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Abstract. This thesis discusses the classical problem of how to calculate 7, (m), the number of
ways to represent an integer m by a sum of n squares. To this day, there are very few formulas
that allow for easy calculation of r,,(m). Here, we focus on the case when n is even, hence we can
use the theory of integral weight modular forms on I';(4) to write down formulas for the theta
function 6,,(q) associated to sums of n squares. In particular, we show that for only a small finite
list of n can 0, be written as a linear combination consisting entirely of Eisenstein series and
cusp forms with complex multiplication. These give rise to “elementary” formulas for r,(m), in
which knowing the prime factorization of m allows for their efficient computation. This work is
related to Couveignes and Edixhoven’s forthcoming book and Peter Bruin’s forthcoming Ph.D.
thesis concerning polynomial-time algorithms for calculating the prime Fourier coefficients of
modular forms.
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1 Introduction

The simple Diophantine equation
:c%—kx%—i—...—i—a:i =m

has been of interest to many mathematicians throughout time. From understanding the lengths
of a right triangle to distances in n-dimensional space, the physical and geometric aspects of this
expression are clear. However, studying sums of squares problems is deeply linked to almost all
of number theory. Fermat started by investigating which primes can be “represented” by a sum
of 2 squares, i.e. whether or not there exists an integral pair (x1,z2) such that 22 + x3 = p for
each prime p (see [16]). To this day, students in an elementary number theory class are quickly
introduced to his theorem stated in 1640 and later proved by Euler:

an odd prime p can be written as a sum of 2 squares if and only if p = 1 mod 4.

After studying the multiplicative properties of solutions to this equation, it is not hard to
conclude that the integers represented by sums of squares are those with prime factorization
such that primes p = 3 (mod 4) occur in even powers.

Fermat also studied the sums of 3 squares problems, but the following statement describing
which integers can be represented was not proven until Legendre in 1798 ([16]):

an integer m > 0 can be written as a sum of 3 squares if and only if m # 7 mod 8 and 4 1 m.

In 1770, Lagrange proved that every natural number can be written as a sum of 4 squares
(see [11]). Other mathematicians gave different proofs involving surprising tools such as quater-
nions and elliptic functions (see [16]). For example, Ramanujan gave a proof in 1916 involving
calculation of the coefficient 74(m) of ™ in

o0

(1+2z+22t +..)1 = ( Z xk2> € Z[z]]

k=—o0

as the number of solutions of m = 27 + 23 + 23 + 27 in the integers (see [26]). In this language,
Lagrange’s theorem amounted to proving that r4(m) > 0 for all integers m > 0. These coeffi-
cients were further studied by Jacobi in 1829, additionally gave exact formulas for representing
a natural number by a sum of 4 squares (see [19]):

8 Z d if m is odd
dlm
24 Z d if m is even.
2fd|m

ra(m) =

Jacobi continued the study of sums of n squares by writing down exact formulas for the cases
of n =6 and n = 8. Writing down formulas for 75(m) and 77(m) in fact came much later due
to their surprising difficulty, and it was worked on by Eisenstein, Smith, Minkowski, Mordell,
Ramanujan, and Hardy ([16]). Even for r3(m), Gauss gave the simplest formula in 1801, which
still involved the class number of binary quadratic forms with discriminant —m. We therefore
focus our attention to the case when n is even.

Denote 7,(m) as the coefficient of 2™ in (1 + 2z + 2z* +...)", i.e.

0o 0o n
Z T (m)z™ = ( Z a:k2> or equivalently, r,(m)=#{xe€Z": x% 4 :c% 4o+ 33721 = m}.

m=0 k=—o00



If we define x : Z — C such that

1 if d=1mod 4
x(d)=4¢-1 ifd=—-1mod4
0 if d =0 mod 2,

then Jacobi’s formulas can be written as

r¢(m) =16 - ZX (%) d?—4- Zx(d)d2 and rg(m) =16-(—1)™ Z(—l)dd3.

dlm dlm dlm

When mathematicians started writing down formulas for n > 8, they got noticeably more
complicated. Liouville in 1864 wrote the first formula for r19(m) in terms of summations with
respect to divisors of m as well as decompositions of m into sums of 2 squares (see [22]). Glaisher
noted that rip(m) can be equivalently written as a linear combination of three functions (see
[14]):

Eim) = Y (~1)@ V2

2fd|m
4
Eym) = Y (-1 (Z)
2fd|m
1
Yg(m) = 1 Z o,
N(a)=m
a€Z[i]

While E4 and EJ) look similar to the summations that came up in previous r,(m), n < 10,
a(m) is very distinctive, particularly in its use of Z[i]. Liouville’s original formula can be
expressed as follows (see [14]):

4 64 32
rio(m) = ¢ - Ea(m) + = - Ey(m) + = - ha(m).
Liouville also produced a formula for sums of 12 squares, which was again rewritten by Glaisher
as
-8 Z(—l)d+m/dd5 if m is even
dlm
d d+2-Q(m) if mis odd.

dlm

12 (m) = 3.

Here, 2 can either be defined as coeflicients of elliptic function expansions or arithmetically.
For the latter, let Sy, of all x = (1, 72,73, 74) € Z* such that 22 + 22 + 23 + 23 = m.
1
Q(m) = 3 Z mi‘ + a:% + x% + :Uﬁi — 2:(}%.%% — 2x%m§ — Qw%xi — 2:6%30% — 2.@%302 — 2m§xi.
XESm

There is no straightforward method to compute (m) in polynomial time with respect to log(m),
even when the prime factorization of m is given. In a 1916 article (see [26]), Ramanujan
remarked

Z Q(m)z™ = n'?(z?) where n(z) = z'/* H(l — ).
k=1 k=1



In order to express r14(m), r16(m), and rig(m), Glaisher also described functions similar to
Q) that were defined as coefficients of elliptic function, and Ramanujan later wrote them as
coefficients of expansions of powers and products of n(x). In addition, he included the relation

Y da(m)a™ = 't ()n?(@®)n* ().
k=1

Unfortunately, this equation does not seem to simplify the computations of 14(m) and addi-
tionally implies an equal or higher level of difficulty in computing ¥4 and 2. However, even
though 4 is not simply a summation running over divisors, Fermat’s theorem for sums of two
squares allows us to understand the 4 quite well. A straightforward consequence of Fermat’s
theorem is

4 ifp=2
ro(p) =<8 if p=1mod4
0 if p=3mod4.

Using the fact that the norm of Z[i] is multiplicative, one can compute 14(m) by finding an
element of Z[i] with norm p for each prime p | m and p = 1 mod 4.

The modern perspective on the sums of squares problems involves the theory of modular
forms, the sequel to the elliptic functions of Jacobi and Ramanujan. Through this perspective,
we will discuss the generating function for r,(m) when n is even. The fact that these formal
series give rise to integral weight modular forms will allow us to precisely understand when
formulas for r,(m) are straightforward and easily computable.



2 Main statements

We begin by recalling the general situation. For even n € Z~o and m € Zx>(, we define
ra(m) = #{x €Z" : 23 + 23 + ... + 22 = m}. (1)

We wish to understand the generating function of r,,(m), which we denote by 6,,. A key insight
is to interpret this formal series as a complex (in fact, holomorphic) function on the open unit
disk D € C. For q € D, let

0,(q) = irn(m)qm = 1+2n-q+4<g> -q2—|—8<§> P [24<Z) +2n} Pt (2

m=0

Equivalently, one can define 6,,(q) by using the multiplicative property of r,(m)
0n(q) = 61(q)" = (1 +2¢ 4+ 2¢* + 2¢° + )n :

Furthermore, if we view D as the image of the upper half plane H = {z € C : Im(z) > 0} under
the map z — e?™#_ then we may write

Jacobi noted certain symmetries of 6,,; in particular, it satisfies the equations (see [25], 3.2),
O0n(—1/42) = (22/))"%0,(2)  On(z+1) = On(2). (3)

Note that we have assumed n is even, hence there is no need to choose a square root. The
above equalities illustrate that 6, as a function of the H-coordinate z, the coordinate of the
upper half plane, is a modular form of weight n/2 on the congruence subgroup I';(4) consisting
of matrices v € SLy(Z) such that v = (%) (mod 4) (see [10], 1.2 or [25], 3.2). We are
interested in analyzing when 6, (z) has coefficients that are easily computable, thus we establish
the following definition.

Definition 1. A modular form f on the congruence subgroup I';(N) of weight k € Z is
elementary if and only if f is a linear combination of Eisenstein series and cusp forms with
complex multiplication as defined in Section 3.9.

Denote the space of modular forms on a congruence subgroup I' of weight k as M(T"), and
let its subspace of cusp forms be Sk(I'). The Eisenstein space E(I") is then the orthogonal
subspace to Si(I") with respect to the Petersson inner product defined in Section 3.5. Finally,
we define the subspace S (I') C Si(I") as the space of cusp forms with complex multiplication,
i.e. those which are invariant under twisting by a quadratic character.

By definition, 0, € M,,/»(I'1(4)), is elementary if and only if 6,, is an element of the subspace
En2(l1(4)) @ Sﬁ%(f‘l(ll)). Note that in [33], Serre calls cusp forms lacunary if the density of
the nonzero coefficents in the g-expansion is zero, and proves that a cusp form f is lacunary if
and only if f € S“*. While it is false that 6,, is lacunary for any n > 4, it is true that 6, is
elementary if and only if the cuspidal part in its decomposition are lacunary, i.e. contribute to
the value of r,,(m) very rarely. The following theorem is our main result.

Theorem 1. Suppose n is even. Then 0, is elementary if and only if n = 2,4,6,8, or 10.



To prove this, we will first compute the dimensions of the various subspaces introduced above:

Lemma 1. The dimensions of My(T'1(4)) and its subspace of cusp forms for arbitrary k € Z~g
are as follows:

ifk <4
if k> 3 is even
B3 ifk >3 is odd

k+2

dimc(Mg(T'1(4))) = {cher
P

> O
S

if k is even

if k is odd

dim(c (Sk (Pl (4)) =

T
w

In particular, this implies that £(I'1(4)) has dimension 3 for even k > 2 and dimension 2 for
odd k£ > 2. We will prove this by using a geometric interpretation of these spaces and applying
the Riemann-Roch formula. When k is odd, the genus formula arising from Riemann-Roch gets
a contribution from the irregular cusp 1/2 on I';(4).

A corollary of this statement (and the fact that 6,, is a modular form of weight n/2) is that
if n =2,4,6, and 8, then 0, is elementary (consisting entirely of Eisenstein series).

Lemma 2. The dimension of S{™(I'1(4)) is 1 if k = 1 mod 4 for k > 5 and 0 otherwise.

A more general theorem for all I';(N) can be found in [28]. We focus on the case of I';(4)
here, proving that there exists a unique algebraic Hecke character on Q(4) of conductor 1 and
oo-type equal to #(’)&i) = 4, and the only possible CM cusp forms on I';(4) arise from its
powers.

Using these lemmas, we will prove that for even n > 8, the modular form 6, is not a linear
combination of Eisenstein series. Thus, the only possible n > 8 and even for which 6,, can
be elementary are such that § = 1 mod 4. Then we have reduced the problem to producing
an elementary formula for n = 10, and showing that for n > 10 with the above property, any
decomposition of 6, must include cusp forms that do not have complex multiplication.



