weather.columns=['index','timestep','location_index']
pre_weather['hour'] =pre_weather.timestep.apply(lambda x:pd.to_datetime(x).hour)
pre_weather['day_index'] = pre_weather.hour.apply(lambda x:
math.trunc(x/6)).astype('category')
pre_weather['tenmin'] = pre_weather.timestep.apply(lambda x:
 x -
datetime.timedelta(minutes=pd.to_datetime(x).minute
 -
math.trunc(pd.to_datetime(x).minute/10)*10))

weather=pd.read_csv('/data/capdec/raw/capdec/weather_2016.txt',sep='\t')
weather = weather[["DATE-LT","TIME-LT","VIS","CEIL","GML","BZO","
~VIS","~CEIL","~GML","~WDIR","~WSPD","~WGUS","~SHWR"]]

weather['DATE-LT'] = pd.to_datetime(weather['DATE-LT'],format='%d-%m-%Y')
weather['tenmin'] = pd.to_datetime(pd.to_datetime(weather['DATE-LT'].astype(str) +
' ' + weather['TIME-LT']))
weather = weather.drop('TIME-LT',axis=1).drop('DATE-LT',axis=1)
weather_join = pd.merge(pre_weather, weather,on='tenmin',how='left')

birrrds = pd.merge(total,weather_join,on=['location_index','timestep'],how='left')

analysis h2o
penalized regression

birrrds['folds'] = pd.cut(birrrds.index,20,labels=range(20))

import h2o
h2o.init()

Penalized Regression

from h2o.estimators.glm import H2OGeneralizedLinearEstimator
from h2o.grid.grid_search import H2OGridSearch
features = birrrds.columns.drop(['timestep','folds','peak_mass']).tolist()
rmse = performance = all_models = best_lambda = best_performance = []
alpha_opts = [0,0.25,0.5,0.75,1]
lam = np.arange(0, 1, 0.01)
for j, alpha in enumerate(alpha_opts):
 hyper_parameters = alpha_opts[j]
 for k in range(0,100,1):
 Lambda = lam[k]
 for i in range(9):
 train = birrrds.loc[birrrds['folds'].isin(range(10+i))]
 valid =
birrrds.loc[birrrds['folds'].isin([i+11])].reset_index(drop=True)
 training = h2o.H2OFrame((train.values.tolist()))
 validation = h2o.H2OFrame((valid.values.tolist()))
 training.names = train.columns.tolist()
 validation.names = valid.columns.tolist()
 models = H2OGeneralizedLinearEstimator(family = "gaussian",Lambda =
Lambda,standardize=True,
 alpha = hyper_parameters,
max_iterations= 100)
 models.train(y = 'peak_mass', x = features, training_frame =
training,validation_frame=validation)
 rmse = rmse + [np.sqrt(models.mse(valid=True))]
 performance = performance + [np.mean(rmse)]
 loc = np.argmin(performance) + 1
 b_lambda = lam[loc]
best_lambda = best_lambda + [b_lambda]
best_performance = best_performance + [min(performance)]

Neural networks in regression

find best neural nets
rmse_NN = performance_NN = []
features = birrrds.columns.drop(['timestep','folds','peak_mass']).tolist()
from h2o.estimators.deeplearning import H2OAutoEncoderEstimator,
H2ODeepLearningEstimator
import random
for j in range(1):
 hidden = random.sample(range(1, 200), 4)
 for i in range(9):
 train = birrrds.loc[birrrds['folds'].isin(range(10+i))]
 valid = birrrds.loc[birrrds['folds'].isin([i+11])].reset_index(drop=True)
 training = h2o.H2OFrame((train.values.tolist()))
 validation = h2o.H2OFrame((valid.values.tolist()))
 training.names = train.columns.tolist()
 validation.names = valid.columns.tolist()
 models_NN =
H2ODeepLearningEstimator(activation="Rectifier",hidden=hidden,distribution
="gaussian",epochs =10,
 loss ="Quadratic",l1=1e-05, max_w2=10)
 models_NN.train(y = 'peak_mass', x = features, training_frame =
training,validation_frame=validation)
 rmse_NN = rmse_NN + [np.sqrt(models_NN.mse(valid=True))]
 performance_NN = performance_NN + [np.mean(rmse_NN)]

Classification in Logistic Regression & Neural Networks

classification set the cut off value
cutoff = np.mean(birrrds.peak_mass)
maxcutoff = np.max(birrrds.peak_mass)
birrrds['binaryclass'] =
pd.cut(birrrds['peak_mass'],bins=[0,cutoff,maxcutoff],labels=['low','high'],include
_lowest=True)
birrrds_lr= birrrds.drop('tenmin', 1).drop('peak_mass', 1)
birrrds_lr =birrrds_lr.assign(binaryclass = lambda x:
pd.factorize(x.binaryclass)[0])
birrrds_lr =birrrds_lr.assign(location_index = lambda x:
pd.factorize(x.location_index)[0])

