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Abstract. This thesis discusses the classical problem of how to calculate rn(m), the number of
ways to represent an integer m by a sum of n squares. To this day, there are very few formulas
that allow for easy calculation of rn(m). Here, we focus on the case when n is even, hence we can
use the theory of integral weight modular forms on Γ1(4) to write down formulas for the theta
function θn(q) associated to sums of n squares. In particular, we show that for only a small finite
list of n can θn be written as a linear combination consisting entirely of Eisenstein series and
cusp forms with complex multiplication. These give rise to “elementary” formulas for rn(m), in
which knowing the prime factorization of m allows for their efficient computation. This work is
related to Couveignes and Edixhoven’s forthcoming book and Peter Bruin’s forthcoming Ph.D.
thesis concerning polynomial-time algorithms for calculating the prime Fourier coefficients of
modular forms.
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1 Introduction

The simple Diophantine equation

x2
1 + x2

2 + ...+ x2
n = m

has been of interest to many mathematicians throughout time. From understanding the lengths
of a right triangle to distances in n-dimensional space, the physical and geometric aspects of this
expression are clear. However, studying sums of squares problems is deeply linked to almost all
of number theory. Fermat started by investigating which primes can be “represented” by a sum
of 2 squares, i.e. whether or not there exists an integral pair (x1, x2) such that x2

1 + x2
2 = p for

each prime p (see [16]). To this day, students in an elementary number theory class are quickly
introduced to his theorem stated in 1640 and later proved by Euler:

an odd prime p can be written as a sum of 2 squares if and only if p ≡ 1 mod 4.

After studying the multiplicative properties of solutions to this equation, it is not hard to
conclude that the integers represented by sums of squares are those with prime factorization
such that primes p ≡ 3 (mod 4) occur in even powers.

Fermat also studied the sums of 3 squares problems, but the following statement describing
which integers can be represented was not proven until Legendre in 1798 ([16]):

an integer m > 0 can be written as a sum of 3 squares if and only if m 6≡ 7 mod 8 and 4 - m.

In 1770, Lagrange proved that every natural number can be written as a sum of 4 squares
(see [11]). Other mathematicians gave different proofs involving surprising tools such as quater-
nions and elliptic functions (see [16]). For example, Ramanujan gave a proof in 1916 involving
calculation of the coefficient r4(m) of xm in

(1 + 2x+ 2x4 + ...)4 =

( ∞∑
k=−∞

xk
2

)4

∈ Z[[x]]

as the number of solutions of m = x2
1 + x2

2 + x2
3 + x2

4 in the integers (see [26]). In this language,
Lagrange’s theorem amounted to proving that r4(m) > 0 for all integers m > 0. These coeffi-
cients were further studied by Jacobi in 1829, additionally gave exact formulas for representing
a natural number by a sum of 4 squares (see [19]):

r4(m) =


8
∑
d|m

d if m is odd

24
∑

2-d|m

d if m is even.

Jacobi continued the study of sums of n squares by writing down exact formulas for the cases
of n = 6 and n = 8. Writing down formulas for r5(m) and r7(m) in fact came much later due
to their surprising difficulty, and it was worked on by Eisenstein, Smith, Minkowski, Mordell,
Ramanujan, and Hardy ([16]). Even for r3(m), Gauss gave the simplest formula in 1801, which
still involved the class number of binary quadratic forms with discriminant −m. We therefore
focus our attention to the case when n is even.

Denote rn(m) as the coefficient of xm in (1 + 2x+ 2x4 + ...)n, i.e.

∞∑
m=0

rn(m)xm =

( ∞∑
k=−∞

xk
2

)n
or equivalently, rn(m) = #{x ∈ Zn : x2

1 + x2
2 + ...+ x2

n = m}.
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If we define χ : Z→ C such that

χ(d) =


1 if d ≡ 1 mod 4
−1 if d ≡ −1 mod 4
0 if d ≡ 0 mod 2,

then Jacobi’s formulas can be written as

r6(m) = 16 ·
∑
d|m

χ
(m
d

)
d2 − 4 ·

∑
d|m

χ(d)d2 and r8(m) = 16 · (−1)m
∑
d|m

(−1)dd3.

When mathematicians started writing down formulas for n > 8, they got noticeably more
complicated. Liouville in 1864 wrote the first formula for r10(m) in terms of summations with
respect to divisors of m as well as decompositions of m into sums of 2 squares (see [22]). Glaisher
noted that r10(m) can be equivalently written as a linear combination of three functions (see
[14]):

E4(m) =
∑

2-d|m

(−1)(d−1)/2d4

E′4(m) =
∑

2-d|m

(−1)(d−1)/2
(m
d

)4

ψ4(m) =
1
4

∑
N(α)=m

α∈Z[i]

α4.