3 Modular forms

We introduce the general theory and notation of modular forms that will be used throughout
this thesis. This material is found in [5], [10], [9], [23], [25], [29], and [41]. In order to prove
Lemmas 1 and 2, we will focus on modular forms related to the congruence subgroup I'1(4),
the geometric interpretation of the space of modular forms, and the general theory of modular
forms with complex multiplication (see [28]).

3.1 SLy(Z) and congruence subgroups

The group SLg(R) consisting of 2 x 2 matrices with determinant 1 and coefficients in R acts
on the upper half plane of the complex numbers, denoted H = {z € C : Im(z) > 0}. If
v = (‘cl g) € SLy(R), for any z € H, we define the linear fractional transformation by v as

az—i—bE
cz+d '

v(z) =

The element —1 = (' °;) has trivial action on H, and SLo(R)/{%1} acts faithfully on H.
Although some authors use SLo(Z)/{+£1} instead, we will call SLy(Z) the modular group.

Certain basic functions on H such as translation, z — z+n for n € Z, and the transformation
z +— —1/z can be written as matrices in SLy(Z):

(1 n (0 -1
T —<0 1) and S_<1 0),

respectively. Furthermore, it is well known (see [29], 7.1) that the modular group is generated
by S and T =T,
For each N € Z~q, let I'(IV) denote the kernel of the reduction map
¢ : SLo(Z) — SLo(Z/N7Z).

A congruence subgroup T of SLy(Z) is then any subgroup containing some I'(N). The level of
I' is defined as the smallest such N for which I'(N) C I'. We are particularly interested in the
following congruence subgroups

ro() = {7 esta@ v = (5 1) o m}.
Fl(N):{veSLg(Z):'yE <(1) 1‘) (mod N)}.

Here * denotes any element of Z. Equivalently, one can think of SLy(Z/NZ) as acting on
(ZJNZ) x (Z/NZ) and P'(Z/NZ). Then I'i(N) is the preimage under ¢ of the stabilizer of
the vector () € (Z/NZ)? and similarly, To(N) = ¢~ *(Stab [}]) where [}] € PY(Z/NZ). When
N =1,T1(1) =Ty(1) = SL2(Z).

3.2 Cusps

The action of SLy(Z) on P}(Q) = QU {cc} is defined by

am +b a b
mi— y(m) = ot d’ v = (c d) € SLa(Z).

10



Here, y(00) = £ and if cm +d = 0, y(m) = oo (similarly, if ¢ = 0, v fixes co).

The cusps of a congruence subgroup I' are the T'-orbits of P!(Q). It is a nontrivial fact that

the set of cusps for any congruence subgroup I' is finite. If I' = SLy(Z), there is only one cusp,
i.e. for any mi,mo € P1(Q), there always exists some v € SLy(Z) such that y(m1) = ma. If
I' =T'(4), one can easily check that there are 3 distinct orbits, normally represented by oo, 0,
and %, and we say that there are the three cusps of I'1(4).
Remark. Geometrically, adding the cusps of I to H “compactifies” the upper half plane with
respect to the action of I' in the following sense. We can view I'\H = Y1-(C) as a modular curve,
which can also be viewed as a Riemann surface. However, it is not compact, so we also consider
the quotient of the action of I' on H* = H U P!(Q) (the topology on H* is defined by using
the usual open sets of H along with the sets y({z + iy : y > C} U {oo}) for v € SLy(Z) and
C € R>q). This decomposes to Xp(C) = Yp(C) U (T\P}(Q)), i.e. our original modular curve
with the cusps defined above added to it. Xp(C) is a compact connected Riemann surface, thus
by Riemann’s existence theorem (see [30]), we can view and study it as a projective algebraic
curve over C. (It is also possible to define Xt as a compactified moduli space of elliptic curves
with I-structure that makes sense over (. Then one can show that its complex points give this
compactification of I'\H (see [9], I1.9))

3.3 Modular functions

For any integer k, define the weight k (right) action of SLa(7Z) on the set of functions f : H — C
as follows: For v = (2Y) € SLy(Z) and f as above, define

f((2))
(cz + d)F

Since SLo(Z) acts on H on the left, this yields a right action of SLa(Z) on the set of all functions
f:H—-Cas

1 Ie(z) =

flmvele = (f | [nle) | el

Moreover, this action can be defined for any v € GLy(R) with positive determinant, where we
add multiplication by the factor of det(y)*~! in the right-hand side of the definition of f | []x.)

A modular form of weight &k > 0 with respect to a congruence subgroup I' is a function
f:H — C such that for all z € H,

1. f is holomorphic on H, i.e. limy_ W
approach 0 on;

exists independent of the path h may

2. f is invariant under the weight k action of T, i.e. f | [v]x = f for all v € T}

3. f is holomorphic on the cusps of I'.

We define the third condition as follows. Note that the matrix 7% € T'(N), thus there exists
a smallest positive integer h such that f(z + h) = f(z) for all z € H if f is a candidate for a
modular form of level N. In particular, f has a Fourier expansion (at oo)

o0
f(z) = Z ane®™ Mz e H.
n—=——oo
Let ¢'/" = ¢'/"(2) = €*#/7 which we view as a map H — D*, where D* denotes the punctured

open unit disk (i.e., with origin removed). We then say f is holomorphic at oo if the map

11



F :D* — C defined by F(q(z)) = f(2) extends to and is well-behaved at 0, i.e. if a,, = 0 for all
n < 0 (one can check that this condition is independent of the choice of h).

Note that for o € SLa(Z), f | [a7]x = f | [a]x for all ¥ € a T, thus the Fourier expansion
at oo of f immediately gives one for f | [a]x. Then, f is holomorphic at the cusps of T if f | [
is holomorphic at co for all & € SLy(Z). Furthermore, f vanishes at the cusps if f | [a]y is both
holomorphic at oo and ag = 0 for all & € SLg(Z). Checking if ag = 0 when o = 1 gives the
criterion for vanishing at oo.

The complex vector space of all modular forms of weight k£ on I' will be denoted by My ().
An important subspace Si(I') consists of all modular forms that also vanish on all the cusps
of I, known as the space of cusp forms. It has an orthogonal complement, denoted &(T"),
with respect to the inner product defined in Section 3.5. The space E(T") consists of modular
forms called FEisenstein series which do not vanish at every cusp of I'. It is well known that
My (T) = Si(T") @ & (T) has finite dimension over C (see [10]).

Remark. The matrix T = ({1) € I'1(N) C T'o(N) for all N, thus any modular form f €
M (T1(N)) 2 Mg(To(N)) has a g-expansion at oo of the form

)
f(Z) — Zanqn’ q= 627riz.
n=0

If f(2) € Sk(T1(N)) or Sk(I'1(N)), then ag = 0 as well (but the converse implication does not
hold).

3.4 Hecke operators

We first restrict to the case of level 1 modular forms. For any positive integer n, let

Xn:{(g Z) € Maty(Z) : a > 1,ad = n, and0§b<d}~

It is not hard to see that X, is in bijection with the set of sublattices of Z? of index n (by letting
the rows, (a,b) and (0, d) define basis elements). Recall that the weight k action of v € X,, on
a function f: H — C is

The n-th Hecke operator of weight k, denoted T, (or T}, since the weight will always be
obvious, corresponding to the weight of the modular form) is the operator on the set of functions
on H defined by

Toix(f) = D F1 [k

’YeXn
The Hecke operators of a fixed weight & satisfy the following formulas (see [29], 7.5.2, Lemma
2):
T Ty = Ton if ged(m,n) =1,

Tpr = Tyn-1Tp — p* T2 if p is prime.
So in particular, the prime power Hecke operators T),» can be written as integer-polynomials in
T,. Furthermore, Hecke operators commute, i.e. for any n,m € Z, T,,T;, = T,,,T5,.

12



On modular forms of level 1, we can write the action of T}, explicitly when f is written as a
g-expansion. If ¢ = e2™ then the Fourier expansion of a modular form f of weight k is written
as y_.~oanq". A Hecke operator T;, (of weight k) acts on f as

Tn(f) = Z Z dk_lamn/dQ qm’

meZ \d|ged(m,n)

where the summation runs over positive d ([29], 7.5.3). If f is a modular form, then T,,(f) is
also a modular form of the same weight ([29], 7.5.3, Prop. 12).

For the action of Hecke operators on modular forms of higher level NV, first define the diamond
operator for all d t N,

(d)g: f— f|[odlk where oq = <E)l 2) mod N,

where d = d~' mod N, and o, is any element of the modular group satisfying the equation.
Indeed, the action of (d); only depends on d mod N, not on the choice of oy.

The n-th Hecke operator of level N is then the operator on the set of functions on H defined
by
To(f) = D Ua)f) | Bl
yEXn

[P

here, a., denotes the top left entry (i.e. the “a” entry) of the matrix v. (Here, we are implicitly
assuming that f is a weight £ modular form and the diamond operator is of the same weight,
thus T), is a weight k action.) The Hecke operators of arbitrary level satisfy formulas similar to
those in the level 1 case. In particular,

T Ty = Ton, if ged(m,n) = 1;

Ty = Tpn1 Ty — pF 1 {p) Ty if pt N is prime.

Remarks. In our notation, we are using the fact that diamond operators and Hecke operators
commute (with themselves and each other), (see [10], 5.2), e.g. it is okay to use notation T, f
rather than f | T),.

Furthermore, the action of Hecke operators and diamond operators preserve the decompo-
sition of the space of modular forms of a given weight into the cusp forms and the Eisenstein
series.

3.4.1 Operators on My (I'g(N)) and My(I'{(N))

As T1(N) C T'o(N), all modular forms on I'g(/N) are modular forms on I';(N). The converse
is not true, but one can consider the action of elements of T'g(N) on f € Mg (T'1(NN)), because
I'1(N) is a normal subgroup of I'g(N) and furthermore, I'o(N)/T'1(N) = (Z/NZ)*. The dia-
mond operators (d)y defined earlier act on the space My(I'1(N)), and they in fact represent the
action of I'g(N)/T'1(N) on Mg(T'1(N)). If £ : (Z/NZ)* — C* is a Dirichlet character mod N,
view it as a map from Z by defining £(p) = 0 for primes p | N and extending multiplicatively.
We say that a modular form f € My(T'1(N)) has Nebentypus ¢ if it satisfies

(f I k)(2) = e(dy) f(2), Vv € To(N),

where d. denotes the bottom right entry (the “d” entry) of the matrix . For a fixed Nebentypus
g, these modular forms form a subspace of My(I'1(N)) denoted My (T'o(N),e). Moreover, the

13



space My (I'o(N), e) can be thought of as the e-eigenspace of the (d) for d € (Z/NZ)*.Thus, an
equivalent definition of this space is

Mi(To(N), ) = {f € Mp(DL(N)) : (d) f = e(d)f Vd e (Z/NZ)"}.