Logistic regression(the best solution)

from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import accuracy_score

accuracy = accurate = []
#c = np.arange(0.05, 1.05, 0.02)
#length = len(c)
#for k in range(0,length,1):
C = c[k]
for i in range(8):
 train = birrrds_lr.loc[birrrds_lr['folds'].isin(range(10+i))]
 valid = birrrds_lr.loc[birrrds_lr['folds'].isin([i+11])].reset_index(drop=True)
 X_lr = train.iloc[:,1:-2]
 Y_lr = train.iloc[:,-1]
 lrmodel = LogisticRegression(C=0.001, penalty='l1',max_iter =100)
 lrmodel = lrmodel.fit(X_lr,Y_lr)
 X_valid = valid.iloc[:,1:-2]
 predicted = lrmodel.predict(X_valid)
 expected = valid.iloc[:,-1]
accuracy = accuracy + [accuracy_score(predicted, expected)]
 table = predicted == expected
 accuracy = table.sum()/ (expected.shape[0] * 1.0)
 accurate = accurate + [np.mean(accuracy)]

accurate

Find the best penalized parameter

finalmodel = LogisticRegression(C=bestc, penalty='l1', tol=0.01)
train = birrrds.loc[birrrds['folds'].isin(range(10+8))]
valid = birrrds.loc[birrrds['folds'].isin([8+11])].reset_index(drop=True)
X_final = train.iloc[:,1:-2]
Y_final = train.iloc[:,-1]
finalmodel = finalmodel.fit(X_final,Y_final)
X_valid = valid.iloc[:,1:-2]
predicted = finalmodel.predict_proba(X_valid)

NN classification in H2O

cutoff = np.mean(birrrds.peak_mass)
maxcutoff = np.max(birrrds.peak_mass)
birrrds['binaryclass'] =
pd.cut(birrrds['peak_mass'],bins=[0,cutoff,maxcutoff],labels=['low','high'],include
_lowest=True)

features =
birrrds.columns.drop(['timestep','folds','binaryclass','peak_mass']).tolist()
logloss_NN = performance_NN = performance_auc = auc_NN = layer = accurate =[]
from h2o.estimators.deeplearning import H2OAutoEncoderEstimator,
H2ODeepLearningEstimator
import random
for j in range(1):
 # increase range number to try more nodes
 hidden = random.sample(range(1, 200), 4)
 for i in range(8):

 train = birrrds.loc[birrrds['folds'].isin(range(10+i))]
 valid = birrrds.loc[birrrds['folds'].isin([i+11])].reset_index(drop=True)
 training = h2o.H2OFrame((train.values.tolist()))
 validation = h2o.H2OFrame((valid.values.tolist()))
 training.names = train.columns.tolist()
 validation.names = valid.columns.tolist()
 models_NN =
H2ODeepLearningEstimator(activation="Tanh",hidden=hidden,distribution
="bernoulli",epochs =10,
 loss ="CrossEntropy",l2=1e-05)
 models_NN.train(y = 'binaryclass', x = features, training_frame =
training,validation_frame=validation)
 logloss_NN = logloss_NN + [models_NN.logloss(valid=True)]
 auc_NN = auc_NN + [models_NN.auc(valid=True)]
 pred = models_NN.predict(validation)
 table = pred['predict'] == validation['binaryclass']
 accuracy = table.sum()/validation.shape[0]
 performance_NN = performance_NN + [np.mean(logloss_NN)]
 performance_auc = performance_auc + [np.mean(auc_NN)]
 accurate = accurate + [np.mean(accuracy)]
 layer = layer + hidden

accurate

h2o logistic regression
features =
birrrds.columns.drop(['timestep','folds','binaryclass','peak_mass']).tolist()
logloss_NN = performance_NN = performance_auc = auc_NN = layer = accurate =[]
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
from h2o.grid.grid_search import H2OGridSearch
rmse = performance = all_models = best_lambda = best_performance = []
alpha_opts = [1]
#lam = np.arange(0, 1, 0.01)
for j, alpha in enumerate(alpha_opts):
 hyper_parameters = alpha_opts[j]
for k in range(0,100,1):
 Lambda = 0.001
 for i in range(8):
 train = birrrds.loc[birrrds['folds'].isin(range(10+i))]
 valid = birrrds.loc[birrrds['folds'].isin([i+11])].reset_index(drop=True)
 training = h2o.H2OFrame((train.values.tolist()))
 validation = h2o.H2OFrame((valid.values.tolist()))
 training.names = train.columns.tolist()
 validation.names = valid.columns.tolist()
 models = H2OGeneralizedLinearEstimator(family = "binomial",Lambda =
Lambda,standardize=True,
 alpha = hyper_parameters,
max_iterations= 100)
 models.train(y = 'binaryclass', x = features, training_frame =
training,validation_frame=validation)
 pred = models.predict(validation)
 table = pred['predict'] == validation['binaryclass']
 accuracy = table.sum()/validation.shape[0]
 accurate = accurate + [np.mean(accuracy)]

accurate

train_all = birrrds.loc[birrrds['folds'].isin(range(19))]
test = birrrds.loc[birrrds['folds'].isin([19])].reset_index(drop=True)
training_all = h2o.H2OFrame(train.values.tolist())
tests = h2o.H2OFrame(test.values.tolist())
training_all.names = train_all.columns.tolist()
tests.names = test.columns.tolist()
models_NN = H2ODeepLearningEstimator(activation="Tanh",hidden=hidden,distribution
="bernoulli",epochs =10,
 loss ="CrossEntropy",l2=1e-05)
models_NN.train(y = 'binaryclass', x = features, training_frame = training_all)
pred = models_NN.predict(tests)

data = pd.concat([pd.DataFrame(test['binaryclass']),h2o.as_list(pred)],axis=1)
accuracy = sum(data['binaryclass'] == data['predict'])/round(data.shape[0])

h2o.shutdown()

birrrds.to_csv('data/birrrds.csv')
from IPython.display import FileLink, FileLinks
FileLinks('data')

Appendix B

Presentation

25