While E4 and E′4 look similar to the summations that came up in previous rn(m), n < 10,
ψ4(m) is very distinctive, particularly in its use of Z[i]. Liouville’s original formula can be
expressed as follows (see [14]):

r10(m) =
4
5
· E4(m) +

64
5
· E′4(m) +

32
5
· ψ4(m).

Liouville also produced a formula for sums of 12 squares, which was again rewritten by Glaisher
as

r12(m) =


−8 ·

∑
d|m

(−1)d+m/dd5 if m is even

8 ·
∑
d|m

d5 + 2 · Ω(m) if m is odd.

Here, Ω can either be defined as coefficients of elliptic function expansions or arithmetically.
For the latter, let Sm of all x = (x1, x2, x3, x4) ∈ Z4 such that x2

1 + x2
2 + x2

3 + x2
4 = m.

Ω(m) =
1
8
·
∑

x∈Sm

x4
1 + x4

2 + x4
3 + x4

4 − 2x2
1x

2
2 − 2x2

1x
2
3 − 2x2

1x
2
4 − 2x2

2x
2
3 − 2x2

2x
2
4 − 2x2

3x
2
4.

There is no straightforward method to compute Ω(m) in polynomial time with respect to log(m),
even when the prime factorization of m is given. In a 1916 article (see [26]), Ramanujan
remarked

∞∑
k=1

Ω(m)xm = η12(x2) where η(x) = x1/24
∞∏
k=1

(1− xk).
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In order to express r14(m), r16(m), and r18(m), Glaisher also described functions similar to
Ω that were defined as coefficients of elliptic function, and Ramanujan later wrote them as
coefficients of expansions of powers and products of η(x). In addition, he included the relation

∞∑
k=1

ψ4(m)xm = η4(x)η2(x2)η4(x4).

Unfortunately, this equation does not seem to simplify the computations of ψ4(m) and addi-
tionally implies an equal or higher level of difficulty in computing ψ4 and Ω. However, even
though ψ4 is not simply a summation running over divisors, Fermat’s theorem for sums of two
squares allows us to understand the ψ4 quite well. A straightforward consequence of Fermat’s
theorem is

r2(p) =


4 if p = 2
8 if p ≡ 1 mod 4
0 if p ≡ 3 mod 4.

Using the fact that the norm of Z[i] is multiplicative, one can compute ψ4(m) by finding an
element of Z[i] with norm p for each prime p | m and p ≡ 1 mod 4.

The modern perspective on the sums of squares problems involves the theory of modular
forms, the sequel to the elliptic functions of Jacobi and Ramanujan. Through this perspective,
we will discuss the generating function for rn(m) when n is even. The fact that these formal
series give rise to integral weight modular forms will allow us to precisely understand when
formulas for rn(m) are straightforward and easily computable.
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2 Main statements

We begin by recalling the general situation. For even n ∈ Z>0 and m ∈ Z≥0, we define

rn(m) := #{x ∈ Zn : x2
1 + x2

2 + ...+ x2
n = m}. (1)

We wish to understand the generating function of rn(m), which we denote by θn. A key insight
is to interpret this formal series as a complex (in fact, holomorphic) function on the open unit
disk D ∈ C. For q ∈ D, let

θn(q) =
∞∑
m=0

rn(m)qm = 1 + 2n · q + 4
(
n

2

)
· q2 + 8

(
n

3

)
· q3 +

[
24

(
n

4

)
+ 2n

]
· q4 + . . . (2)

Equivalently, one can define θn(q) by using the multiplicative property of rn(m)

θn(q) = θ1(q)n =
(
1 + 2q + 2q4 + 2q9 + ...

)n
.

Furthermore, if we view D as the image of the upper half plane H = {z ∈ C : Im(z) > 0} under
the map z 7→ e2πiz, then we may write

θn(z) =
∞∑
m=0

rn(m)e2πimz.

Jacobi noted certain symmetries of θn; in particular, it satisfies the equations (see [25], 3.2),

θn(−1/4z) = (2z/i)n/2θn(z) θn(z + 1) = θn(z). (3)

Note that we have assumed n is even, hence there is no need to choose a square root. The
above equalities illustrate that θn as a function of the H-coordinate z, the coordinate of the
upper half plane, is a modular form of weight n/2 on the congruence subgroup Γ1(4) consisting
of matrices γ ∈ SL2(Z) such that γ ≡ ( 1 ∗

0 1 ) (mod 4) (see [10], 1.2 or [25], 3.2). We are
interested in analyzing when θn(z) has coefficients that are easily computable, thus we establish
the following definition.

Definition 1. A modular form f on the congruence subgroup Γ1(N) of weight k ∈ Z is
elementary if and only if f is a linear combination of Eisenstein series and cusp forms with
complex multiplication as defined in Section 3.9.