It follows that we have a decomposition of My(T'1(N)) into subspaces My (T'o(N),¢), indexed
by the Dirichlet characters mod N where My (Io(N),1x) = Mg (To(NN)) when the Nebentypus
is the trivial character 1y (see [10], 4.3). Since —1 = (¢ %) € I'o(N), if the Nebentypus of
f e Mg(I'1(N)) is €, then

FIFL(G) = (=D f(2) = (-1)7*f(2) = e(-1)f(2),

for all z € H. Hence we conclude that in order for My (I'g(N), €) to be nontrivial, the Nebentypus
€ must have the property that e(—1) = (—1)*. Thus, we conclude that

M(T1(N)) = P Mp(To(N),e)  where e(-1) = (-1)". (4)

The action of Hecke operators T, preserves the decomposition for n coprime to N, i.e. if
f € Mg(To(N),e), then T,,f € My(I'o(N),e) and we can write out the g-series expansion of
T, f in terms of f(2) =", 50 amq™

Tnf = Z Z E(d) AN Amn/d2 q",

m>0 \dlged(n,m)

where d runs through positive divisors and ¢ is the Dirichlet character viewed as a map on 7Z
(see [10], 5.3.1).

In the space S(I'1(N)), cusp forms of a fixed Nebentypus € form a subspace denoted
Sk(To(N),e). The diamond operators preserve cusp forms, thus the restriction of their ac-
tion to the subspace of cusp forms partition the space analogously with respect to the possible
Dirichlet characters € mod N:

Se(T1(N) = P Sk(To(N),e), where £(—1) = (-1)".

In particular, the cuspidal e-eigenspace Si(I'o(N),e) = Mi(Io(NV),e) N Sp(I'1(N)). Conse-
quently, Hecke operators preserve this decomposition as well as the decomposition & (I'1(N)) =
P Ek(To(N),e) (see [10], 5.2).

3.5 Petersson inner product

If T' C SLy(Z) is a congruence subgroup, there is a “natural” inner product on the cuspidal space
Sk(T') known as the Petersson inner product. It allows us to focus our attention on certain types
forms that are eigenvectors for all Hecke and diamond operators.

If 2z = x + iy € H, then the hyperbolic measure du(z) := dzgy on H is SLy(Z)-invariant. It

induces a measure on I'\H, which is given by a smooth volume form outside the elliptic points.
In fact, the integral fF\H dy converges to the volume

Vi = [SLy(Z) : £T] (g) .
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Note that for f € Si(T'), |f(2)|?y* is T-invariant and bounded on H, hence the measure

dpg(2) = | f(2)Py* 2 dady = |f(2)*y" dp,

is I-invariant on H, and furthermore, fF\H duy converges to an element of Rxq (see [10], 5.4).
Thus, there is an inner product

1

<fa g> = 1 f(Z)mykd:ua f?g € Sk(r)a
Vo Jrm

In fact, this inner product can be extended to a sesquilinear pairing My (') x Sg(I') — C;
however, it is not an inner product on M(I") as the integral does not converge in the larger
space.

The set of f € My(I'1(N)) such that (f,g) = 0 for all g € Si(I'1(NV)) is exactly E(I'1(N)).
(The statement also holds true for I'o(N)) (see [10], 5.4).

3.5.1 Eigenforms & newforms

On the space of cusp forms Sk(I'1(N)), one can show that the diamond and Hecke operators
away from the level are normal, i.e. they commute with their adjoints with respect to the
Petersson inner product. From linear algebra, Si(I'1(INV)) then has an orthogonal basis of
elements which are eigenvectors simultaneously for all the operators away from the level. We
define an eigenform as a nonzero modular form f € My(I'1(N)) with this above property,
i.e. an eigenform is an eigenvector for all Hecke and diamond operators of level coprime to N.
However, the eigenspaces attached to these eigenforms may not necessarily be 1-dimensional.

In general, we say an eigenform f is normalized if the g-expansion of f has coefficient 1 for
g. Normalization is motivated by the fact that it forces an eigenform f € My(T'o(N),¢e) to
have g-series coefficients described by the action of the Hecke operators (7),(f) = anf when
ged(n, N) =1).

As a consequence, the g-series coefficients of a normalized eigenform ), - ang™ € My(I'o(N),¢)
must satisfy a; = 1 along with: B

k

L. apr = ayr—1a, — e(p)p*~2a,r—2 for all primes p{ N and r > 2

2. Gmp = ama, when m and n are coprime to the level, and ged(m,n) = 1.

Suppose M and N are positive integers such that M | N. For any divisor ¢ | %, define the
t-th degeneracy map of cusp forms of level M to those of level N as

WM Sk(Fl(M)) — Sk(Pl(N)), where WM f(z) — f(tz).

On g-expansions, %y sends Y 07 ( ang™ — > 074 ang™. This map commutes with the action of
the diamond and Hecke operators coprime to N described previously (see [10], 5.6). Note also
that when ¢ = 1, 1 5/ is the identity inclusion.

The old subspace of Si(I'1(NN)) is the sum of the images of all such ¢ s where M runs
through proper divisors of NV, and ¢ runs through all divisors of % (given M). We define the
new subspace to then be the orthogonal subspace in Si(I'1(N)) with respect to the Petersson
inner product, so in particular, we have the following decomposition,

Sk(T'1(N)) = Sk(F'1(N))new @ Sk(I'1(N))ota-
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(The names are derived from the idea that forms from the old subspace originate from lower
levels, i.e. proper divisors M of N, while the forms from new subspace do not.) The Hecke and
diamond operators away from the level respect the decomposition of Si(I'1(N)) into old and
new subspaces, and furthermore, both subspaces have bases of eigenforms (see [10], 5.6). We
call the normalized eigenforms for Si(I'1(N))new, newforms. The set of newforms is a basis for
the new subspace in Sg(I'1(/N)), and in particular, the eigenspaces in the new subspace each
have dimension 1 (see [21]). Thus, since Hecke operators commute with each other, newforms
are eigenforms for all Hecke operators, including those that are not coprime to the level. We
can decompose S;(I'1(N)) as follows (due to Atkin and Lehner [1] and Li [21]):

Se(M1(N) = @ P it (SkT1(M))new)-

M|Nt|%

Thus, for any normalized eigenform g € Sk(I'1(N)), there exists a unique newform f €
Sk (T'1(M))pew for some M | N such that the coefficients of ¢" for n coprime to the level in
the g-series expansions of g and f coincide. This decomposition allows us to view newforms as
eigenforms for all Hecke operators, including those that are not coprime to the level. A priori,
a newform f = > a,q" has the property that the eigenvalue of T, for n coprime to N is the
nth coefficient of the g-series for f. For any positive n € N with nontrivial ged(n, N) = 1,
the “additional” Hecke operators T, also satisfy T,,f = a, f (see [21]). This coincides with the
earlier formulas (1 and 2 above) viewing ¢ as a map on Z where £(p) = 0 if p is a prime dividing
N, and extending multiplicatively. (For diamond operators (d) such that ged(d, N) # 1, we
define (d)f = 0, hence f is automatically an eigenform for such (d), with eigenvalues equal to

0.)

3.6 Geometric view

Modular forms on a congruence subgroup I' also have a geometric interpretation, as holomorphic
sections of line bundles on the corresponding modular curves introduced in Section 3.2. The
main reference for this entire section is [9], II.

Let k € Z>p and I' a congruence subgroup satisfying the following conditions:

1. Either & = 0 or the image of I under the projection SLa(Z) — SLa(Z)/{£1} acts freely
on H.

2. If k is odd, then the cusps have unipotent stabilizer in I, i.e. the eigenvalues are 1. This
only occurs when —1 ¢ I". Under this assumption, if a cusp written as y(oco) for some
7 € SL2(Z) has unipotent stabilizer in I if it is contained in 7Sy ~! where Soo = {(§ 1)}

We call such cusps regular. Let X denote the modular curve I'\H*, and Y = T'\H. SL2(Z) acts

on C x H by
a b\ . az+b
(c d) (1, 2) — ((cz—i—d) T, cz—l—d)'

The quotient of the action of I' on C x H has a natural projection to Y, giving I'\(C x H) the
structure of a complex line bundle over Y (see [9]). We extend it to a line bundle over X via
the trivial action on open neighborhoods of a cusp in H*, defined as:

(7, 2) — (1,7(2)), for any v € SLo(Z) and z = x + iy with y > 0.
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(The image under v € SLa(Z) of the sets {x + iy : y > C'} U {oo} extend the base of open sets
of H to H*.) The sections that are defined to be generators are exactly those with g-expansions
Yoo amg™ such that ag # 0. Denote the resulting line bundle as wj, and let ¢ : w, — X
be the projection map. Consider the sheaf G on X of holomorphic sections on w;. It is an
invertible sheaf of Ox-modules, where Ox denotes the sheaf of holomorphic functions on X
(also, Ox = Gp). A modular form f of weight £ on I' defines an element of Gi(Y) which
sends z — (f(z),2). Since f is holomorphic at the cusps of I', we automatically get that this
element extends to a holomorphic section ¢¢ : X — wy. In fact, f — ¢ produces a natural
correspondence between spaces My (') and G(X) = H*(X, G).

For the analogous interpretation of cusp forms, let C; denote the subsheaf of holomorphic
functions on X which vanish at the cusps, inside Ox. We can define F, = G, ®0, Ci as the
invertible sheaf of Ox-modules on X, which naturally lies in Gy. Thus, F4(X) = H(X, F)
lying inside Gy (X) corresponds to the cusp forms Si(T).

3.6.1 T'i(4) and its irregular cusp

Although T’y (4) acts freely on H, the cusp 1/2 is irregular, i.e. the stabilizer of v(c0) contains the
element -~y (_01 A ) ~~1, with eigenvalues equal to —1. Thus, the above discussion only applies
toI' =T'1(4) when the weight k is even. For k odd, consider the normal subgroup I'(4) < T'1(4).
One can check that its 6 cusps are regular, and since its image in SLa(Z)/{%1} has no nontrivial
elements of finite order, I'(4) satisfies the above conditions, in particular when k is odd (see
[25], 4.2.10).

Let Y = I'(4)\H, and X’ = T'(4)\H*. There is a natural projection map 7 : X' — X.
Following the above discussion for I'(4), we can produce an invertible sheaf G; of Ox/-modules
on X'. Furthermore, we can define an action of I'(4) on the direct image sheaf 7.G; which
factors through the quotient I';(4)/T'(4). In particular, in the natural correspondence between
TG, (X) = G.(X') and M (T'(4)), the action of v on the sections coincides with the action
of the operator | [y~!]; on the space of modular forms. Let Gy, = (m.G;)T*™® be the subsheaf
consisting of sections that are invariant under the action of I';(4). It is an invertible sheaf of
Ox-modules and we can conclude,

Mi(T'1(4)) = Gr(X) = H(X, Gp).

For cusp forms, we let F; C G, be the invertible sheaf of Ox/-modules on X’ obtained by
tensoring the subsheaf of holomorphic functions on X’ which vanish at its cusps with G;. The
action of I'; (4) on m,G,, restricts to an action on m,Fj, thus analogously, we let F, = (77*]:/)1“1(4)_
Fi. is an invertible subsheaf of G; of Ox-modules. If Cj, is the sheaf of holomorphic functions
which vanish at the regular cusps of I'1(4), then it is also true that F, = Gr ®o, Ck. This
results in

Sp(T'1(4)) = Fir(X) = H*(X, Fp).

Remark. The above construction for odd % is not dependent on I'(4). Starting with another
normal subgroup IV of ' (4) satisfying the regularity and freeness conditions would have resulted
in sheaves that were canonically isomorphic to G and Fj. In fact, the entire discussion when &
is odd holds for any congruence subgroup I'. One must choose a normal subgroup I satisfying
the two stated conditions, and if T' = TV, the two definitions of G (and F}) coincide.
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3.7 Proof of Lemma 1

To compute the dimension of My(T'1(4)) and Sk(T'1(4)), we can now use the Riemann-Roch
formula (below is the formulation necessary for Lemma 1) (see [15]).

Theorem 2 (Riemann-Roch). Let R be a compact Riemann surface of genus g. If D is a
divisor on R such that deg(D) > 2g — 2, then

dimc H°(R, D) = deg(D) — g + 1.

First, assume k = 2. We can show that 7, can be viewed as the Ox-sheaf of holomorphic
differentials on X. For an open subset U of X, consider a differential w € QL (U). If ¢ denotes
the natural map ¢ : H — X, let p*w = f(2)dz where f is a holomorphic function on ¢~ *(U).
We can then define a holomorphic map U NY — w, which sends z — (z, f(z)); this is an
element of F»o(U NY) and extends uniquely to an element ¢, of F5(U). In fact, the map
sending w — ¢,, turns out to be a Ox (U)-linear isomorphism between Q% (U) and F,(U) (see
[9]). One can check that this is compatible with restriction, thus we can conclude that Q% = 7.
Since Sy(I'1(4)) = HY(X, F2), we furthermore get an isomorphism

QL (X) =5 So(I1(4)), w f(z) where p*w = f(z)dz.

This also allows us to conclude that the dimension of S3(I'1(4)) is equal to the genus of X. (see
[25]). Note that the weight 2 case does not utilize 2

Recall from Section 3.2 that X = I';(4)\H" is a compact Riemann surface. To compute its
genus, we use the following general fact: if a congruence subgroup I' C SLy(Z) and v € GL2(Q)
with positive determinant satisfy

T C vy ' SLy(Z),

then the map 7 — ~y(7) on points 7 € H* induces a holomorphic map (see [9])
D\H* — SLy(Z)\H* = HU {c0} = P}(C).

Viewed as a cover of the Riemann sphere, this map can have ramification over the cusp {oo}
and i and ¢ = €™/3, the points with non-trivial stabilizer in SLy(Z)/{£1}. On the Riemann
sphere, these correspond to the elliptic points 0, 1728, and oo € P!(C). The Riemann-Hurwitz
formula then tells us that the genus of X can be calculated by

[SLo(Z) :T1(4)] v ve  # cusps

X)=14 22\ P T Y
g(X) =1+ 24 1 3 9

where vy; ¢ denotes the number of elliptic points over ¢ and ¢ (see [36], 1.6). Since I'1(4) is an
index 12 subgroup of SLy(Z) with 3 cusps and no elliptic points, we can conclude that g(X) = 0,
i.e. the genus of the modular curve I'; (4)\H* is 0, and thus S3(I'1(4)) is trivial.

For arbitrary even k, note that w; = g?k naturally, thus it is also true that G = Q?k,

tensoring over Ox. Furthermore, the isomorphism Qﬁ( = F, for k = 2 induces
Fi & Gra Qo O

for all even k. We can also calculate the degree of these sheaves Gi and Fj as

dea(Gr) = (g 1)k + (# of cusps) - & = ©.
deg(Fr) = (g—1)k+ (# of cusps)(g —-1)= g - 3.
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Since the genus is 0, G always satisfies deg(Gy) > 2¢g — 2 since k is non-negative. However,
deg(Fi) > 2g — 2 only when k > 2. For these cases, the Riemann-Roch formula gives

dime My(D(4)) = 1 g(X) +deg(@e) = & +1,

dim¢ Sk(F1(4)) = 1- g(X) + deg(}"k) = g — 2.

When £ is odd, there is still a natural map Q?k — Gy arising from g?k = w,. However, it

is not necessarily an isomorphism, specifically at the cusps of I'1(4). Let Dy be the sheaf of
holomorphic functions with zeroes of order at least k/2. Then we have an isomorphism

g%@k ggk ®OX Dk

which can be checked by computing on the stalks of the cusps. In particular, the irregular cusp
takes away from the degree of Gi as computed before, and in fact

k k—1
deg(Gr) = (g9 —1)k+ (# of reg. cusps) - 5t (# of irreg. cusps) - 5
k k-1
deg(Sk) = (g9 — 1)k + (# of reg. cusps) - (2 - 1) + (# of irreg. cusps) - 5

(for details, see [36], 2.4 & 2.6 or [25], 2.5). The degrees for both G and Sy, are strictly greater
than —2 = 2g — 2 when k > 2, thus the Riemann-Roch formula says

dime Mg (T'1(4)) = 1— g+ deg(Gx) = kel (5)

2
dime S(T1(4) = 19+ deg(Fy) = "> ()

It follows from a similar argument (and the fact that the number of regular cusps is greater
than 2g — 2) that dime M (T (4)) = #9440 g dime 8y (T1(4)) = 0. For details,
see 2.5 of [25]. O

3.8 L-functions and the Mellin transform

To a modular form f(z) = Y o0_; a,,e*™™?, one can attach a the Dirichlet L-series,

Lo f) = 3 o™
m=1

and vice versa. However, this correspondence between L-series and modular forms is more than
a formal relationship between series. One can obtain L(s, f) from f(z) by means of the Mellin
transformation (see [?]).

/0 " flig)y Ny = D(s)(@m) S Ls, f) = A(s. f).

Here, I'(s) = fooo et~ 1dt is the usual gamma function associated to the Riemann zeta function
¢(s). Furthermore, to obtain f(z) from a Dirichlet L-series L(s) = > > s

me1 , we use the
inverse Mellin transform

Amm~

(271”) /A(S,f)$sds,
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fliy) =




where the integral is taken on a vertical line in the right half of the complex plane. If f(z) is
an Eisenstein series, the constant coefficient is constructed by looking at the residue of A at
s = 0. Otherwise, if f(z) is cuspidal, L(s) is absolutely convergent. More precisely, we have the
following theorem.

Theorem 3. Let N be a positive integer and € a Dirichlet character defined mod N. Let r be
a positive integer coprime to N and and x a primitive Dirichlet character defined mod r. For
fz)=>"% ame®™ ™ € Mp(To(N),¢), let

Ly(s, f) = Z x(m)am,m™ and Ay (s, f)=

m=1

(f) L(s)L (s, ).

Then Ly (s, f) can be holomorphically continued to the whole s-plane. Moreover, it satisfies a
functional equation

2

r—1
Ay(s, ) = (DR Pe(r)x(N) | Y x(eX™ ™ | v Ax(k = s, f | [Y]k),
7=0

where v = (5N ). If f(2) € Sp(To(N),e), then Ly (s, f) is absolutely convergent for Re(s) >
1+ (k/2).

This theorem describing the correspondence between f(z) and L(s) is due to Hecke (see [36],
Thm. 3.66). Weil furthermore showed the converse also holds, i.e. if the functional equation
holds for Ly(s) = >..°; x(n)a,n* for “sufficiently many” characters x, then the associated
f(2) belongs to M (To(N),e) for some N and ¢ depending on the functional equation for the
associated A(s). Moreover, if L(s) is absolutely convergent for s = k/2 — € for some € > 0, then
f(2) is a cusp form (see [25], Thm. 4.3.15).

3.9 Modular forms with complex multiplication

For a normalized eigenform f € S(I'1(IV)), let K be the field over Q generated by the coef-
ficients in its g-series expansion. Using the property that the rational subspace of Si(I'1(V))
generates the entire space over C and it is stable under the action of operators, one can show
that Ky is a number field. Furthermore, Ky contains the image of the Nebentypus of f (see
[28]). (This follows from the fact that two eigenforms of possibly different weight and level and
Nebentypus coincide everywhere (away from their levels) if the prime coefficients a,, in their
g-series expansion coincide on a set of primes of density 1. In particular, they are of the same
weight, all of the coefficients of ¢ with n coprime to the levels are equal, and the images of the
Nebentypus are equal for all integers coprime to both levels (see [8], 6.3).)

For any eigenform f, the structure of K; depends on its Nebentypus. More precisely, K is
either a field with complex multiplication or a totally real field, and it is real if and only if the
Nebentypus ¢ factors through {+1} C C* and

e(p)ap = ap, V primes p{ N,

where as usual a, denotes the coefficient of ¢” in the Fourier expansion of f (see [28]). Recall
that a field with complex multiplication, also called a CM field, is an imaginary quadratic
extension of a totally real field.
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For a newform f € S;(I'1(IV)) of Nebentypus ¢, we can twist by a Dirichlet character ¢ mod
D as follows:

F@e=>> p(n)ang" € Sp(To(ND?),ep%).
n=1

Moreover, f® ¢ is an eigenform as the action of the Hecke operator T}, for p { ND has eigenvalue
e(pap.

We say that a form f has complex multiplication (or CM) by ¢ if f ® ¢ = f. Note that one
must check that ¢(p)a, = a, (or equivalently, either ¢(p) =1 or a, = 0) for a set of primes of
density 1 in order to conclude that f(z) =), <, ang™ has CM by ¢. Furthermore, this implies
that e? = ¢, so ¢ must be a quadratic character.

Remark. Using I';(N), we can define the notion of a CM cusp form on all I', namely in the
direct limit over all levels.
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4 Galois representations

The theory of Galois representations stems from the study of the absolute Galois group of Q and
number fields. Originating as a generalization to class field theory and the Kronecker-Weber
theorem, such representations have proven to be useful in a variety of subjects. The material
discussed here focuses on 2-dimensional ¢-adic representations, which are closely related to the
theory of modular forms (see Theorem 4). The main references for this material include [5],
[6], [9], [36], and [42]. In particular, the relationship between CM cusp forms and certain ¢-adic
representations as described in [28] allow us to prove Lemma 2.

4.1 Basic theory and notation

Fix an algebraic closure Q of @ and consider the profinite group Gal(Q/Q) with its natural
topology. Let K be a topological field. An n-dimensional representation of Gal(Q/Q) is a
homomorphism

p: Gal(Q/Q) — GLy(K),

which is continuous with respect to the topology of K. When the field K = C, such p are
called Artin representations, and continuity is equivalent to requiring that the representation p
factors through Gal(F/Q) where F is a finite and Galois extension over Q. When K is a finite
extension of g, for some prime ¢, they are called the £-adic representations. The case when
n = 1 is described by class field theory (particularly the Kronecker-Weber theorem), and the
2-dimensional case is particularly connected to the theory of modular forms on I';(N).

We can extend the usual theory of ramification at primes to infinite extensions as follows.
For any prime p, choose a place p of Q over p in order to fix a decomposition subgroup D, of
Gal(Q/Q), which acts as a stabilizer. Let I, denote the inertia subgroup inside Dy, arising from
the following exact sequence

1 — I, — D, ™ Gal(F,/F,) — 1.

The automorphism x — P (topologically) generates this Galois group of residue fields, and any
element of Dy in its preimage is a Frobenius element for the prime p (for all choices of D).
We say that a representation of Gal(Q/Q) is unramified at p if all Frobenius elements for p lie
in the same conjugacy class in the image (and the conjugacy class is therefore well-defined).
Equivalently, a map Gal(Q/Q) — GL,(K) for a field K must vanish on any (and therefore all)
inertia subgroups Ip.

In general, we will implicitly assume that an f-adic representation, along with being contin-
uous, is unramified at all but finitely many primes. Unlike Artin representations, this is not
always true, and furthermore f¢-adic representations need not be semi-simple. However, any
semi-simple f-adic representation is completely determined by its trace (see [3], 8.12.1).

Example: The /¢-adic cyclotomic character. Consider the unique map defined by
e Gal@/Q) — ZF Qo xl0) stoo(Q) = v e Q)

i.e., ¢ is a f-power torsion element of Q. In particular, it factors through Gal(Q(¢°)/Q) =
U,, @Q(¢¢n). Furthermore, x, is unramified at all primes p # ¢, and for such p, x¢(Frob,) = p.
Since it is a 1-dimensional ¢-adic representation, we call it a character.

Note that the image of x, lies in Z;. In fact, it is true that any continuous (-adic repre-
sentation has image in GL, (Ok) after suitable conjugation (see [6], 3). Additionally, Artin
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representations can be viewed as (finite) ¢-adic representations by fixing an isomorphism of
fields Q, = C.
After fixing an isomorphism Q; — C, to any f-adic representation p, we can attach an

L-function L(s, p) by taking the product of the L-factors Ly(s) = det(1 — p(Frob,)p~*)~! over

all primes p:
1

L(s,p) = 1;[ det(1 — p(Frob,)p~s)

Semi-simple f-adic representations are completely determined by their L-functions.

4.2 (-adic Representations in connection with cuspidal eigenforms

Let f € S(I't(IN)) be an eigenform with Nebentypus ¢, and denote Ky as the number field
generated by the g-series coefficients a, of f in its g-series expansion (Recall that a, for n = p
prime also satisfy 1), f = apf).

Theorem 4. For any prime £, there exists an £-adic representation

pe - Gal(Q/Q) — GLy(K; ®qg Qr)

such that for any prime p{ {N:

1. py is unramified at p;

2. For all choices of Froby,, pe(Frob,) has trace equal to ap;

3. Furthermore, py(Frob,) has determinant equal to e(p)p*~1.

This was first proven for the “classical” case of k = 2, using the Jacobian variety of X (V)
(this follows from results of Eichler, Shimura, and Igusa [5]). Since X;(4) has genus 0, the
Jacobian J;(4) has dimension 0, i.e. J1(4) = 0, which corresponds to the fact that there are
no weight 2 cusp forms on I';(4). Serre conjectured the statement for £ > 2 and it was later
proved by Deligne using étale cohomology for the space of forms of weight k on I'; (V) (see [7]).
The final positive case, k = 1 was presented by Deligne and Serre using results from the higher
weight cases (see [8]).

Note that the Q-algebra Ky ®g Qy is the product of the completions of K at primes lying
over £, hence we have the decomposition

GLy(Ky ®q Q) = [ [ GLa(K).
A

Thus, we can define \-adic representations of Gal(Q/Q) by composing an f-adic representation
pe with the projection GLa (K ®g Q) — GL2(K)) to get

pr: Gal(Q/Q) — GLa(Ky)  and  pr =P pa.
VY4

We can then consider the A-adic representation attached to a newform f, which is in fact a
Galois representation over a field.

It is also true that the f-adic representation attached to f whose existence is guaranteed by
the previous theorem is unique. This follows from the fact that for each A | 4, py is simple, thus
pe is semi-simple with trace determined by the Fourier coefficients of f (see [28], 2).
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4.3 (-adic representations in connection with Eisenstein series

Although we have mostly discussed the action of operators on cusp forms, they are in fact well-
defined operators on all of My (I';(4)) (this is due to the fact that the Petersson inner product
mentioned in Section 3.5.1 can be extended to My(T") x Sk(I') — C), see Section 3.5 or [10],
5.4). The actions on the entire space extend as follows:

(d)f =e(d)f for ged(d,N) =1 and Tpf =cp- f forpt N.

Here, ¢ is the Nebentypus as usual, but ¢, are eigenvalues that are not necessarily equal to the
coefficients a, unless f is a normalized eigenform (Eisenstein or cuspidal). If f is an Eisenstein
series, we can construct a representation py on the number field generated by the image of ¢
and ¢,. A classical result of Hecke (see [17], p. 690) tells us that there exist Dirichlet characters
€1 and o with the property that the product of their conductors divides N such that
e1-e2=¢  and ¢, =e1(p) +ealp)p T,

for all pf N. One can show that €1 and €5 have images contained in Ky, thus we can regard
them as characters of Gal(Q/Q) over K ®g Q;. We can then attach to f the (reducible) ¢-adic
representation

pe=¢€1D €2X§_1-

For primes p 1 /N, p, is unramified as €1,e9, and x; are, and the trace and determinant of
pe(Frob,) are analogous to the cusp form case:

tr(pe(Froby,)) = e1(p) + e2(p)p" ' = ¢, det (p¢(Froby)) = e(p)p" .

With this construction, Theorem 4 holds for all eigenforms.

5 The space S{"(I'1(V))

Definition 2. The space of CM cusp forms denoted S (I'o(IN), €) is the subspace of S, (I'o(IV), €)
generated by cusp forms with complex multiplication. The corresponding subspace of CM cusp
forms of S(T'1(N)) is S (T1(N)) = P. S (Lo(N), €).

We will produce eigenforms fx . (r - z) below attached to Hecke characters ) which also have
complex multiplication. Later, Theorem 6 will imply that such forms are a basis for the space
of CM cusp forms.

5.1 Hecke characters of imaginary quadratic fields

Let K C C be an imaginary quadratic field of discriminant —d and ring of integers O . Denote
Xk as the quadratic character of conductor d defined in terms of the Kronecker symbol:

Xk (p) = (_d> if p is prime and p { 2d
p

Let t € N and f be a nonzero ideal of O. An algebraic Hecke character of K of co-type ¢t and

of conductor f is a homomorphism

b {fractional ideals of K

X _ ot X — X
which are prime to f} — C* st Y((a)=a" fae K and a =1mod™f,
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where § should be minimal in the following sense: if 1) can be defined modulo §, then f | §.
Consider the homomorphism wy, : Z — C* such that

¥((a)

Wy ta— Va € Z s.t. a is coprime to f (or Nm(f)).

We call w,;, the character attached to 1); it is a Dirichlet character mod Nm(f).

5.2 Hecke characters, idelically

Hecke characters can also be viewed as continuous homomorphisms on the idéle group of any
finite extension of Q. More precisely, let K be a number field with ring of integers Og. The

adeles of K are defined as .

pCOk
where the first factor is a restricted product: for any element x = (z)p2 € A, for almost all
p, 7p € O p. We can think of R ® K as the product of completions of the infinite places, i.e.,

Krp=R®gK =[] K..

v]oo
The idéles of K are then
A% = {x € Ak : for almost all p, |z|, = 1 and for all v, z, # 0}.

Automatically, A g has the restricted product topology, i.e. it is induced by the product topology
on the open subgroup [[ Ok, x Kg; however, the ideles have the topology induced from the
map

A¥ = Ag x Ak, x> (z,27h).

Note that the image {(z,y) € Ag x Ag : zy = 1} is closed, and the induced topology makes
A% locally compact.

An (idelic) algebraic Hecke character of K is a continuous character ) : A — C* which is
trivial on the diagonally embedded K *, and on the (connected component of the origin of the)
Archimedean factor,

t:(Kg)°—C*, 2z~ H o(z)),
o:K—C
where each t(¢, o) € Z.

We have not yet defined the conductor of 1. Given an integer m > 0 and a finite prime
p C Ok, define Uy := {u € Ok, : vy(1 —u) > m}. For an infinite place v | oo, define U,
as the connected component of K containing the origin. Then the subgroup attached to m, a
modulus m is

Un = H Upm(p) X H U, where m= Hpm(P) ) l_Ivm(v)7
i p v

m(v)>0
v

where only a finite number of m(p) are nonzero. An algebraic character ¢ has modulus m if
1 is trivial on Uy. Note that every Hecke character has a modulus since the restriction of
to the finite idéles has open kernel and each Uy, is also open. The conductor of 1 is then the
minimal modulus.
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For K an imaginary quadratic field, there is only one pair of complex embeddings (o, ) and
no real embeddings, thus for an algebraic Hecke character ¢ on K, t € Z?. However, when
studying Hecke characters in connection with the theory of classical modular forms, we are only
interested in Hecke characters 1 such that ¢(@) = 0. Thus, the map ¢ sends z — 2(?), and t(o)
then coincides with the notion of co-type in the classical description of Hecke characters.

5.3 Cusp forms attached to Hecke characters

For a Hecke character 1 of conductor { with co-type ¢t on an imaginary quadratic field K, define
the g-series

fK,'(/}(Z) — Z 1/;(51) . qu(a) (q — 627riz71m(2) > 0) (7)

a integral
coprime to f

Theorem 5 (Hecke [17], Shimura [34] & [35]). The g-series fx(2) is a newform of weight
t+1 and level d - Nm(f) in the space

fryp € Sex1(To(d - Nm(f)), Xk - wy)) € Sev1(T'1(d - Nm(f))).
In addition, distinct cusp forms fi o arise from distinct pairs (K,).

Corollary 5.1. For any positive integer r,

Frap(r-2) =Y (@) - ¢ € 811 (To(N),e) <= r-d-Nm(f) | N and xx -wy = X

if ¥ has oo-type t. The second equality takes place while viewing x i, wy and x as characters
on Z. Thus, for all primes p{ N, xx(p) - wy(p) = x(p)-

Note that the cusp forms fx (7 - z) have CM by xx. (By construction, the coefficient of ¢”
in the g-series expansion of fx (7 - 2) is 0 if no ideal of k£ has norm equal to p. Since ¢(p) = —1
exactly when this holds for p, a, = ¢(p)a,, the result holds.) However, it is not at all obvious
that these are all the cusp forms with complex multiplication in Si(I'1(N)). Using the theory
of Galois representations, Ribet proves that a newform f has CM by an imaginary quadratic
field K if and only if it arises from a Hecke character on K (see Theorem 6 below).

5.4 \-adic representations in connection with CM cusp forms

If f € Sp(To(IN),e) is a newform, there are special properties of the ¢-adic representation that
depend on whether f has complex multiplication. If K; denotes the field of eigenvalues of f, let
¢ be a prime in Q with A lying over £ in K. For all newforms f, recall from the end of Section
4.2 that py is irreducible over K. It is furthermore true that the image of p) is not abelian.
(If o € Gal(Q/Q) denotes complex conjugation, note that py (o) has eigenvalues +1, which are
distinct units in K. Let S denote the subgroup of matrices in GLy(K)) which commute with
pr(0). Note that S is abelian and diagonalizable, but since py is irreducible, Im(py) is not
contained inside S, so in particular there exists elements in the image which do not commute
with py(0).)

Additionally, the restriction of a semi-simple representation of a group to a subgroup with
finite index is again semi-simple, thus for any open subgroup H C Gal(Q/Q), pu| p 1s semi-
simple. Consider the composition of p) with the projection GLy(K)) - PGLy(K)), the quotient
group of GLy(K),) by the center K. Then, the image of Gal(Q/Q) inside PGLy(K)) can be
shown to have infinite image (see [28], 4.3). Using these observations along with the Cebotarev
Density Theorem, one can deduce the following (see [28]):
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Proposition 1 (Ribet). One of the following is true.

1. For each open subgroup H of Gal(Q/Q), pA(H) is irreducible and non-abelian.

2. There exists an open subgroup Ho of index 2 such that for each open subgroup H of
Gal(Q/Q), pA(H) is abelian if and only if H C Ho.

If Hy exists, then let K be the fived field corresponding to Hy C Gal(Q/Q). K is quadratic and
unramified outside of (N, and f has complex multiplication by the character of K.

Conversely, if f has CM by a character ¢ and K is quadratic field associated to o, then the
image of Gal(Q/K) under py is abelian.

From Theorem 5 and Proposition 1, we can conclude that the space Si™(I'1 (IV)) is generated
by the eigenforms fr (7 - z) with K, ¢ and r satisfying the conditions in Corollary 5.1. The
precise statement is as follows.

Theorem 6 (Ribet, see [28]). If there exists an open subgroup H C Gal(Q/Q) of index 2
such that the image of H under py is abelian, then for all primes N of K, px(H) is abelian.
Furthermore, the fized field of H is an imaginary quadratic field which is unramified at all

primes away from N, the level of f. Finally, f is obtained from an algebraic Hecke character
¥ of K as described in Corollary 5.1.

5.5 Proof of Lemma 2

Assume N = 4. First note that there are two Dirichlet characters on (Z/4Z)*, which we will
denote €, and ¢_ depending on where they send the only nontrivial element, —1 mod 4.

er:xl—1 and e_:+1l+—— £1.

These can also be viewed as maps from Z — C by sending any even integer to 0. Furthermore,
note that the decomposition of

Sk(T1(N)) = D Sk(To(N), )

occurs over all characters modulo N such that e(—1) = —1 if k is odd and e(—1) = 1 if k is
even due to (4). Thus,

Sk(To(4),e4) if kis even

Sp(I'1(4)) = {Sk(FO(LI)’g) if k is odd.

Let e denote the correct Dirichlet character such that Sk(I'1(4)) = Si(I'0(4), ) depending on
whether k is even or odd. We first want to understand the CM subspace Sy (I'g(4),¢). By
definition, the imaginary quadratic field K must have discriminant —d such that d | N, thus
for N =4,d=4,ie. K =Q(i) (By Stickelberger’s theorem, there is no field of discriminant
—2 and d = 1 is associated to the field Q, which is not quadratic.) Note that yx is a nontrivial
Dirichlet character of conductor 4, thus xyx =¢_.

Since the discriminant of K is —4, we are left with finding all Hecke characters i) on K of
conductor 1 such that ¥ = ¢ if the co-type t of 9 is even, and 1) = e_ if t is odd. By definition,
if v € K then since (o) = (uc) for all u € O,

¥((a)) = o = (ua)’ = 9((ua)).
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Since OF = (i), we can conclude that 4 | ¢, since if u = +4, i' = 1 if and only if ¢ = 0 mod 4. In
particular, there are no Hecke characters of odd oo-type, hence Sg™(I'g(4), €) is trivial for even
k. In addition, S;™(I'9(4),€) can only be non-trivial when k£ =1 (mod 4) and k > 1.

We now prove that there is a unique Hecke character with the properties described above for
each oo-type t € Z such that 4 | t. Let ¢ be fixed such that ¢ =0 (mod 4). Then xg -wy = e—
for any v, hence the attached character w, must be trivial, or abusing notation, wy, = ;. Thus,
since Ok = Zli] is a PID, the algebraic Hecke characters on K are exactly those defined as

Yy i (@) — o VYa € K* where t € Z and 4 | t.

Thus, using Theorem 5, we conclude that the dimension of S{™(I'g(4),e) C Si(I'1(4)) is 1 if
k=1mod 4 and k > 5 and is 0 otherwise. O

6 Construction of bases for &;(I'1(4)) & S™(I'1(4))

We describe how to construct “natural” generators for the space of elementary modular forms
on I';(4). We use the fact that each form can be decomposed into its Eisenstein and cuspidal
part, thus we treat the Eisenstein and CM cuspidal space separately.

6.1 Spaces of Eisenstein series

Suppose €1 and €2 are primitive Dirichlet characters modulo N1 and Na, and let K., ., be the
number field containing their image. For positive k, denote the holomorphic function on H

E€1,€2 = ap+ Z 251 - €9 m/d) dk—l qm c Ksl,sg[[QHa q= eQm’z

m2>1 \djm

where d ranges over positive divisors, and ag is defined below. This g-series arises from (cor-
rectly) normalizing and rewriting the summation

£1(mq)ea(mo)
G (2) = .
= 2 ey
(m1,meo)€Z2
The value of ag is nonzero only when €; = 1y,, and it is related to the value of the Dirichlet
L-function at L(1 —k,e3). Explicitly, we can write ag in terms of generalized Bernoulli numbers

attached to a character € of conductor N. These are defined by satisfying the following identity

of infinite series:
e(j)-x- eJr >
PP A S
eNT — 1

j=1 m=0

m

€2
k

2k
then have the following description if Eisenstein eigenforms (see [25], Ch. 7 or [41], 5.3).

When ¢; is the trivial character, ag = — ; otherwise, as noted above ag = 0 (see [41]). We

Theorem 7. Let €1 and €5 be primitive of conductors N1 and No and let k and t be positive
integers.

1. Suppose k # 2. Then the g-series E;%(q") is a modular form of weight k on T'i (N1 Nat).
Furthermore, it has Nebentypus € = €1 - €2.
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2. Furthermore, when k # 2, the set of Fisenstein series EZLQ such that €1 - €2 = € and
N1Not | N form a basis for the Eisenstein eigenspace E(Lo(N),e). Furthermore, they are
(normalized) eigenforms.

3. When k = 2, Eas(q) = Ey'(q) — tEy (¢') is a (normalized) eigenform of weight 2 in
My (T (t)) of trivial Nebentypus.

The action of Hecke operators on these eigenforms can thus be written explicitly (see [41],
5.3). As usual, the eigenvalue of T}, is the coefficient of ¢?:

(e1(p) + e2(p)p*1) - BV (q)  if Kk #£2,
(1+p) - E2(q) ifk=2and ptt
1- Ex(q) ifk=2andp|t.

Tp EZLEQ(S) —

6.2 Eisenstein series via Galois representations

Assume that £ > 3. We can produce the same basis for this space £, (I'1(4)) as above using an
analogous approach to the construction of cusp forms involving Galois representations.

Case 1. First, assume the weight k is even. Lemma 1 implies that the dimension of the space
Er(T'1(4)) is 3 when k > 2. Recall from Section 5.5 that there are two Dirichlet characters with
conductor dividing 4, the trivial character ey = 14 with image {1}, and e_ = x4 which sends
+1 mod 4 — =£1. From 4, we know that

Ep(T1(4)) = Ex(To(4), 14)

since & (Tg(4), x4) is trivial when k is even. Thus, we want to produce three linearly independent
Eisenstein series of trivial Nebentypus.

Let ¢ be a prime. For f € &(T'1(4)), recall from Section 4.3 that the 2-dimensional reducible ¢-
adic representation will have the form p; = &1 @nglg_l, where the Dirichlet characters e1-e9 = 14.
Since f must have level 4, both characters are trivial (since there are no primitive characters of
conductor 2). Thus, consider the ¢-adic representation

=1@x} ! Gal(Q/Q) — GLa(Qy).

The L-series attached to this representation is

1 1
k—1
L<3’1®X€ ) = Hl_p—s'Hl_pk—lp—s

p p

k—1
_ i ‘ Mo
S S
Z m Z ms

mi>1 L mo>1

_ k—1 1
B Z Z d mims;

m17m221 d|m1m2

_ 1
= 2\ 2o

m>1 \ djm

Applying an inverse Mellin Transform gives us the g-series
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E(z)=ao+ Y (D>_d""|q¢™ (8)

m2>1 \dlm
In order to calculate ag, we consider the functional equation of L(s, p). Since the level N = 4,
let
A(s,p) = °I'(s)L(s, p),
where I'(s) denotes the usual gamma function. If A(s) = 7—*/2T'(s/2)¢(s), then A(s, p) satisfies
the following functional equation:
k/2

A(S)A(s —k +1) = 25(3) A(s,p), where pu(s) = <3_];+1) <S_§+1 +1> (8;1> :

(see [25], 4.7). Thus, A(s,p) is holomorphic for all s except s = 0 and k. At s = 0, one can

calculate that it has residue —ag = —((1 — k)/2, in terms of the Riemann zeta function. Thus,
By,
ag = ——
07 ok

where By, = B,} is the kth Bernoulli number associated to the trivial character as defined in
Section 6.1.

From Weil’s converse of Theorem 3, F(z) lies inside & (SL2(Z)) C Ek(T'1(4)) since the con-
ductor of the trivial character is 1 (see Section 3.8, [25], §4.7, and [23], Ch. 9). However, this
implies that the g-series F(q?) and E(g*) are also in &, (T'1(4)), and furthermore, they are clearly

linearly independent. These are all eigenforms, and since the dimension of & (I'1(4)) is three,
B ={FE(q),E(¢%), E(¢*)} is a basis.

Case 2. Now assume k is odd. Here, Lemma 1 implies that the dimension of the space & (I'1(4))
is 2 for k > 1. Furthermore, & (T'1(4)) = & (To(4), x4) since now 14(—1) = 1 # (—1)*, making
Ek(To(4),14) trivial by (4). Thus, we want to produce 2 linearly independent Eisenstein series
with Nebentypus x4.

As above, let £ be a prime. An Eisenstein series f with the above properties will have an

f-adic representation 1 @ f-:gxf_l where €1 - €9 = x4, thus one of the two characters must be

X4 while the other must be trivial. This gives two possible 2-dimensional reducible Galois
representations

p1i=x1®x, "1 Gal(Q/Q) — GL2(Qy),
p2:=1@xax} ' : Gal(Q/Q) — GLa(Qp).

The L-series attached to these representations are

L(s,;) = [] : 'H1_1k—1p_s

—S
1= xa(p)p p p
k—1
_ Z xa(mi) Z msa
a m3 ms
my>1 1 mo>1 2

DN IR e P

m17m221 d\mlmg

= X (2@ )

m2>1 \d|m
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1 1
L(3>P2) = Hl_p—s II;II—X4(

k—1,—s
. p)pF1p
_ 1 xa(mg)m§~"
Sy Ly
mi>1 L ma>1 2

_ 1
- Z Z Xa(d)d* ! ms

m17m221 d\m1m2
1
k—1
= 2 (2@
m>1 \dm m

Applying an inverse Mellin Transform to the above L-functions produces two g-series

Big) = aoi+ Y (Do (F)d ] o (9)
m>1 \d|m

By(q) = aoa+ Y [ D xaldd '] ™ (10)
m>1 \ djm

As in the previous case, we calculate ag; and ap2 by considering the functional equations for
L(s,p1) and L(s,p2). As before, let A(s,p;) = 7 °T'(s)L(s, p;) for i € {1,2}. If A(s,x4) =
(%)78/2F(%)L(8,X4) and again A(s) = W*S/QF(g)C(S), then A(s, p;) satisfy the following
functional equations:

k/2 92—k k/2

r(S)A(s,pl), and A(s)A(s—k+1,x4) = T(S)A(S’ 02),

where p;(s) = (HT‘H) (5_1574'1 +1)...(5—1) and pa(s) = (Sgk +1) (Sgk +2) ... (52) (see
[25], 4.7). Both A(s, p;) are holomorphic for all s except s = 0 and k. At s = 0, one can

A(s,xa)A(s—k+1)=

calculate that A(s, p1) has residue —ag; = —L(1 — k, x4)/2, in terms of the L-series associated
to the Dirichlet character x4, and A(s, p2) = —((1 — k)/2 = 0 has residue —ag2 = 0. Thus,
X4
ap1 = — k and ap,2 = 0.

2k’

From Theorem 3 and its converse, both E;(q) and Es(q) are distinct eigenforms on I'y(4) of
weight k, hence the two series are linearly independent (see Section 3.8, [25], §4.7, and [23], Ch.
9). By construction, F1(q), E2(q) € Ex(I'1(4)), thus we can take B = {E1(q), E2(q)} as a basis
for the Eisenstein space.

Remarks. The cases for £ = 1 and k£ = 2 have not been discussed here. Those are treated in
Section 8 while finding elementary formulas for 62 and 6.

One can easily see that the Eisenstein series produced here coincide exactly with those in the
previous section.

6.3 CM cusp forms via L-functions of Hecke characters

Although Theorem 5 gives the g-expansion of the CM cusp form on I'1 (4), we give an alternative
construction which demonstrates the relationship to (potentially abelian) Galois representations
(see [13]).
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By Lemma 2, S§™(I'1(4)) is nontrivial if and only if £ = 1 (mod 4) and £ > 1. Restrict
ourselves to such k, and note that the dimension of the CM subspace is equal to 1 (we showed
this by proving there exists exactly one Hecke character satisfying the requirements of Corollary
5.1). Let 1 denote the algebraic Hecke character unramified away from 2 on K = Q(i) with
oo-type k—1. Viewing it idelically, 1 acts on C* by sending z — z~**1, and on primes 7 € Oy,
1 sends m — 71, The L-series attached to this character is

AR 1 1
L(s,¢) = (1+(1+Z)k Iy ) 11 1= ph1p-2s 11 (1= b Tp=) (1— 75 1p—s)

p=3 mod 4 p=1 mod 4

1 B 1
=g X P

m>1 dezfi]
Nm(d)=m

Applying an inverse Mellin transform as described in Section 3.8 gives the normalized ¢-series

Clg) = iz >ood g (11)

m>1 deL[i]
Nm(d)=m

= q+ (—4)%(]2 + 2k gt ¢

By Theorem 3, this is a cusp form on I'1(4) of weight &, and by construction, it has complex
multiplication by the Dirichlet character x4 attached to Q(7). Thus C(q) € S{™(I'1(4)) and in
fact, generates the space.
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7 Proof of Theorem 1

We want to prove that 6, is elementary, i.e. 6, € &,/ 2(I'1(4)) ® Sﬁ%(l“l(él)) if and only if
n = 2,4,6,8, and 10. Lemma 1 implies that for n = 2,4,6,8, 6, is a linear combination of
Eisenstein series since there are no cusp forms on I'1(4) of weight k < 4. Furthermore, Lemma
2 implies that the “first” CM cusp form on I';(4) is of weight 5, and in fact, combining the two
lemmas implies that S5(I'1(4)) = S§™(I'1(4)), thus 619 must be elementary as well. It remains
to show that for even n > 10, 6,, is not elementary, i.e. one must calculate the coefficients of a
non-CM cusp form in order to calculate the representation of integers by sums of n squares.

First assume that n = 0 (mod 4), i.e. 6, as a modular form has even weight k¥ = 3. By
Lemma 2, there are no CM cusp forms, so consider the previously constructed basis B of
Eisenstein series from (8) for & (I'1(4))

E(q) = ag+ Y | Y d/*|qm

m=>1 \dm
B = w0t Y (S )
m>1 \d|Z

B = wt Y ()

m>1 \d|2

If 0,, € £x(T'1(4)), then it can be written as a linear combination of the above series. Consider
the determinant of the matrix of coefficients of the 4 g-series:

2n 4(2) 8(2) 16(2) +2n (coefficients of 0,,)
det(M) _ 1 1+ 271/2—1 14+ 3%/2—1 1+ 2n/2—1 + 4n/2—1 (coeﬁicients Of E(q))

0 1 0 14 2n/2-1 (coefficients of E(q*))

0 0 0 1 (coefficients of E(q*))

The determinant of M is zero if and only if there is a linear dependence amongst the coefficients,
i.e. if the coefficients of ¢, ¢°, ¢, and ¢* of 6,, can be written in terms of coefficients of the
forms in B. Solving for the determinant gives

det(M) = — <2n- (1 +3%—1> - 8<Z>> — o —on.3a1 g 13(71— 2)

Note that the negative exponential term takes over the growth of the function, and for n > 8,
det(M) as a function on n is monotonically decreasing. The determinant is 0 when n = 4,8,
thus det(M) is nonzero for all n > 8, i.e. 0, ¢ &,/2(I'1(4)) for n =0 (mod 4). By Lemma 1,
this implies that 6,, is not elementary for n > 8, n =0 (mod 4).

Now assume n = 2 (mod 4). First note that when n = 6 (mod 8), 6,, has odd weight,
but there is no CM subspace of M, /5(I'1(4)) since 5 = 3 mod 4. Thus, we first check that
On & Eny2(L'1(4)) for all n = 2 mod 4 and n > 6, which will reduce the problem to whether there
is a contribution by a CM cusp form when n = 2 mod 8.

When k =n/2 is odd, &,/5(I'1(4)) has a basis of eigenforms from (9) and (10)

Bl =a01+ 3 (S () ) am Ba@) 0o+ Y [ S al@a | g

m>1 \d|m m=>1 \d|m
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To show 0,, & &,/2(I'1(4)), we check if the following matrix of coefficients for g, ¢, and ¢° has
non-zero determinant:

2n 4(;) 8(2) (coefficients of 6,,)
det(N)=| 1 2v/2=1 143721 (coefficients of E1(q))
1 1 1 —3n/2-1 (coefficients of E2(q))

Solving for the determinant,

det(N) = 2n (2"/2—1+) (1 - 3”/2—1) - 8<Z> (1 _ 3n/2—1) n 8<;‘> (_gn/2—1>

4 2
= (—4n® +6n) + 2"/ L. <—3n3 +4n? — 3n> +3"271 . (4n? — 6n) + 6271 (—2n)

Note that for n > 6, the positive portion of det(N) is 61+ 4n? - 27/2~1 4 4n? . 37/2-1 However,
viewing this as a function on n, the growth of —2n - 6"/~ is much faster, hence det(N) is
monotonically decreasing. For n = 6, det(/N) = 0, thus since n = 10 gives negative determinant,
monotonicity implies that det(N) < 0 for all n > 6. We conclude that for n = 2 mod 4 and
n > 6, 0, is not a linear combination of Eisenstein series. By Lemma 2, this implies that for all
positive n = 6 mod 8 except n = 6, 0,, is not elementary.

Thus, 6, can be elementary only when n = 2 mod 8. Since the weight § = 1 mod 4, the

cm

space S° /2(F1(4)) is nontrivial. It is generated by the newform attached to the Hecke character
of Q(i) of co-type § — 1 (see (11))

c@) = ;3| X @
4le deL[i]

Nm(d)=m

= g+ (DT P27+

Thus, 6, is not elementary if the determinant of the matrix of coefficients for ¢, ¢2, ¢° and

4
q,
2n 4(3) 8(2) 16(2) + 2n (coefficients of 0,,)
, on/2-1 1 4 3n/2-1 4n/2-1 (coefficients of F1(q))
det(N') = n/2-1 ,
1 1 1-3 1 (coefficients of Ex(q))
1 (_4)%72 0 9% (coefficients of C(q))

has non-zero determinant.

A straightforward calculation demonstrates the fact that det(N') as a function on n is mono-
tonically decreasing with growth on the order of @(12"/2~1). For n = 10, det(N’) = 0, but for
n = 18, det(N') = —439,038,812,160. Thus, we can conclude that det(N’) is nonzero for all
n > 10 such that n = 2 mod 8. This proves the theorem. O

7.1 Another proof.

We provide another proof which makes use of the constants of the Eisenstein series and is
motivated by the following lemma.

Lemma 3. For any f € S™(I'1(4)) with k > 1, T,(f) =0 for any prime p =3 (mod 4).
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Proof. Recall that Theorem 6 and Corollary 5.1 tells us that when k =1 (mod 4), S (I'1(4))
is generated over C by forms fy(;) . (2) defined by (7). In order for fy;)(2) to have CM by
the quadratic character xq(;), note that a, = 0 for all inert primes p, thus for any prime p =3
(mod 4), T,,(f) must necessarily vanish. O

Thus, if we show that the cuspidal part of #,, which vanishes on all three cusps of I'1(4)
has nonzero coefficient of ¢? such that p = 3 (mod 4), then 6,, is not elementary. Since 6,, €
M, 9(T1(4)) = &E,/2(T'1(4)) © S,,/2(T1(4)), write 6, as a linear combination of an Eisenstein
series and cusp form, i.e. 0,(2) = f/2(2) + 8p/2(2)-

Lemma 4. If s,,/5(2) denotes the cuspidal part of 0,,(z), then a3(s,/2) # 0 if n > 10.

Proof. The fundamental facts we use are formulas for the odd coefficients of Fourier expansions
for the Eisenstein part

Fuso(2) —1+meq € E,2(T1(4))

due to Siegel (see [39]) and Shimura (see [38] and [37]). Let Ej denote the kth Euler number
and B; denote the jth Bernoulli number, which are defined by the following identities

=S mg wd =Yg
et—i—e_t k ! et—l_jzo 1N

The magnitudes of these numbers are related to values of L-series associated to the primitive
Dirichlet characters of conductor 1 and 4:

24!
B; = (27r§)j -¢(j) if j > 0 even, and
22k+3 L .
By = gy - L+ Lxa) ik >0 even,

where we let x4 denote the Dirichlet character of conductor 4 as usual. For odd m, the coeffi-
cients of the Eisenstein series f,, /o are

4
|E/21‘.(X4(m).2n/2 1+X4( )) ZX4 Cgn/2 L ifn=2 (mod 4) and n > 2
" m/2—1 . _
(2n/2—1 ‘Bn/Z‘ Zd/ ifn=0 (mod 4)

From (2), recall that r,(3) =
g-series expansion of s, /5(z)

5n/2 Z amq™ = Z Tn(m)q™ — Z bmq™ € Sn/2(Fl (4).
m=0

m=0

8(2) = M. We can calculate the third coefficient of the
= 0n(2) — frn/2(2) using this equality:

Thus, taking the difference of b3 and r,(3) gives the coefficients of s,,/5(2) :

dn(n —1)(n — 2) + < 4 > ) (271/2—1_X4 (g)) . (1_3"/2_1> ifn=2 (mod 4)

" 3 | B a1l
3 = n/2—1
dn(n —1)(n — 2) n 1+ 3" .
| fn= 4
3 + Bool [ on/21 ifn=0 (mod 4)
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In particular, we notice that if a3 is viewed as a function on n, it can have at most six zeroes.
(This is due to the fact that the values of |B;| and |E}| for even j, k have bounds (see [20]),

; N - N k
wj [ j w7 k [ 2k
Y Bj| <5/ —= | =— d 8/—(— Eyg|.
V2 <2we> <IBil <53 <27Te> o o <7re> < B

Some asymptotic calculations then demonstrate that as is monotonically increasing for n > 18

and 20.)
Four of these zeroes occur when n = 4,6,8,10, and calculating the values of a3 for n =
12,14, 16, 18 as seen in the table below along with the monotonicity show that no other zeroes

occur.
’ n ‘ b3 ‘ I'n(3) ‘ ag = I'n(3) —b3 ‘

4 32 32 0
6 160 160 0
8 448 448 0
10 960 960 0
12 1952 1760 -192
14 | 189280/61 2912 -11648/61
16 70016/17 4480 6144/17
18 | 1338240/277 | 6528 470016/277
20 | 157472/31 9128 125248/31

Thus, the cuspidal part of 6,, has a nonzero coefficient for ¢* in the Fourier expansion. From
Section 3.4, the first g-series coefficient of T5(s, /2) is a3z which is nonzero for n > 10. O

We have shown that the cuspidal part of ¢, does not lie in the CM subspace of S, 5(I'1(4))
for n > 10, hence 6,, cannot be elementary for these cases. Theorem 1 then follows from the
above two lemmas once we show that 6, is elementary for n = 2,4, 6,8, 10. Note that this proof
does not rely on the dimension arguments of Lemmas 1 and 2.
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8 Elementary formulas for small n

We produce the classical nice formulas for n = 2,4, 6,8, and 10 in the manner analogous to the
constructions in the proof of Theorem 1. These are originally due to Jacobi (n = 2,4,6,8) and
Liouville (n = 10).

8.1 Sum of 2 squares

By Lemma 1, we know that the dimension over C of weight 1 modular forms on I';(4) is 1, and
the basis element is Eisenstein. We produce this generator by considering the 2-dimensional
reducible Galois representation unramified away from 2. To have the correct trace and deter-
minant, as described by Section 4.3, consider the representation

p=1@x4:Gal(Q/Q) — GL2(Q))

where x4 as usual can be viewed as the Dirichlet character (Z/4Z)* — C* extended to a
map (Z/4Z) — C by mapping 0,2 — 0. Note that this is the same representation as in the
construction of basis elements during the proof of Theorem 1 since here, 5 —1 = 0. The L-series
attached to this Galois representation is

L(s,p) = L(s,1)-L(s,xa) = H( ! H 1

S (L =p7) S (1= xa(p)p™)
_ 1 xa(mg) 1
= D T 2 | @) s
mi>1 1 mo>1 2 m>1 \dm

Applying the inverse Mellin transform gives the g-series G(¢) = a0+ _,,,>1 (Z djm X4 (d)) qm,
analogous to the construction in the proof of the theorem. Theorem 3 and Lemma 1 imply that
Mi(T'1(4)) = C- G(q), thus we can write 62(q) = a - G(q) where a € C. Calculating the first
few ra(m) thengives us

O2(q) =1+ > 4 (D xald) | g™ (12)

m=1 dlm

8.2 Sum of 4 squares

When n = 4, the dimension of My(I'1(4)) = &2(I'1(4)) is 2 by Lemma 1. We produce a
2-dimension reducible Galois representation of conductor 1 where the two characters have oo-
type 0 and 1 respectively and is unramified at 2. Analogous to the situation for n = 0 mod 4
but n > 8, consider the system of f-adic representations 1 @ x, : Gal(Q/Q) — GL2(Qy) where
x¢ as usual denotes the f-adic cyclotomic character. Note however that the L-function attached
to xy originally has a contribution from the prime 2. Under an inverse Mellin tranform, the
Galois representation has conductor 1, hence L(s, 1@ xy) would give a modular form of weight 2
on SLy(Z), which does not exist. A priori, we know there exist modular forms of weight 2 with
level 2, hence, we “correct” the L-function to have no contribution from the prime 2, which
increases the conductor to 2. (This construction is equivalent to the special case of Theorem 7
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for Eisenstein series of weight 2. Thus, the L-series we attach to this representation is

N 1 1 1 mo 1
Li(s1@x)) = Hl_p—s'Hl_pl—s:st' ms:Z Zd ms’
p p>2 mi>1 1 mgodd 2 m>1\ dodd
mo>1 dlm

Mellin transform results in the following g-series and its “square”

G@)=ae+Y, |d dl¢" G@)=ac+Y, D d|lm

m>1 | dodd m>1 | dodd
dlm dlm
Note that G'(q) € M3(T'1(2)) C My(T'1(4)) thus, G'(¢?) € M2(T1(4)) and {G'(q),G'(¢?)}
forms a basis for this space. We write 04(q) = a - G'(q) + b - G'(¢?) and solve for the complex
constants in order to produce a formula consisting of a linear combination of Eisenstein series.
Calculating the first few r4(m) and the first few coefficients of the two Eisenstein series, we
conclude that ¢ = 8 and b = 16, thus

94(q):1+§: 81> d|+16| > d||q™ (13)
m=1

d odd d odd
dlm dlg

8.3 Sum of 6 Squares

When n = 6, we note that the determinant of the matrix N is zero, hence there is a linear
dependence between the element 6g(g) and the basis B = {Ei(q), E2(q)} from (9) and (10)
of the space M3(I'1(4)) (by Lemma 1, the space of cusp forms is trivial). Thus, we solve for
constants a,b € C in the equation

06(q) = a- E1(q) +b - Ea(q).

The first few coeflicients force a = 16 and b = —4, hence we can conclude that
> m
Os(q) =1+ 16 (—)dQ —4 d)d? | | ¢™. 14
6(q) 7;1 d; x (5 % x(@)d® || q (14)

8.4 Sum of 8 Squares

When n = 8, 03(q) € M4(I'1(4)) and from the proof of Theorem 1, we have constructed a basis
B = {E(q), E(¢*), E(¢*)} from (8) for this space. Thus, there exist constants a,b,c € C such
that

Os(q) = a- E(q) +b- E(¢*) +c- E(g").

Comparing the first few coefficients of each of these ¢-series, we find that a = 16, b = —32, and
¢ = 256, thus we can conclude that

eg(q):1+§: 16 (> d® | —=32(> d®| +256 | Y d*||q™ (15)
=l A d%

dlm
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8.5 Sum of 10 Squares

Finally when n = 10, there is a non-trivial subspace of cusp forms equal to S (I'1(4)). By the
construction in the proof of Theorem 1 for the case of n = 2 mod 8 but n > 10, we claim that
there exist constants a, b, ¢ € C such that

010(q) = a- E1(q) +b- Ex(q) +c-C(q)

using (9), (10), and (11) since 619(q) € M5(I'1(4)). Using the matrix of coefficients, we find
that a = %, b: =, and c = %, hence

e, _1+Z 3 x(d)dt +% >ox (%) +§ 2 d || a6

dlm dlm deZ[i
Nm (d)f
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9 Motivation for definition of “elementary” modular forms

The motivation behind the definition of an “elementary formula” is computational: an elemen-
tary modular form should have Fourier coefficients which can be computed in a straightforward
manner in polynomial time in log(m) (for the coefficient of ¢"*). One can broaden this by as-
suming factorization of m while calculating the coefficient of ¢ as is the case for small n, where
the set of divisors of m was needed to calculate r,,(m). We have provided the nice formulas for
the exceptional cases of elementary 6,,, and these give way for efficiently computing r,(m) for
n =2,4,6,8, and 10 (factorization of m is necessary). To demonstrate that modular forms on
I'1(4) that involve a non-CM cusp form are not “nice”, we consider the case of n = 12.

9.1 n =12

Note that the subspace of Mg(I'1(4)) consisting of Eisenstein series has dimension 3 and the
subspace of cusp forms has dimension 1 by Lemma 1. Furthermore, by Lemma 2, S§™(I'1(4))
is trivial, and we can in fact use a well-known cusp form for the basis:

o0
\/K(Qz) = n'2(22) = ¢ H(l — M2 =y [1 —12¢% + 54¢* — 88¢°% — 99¢® + ]
n=1

n(22) is a cusp form on T'y(2) of weight 1/2, hence VA(2z) € Mg(T'1(4)) and it is clearly a cusp
form but does not have complex multiplication.

From above and (8), take {E(q), E(¢%), E(¢*),vVA(¢%)} as a basis for Mg(T'1(4)). We then
calculate the constants a, b, c,d € C such that

th2(q) = a-E(q) +b- E(¢*) + c- E(q*) + d - VA(G).

Note that by Theorem 1, c3 must be nonzero. Using the first few coefficients of the g-series in
the basis,

E(q) = ap+q+33-¢>+244-¢>+1057-¢* + ...
E(¢®) = ao+¢@+33-¢*+ ...
E(g) = ao+q*+..

VAR = g—12-¢3+ ...
Since we know that the first few coefficients r12(m) are
012(q) = 1424 -q+264-¢* + 1760 - ¢* + 7944 - ¢* + ...,

thus a =8, b =0, and ¢ = —512, d = 16.

Here, we can conclude that it is necessary to calculate the coefficients of 1'? in order to
calculate 012(n). Furthermore, the converse is true.

From Serre’s point of view, n'? is not lacunary, thus not only is 1'? not a CM cusp form,

it also has a positive density of non-zero coefficients in its g-series (see [33]). The formulas for
n =2,4,6,8, and 10 illustrate that r,(m) can be calculated efficiently if the prime factorization
of m is known (thus for primes p,r,(p) can be computed easily). In the case of n = 12, this
is not enough information as there is no analogous description of the coefficients of n'%(22) in
terms of divisors.

Remark. Recently, Bas Edixhoven, Jean-Marc Couveignes, and Robin de Jong have proven
that if f = ) anq™ is a modular form on SLa(Z), then the coefficients a, for p prime can be
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calculated in time polynomial in the weight k£ and log(p) (assuming GRH). This implies that the
prime Fourier coefficients 7(p) of A can be calculated in polynomial time with respect to log(p).
Furthermore, Peter Bruin in his forthcoming PhD thesis [4] will give a probabilistic algorithm
in time polynomial to k& and log(p) which under the assumption of GRH, computes the Fourier
coefficient of ¢P of eigenforms of level 2N where N is squarefree. This includes calculating
rn(m) for all even n as discussed here, whether or not 6, has an elementary formula or not.
In particular, showing that 6,, is not elementary, and therefore does not have a nice formula,
outside of the small finite set n € {2,4,6,8,10} demonstrates the usefulness and necessity for
such an algorithm. Other than understanding classical arithmetic functions, these results are
useful in computing eigenvalues of Hecke operators or equivalently, coefficients of eigenforms
(see [12]).
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