Denote the space of modular forms on a congruence subgroup Γ of weight k as Mk(Γ), and
let its subspace of cusp forms be Sk(Γ). The Eisenstein space Ek(Γ) is then the orthogonal
subspace to Sk(Γ) with respect to the Petersson inner product defined in Section 3.5. Finally,
we define the subspace Scmk (Γ) ⊂ Sk(Γ) as the space of cusp forms with complex multiplication,
i.e. those which are invariant under twisting by a quadratic character.

By definition, θn ∈Mn/2(Γ1(4)), is elementary if and only if θn is an element of the subspace
En/2(Γ1(4)) ⊕ Scmn/2(Γ1(4)). Note that in [33], Serre calls cusp forms lacunary if the density of
the nonzero coefficents in the q-expansion is zero, and proves that a cusp form f is lacunary if
and only if f ∈ Scm. While it is false that θn is lacunary for any n ≥ 4, it is true that θn is
elementary if and only if the cuspidal part in its decomposition are lacunary, i.e. contribute to
the value of rn(m) very rarely. The following theorem is our main result.

Theorem 1. Suppose n is even. Then θn is elementary if and only if n = 2, 4, 6, 8, or 10.
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To prove this, we will first compute the dimensions of the various subspaces introduced above:

Lemma 1. The dimensions of Mk(Γ1(4)) and its subspace of cusp forms for arbitrary k ∈ Z>0

are as follows:

dimC(Mk(Γ1(4))) =

{
k+2

2 if k is even
k+1

2 if k is odd
dimC(Sk(Γ1(4)) =


0 if k ≤ 4
k−4

2 if k ≥ 3 is even
k−3

2 if k ≥ 3 is odd

In particular, this implies that Ek(Γ1(4)) has dimension 3 for even k > 2 and dimension 2 for
odd k > 2. We will prove this by using a geometric interpretation of these spaces and applying
the Riemann-Roch formula. When k is odd, the genus formula arising from Riemann-Roch gets
a contribution from the irregular cusp 1/2 on Γ1(4).

A corollary of this statement (and the fact that θn is a modular form of weight n/2) is that
if n = 2, 4, 6, and 8, then θn is elementary (consisting entirely of Eisenstein series).

Lemma 2. The dimension of Scmk (Γ1(4)) is 1 if k ≡ 1 mod 4 for k ≥ 5 and 0 otherwise.

A more general theorem for all Γ1(N) can be found in [28]. We focus on the case of Γ1(4)
here, proving that there exists a unique algebraic Hecke character on Q(i) of conductor 1 and
∞-type equal to #O×Q(i) = 4, and the only possible CM cusp forms on Γ1(4) arise from its
powers.

Using these lemmas, we will prove that for even n > 8, the modular form θn is not a linear
combination of Eisenstein series. Thus, the only possible n > 8 and even for which θn can
be elementary are such that n

2 ≡ 1 mod 4. Then we have reduced the problem to producing
an elementary formula for n = 10, and showing that for n > 10 with the above property, any
decomposition of θn must include cusp forms that do not have complex multiplication.

9



3 Modular forms

We introduce the general theory and notation of modular forms that will be used throughout
this thesis. This material is found in [5], [10], [9], [23], [25], [29], and [41]. In order to prove
Lemmas 1 and 2, we will focus on modular forms related to the congruence subgroup Γ1(4),
the geometric interpretation of the space of modular forms, and the general theory of modular
forms with complex multiplication (see [28]).

3.1 SL2(Z) and congruence subgroups

The group SL2(R) consisting of 2 × 2 matrices with determinant 1 and coefficients in R acts
on the upper half plane of the complex numbers, denoted H = {z ∈ C : Im(z) > 0}. If
γ =

(
a b
c d

)
∈ SL2(R), for any z ∈ H, we define the linear fractional transformation by γ as

γ(z) =
az + b

cz + d
∈ H.

The element −1 =
(−1 0

0 −1

)
has trivial action on H, and SL2(R)/{±1} acts faithfully on H.

Although some authors use SL2(Z)/{±1} instead, we will call SL2(Z) the modular group.

Certain basic functions on H such as translation, z 7→ z+n for n ∈ Z, and the transformation
z 7→ −1/z can be written as matrices in SL2(Z):

Tn =
(

1 n
0 1

)
and S =

(
0 −1
1 0

)
,

respectively. Furthermore, it is well known (see [29], 7.1) that the modular group is generated
by S and T = T 1.

For each N ∈ Z>0, let Γ(N) denote the kernel of the reduction map

ϕ : SL2(Z)→ SL2(Z/NZ).

A congruence subgroup Γ of SL2(Z) is then any subgroup containing some Γ(N). The level of
Γ is defined as the smallest such N for which Γ(N) ⊂ Γ. We are particularly interested in the
following congruence subgroups

Γ0(N) =
{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

Γ1(N) =
{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod N)

}
.

Here ∗ denotes any element of Z. Equivalently, one can think of SL2(Z/NZ) as acting on
(Z/NZ) × (Z/NZ) and P1(Z/NZ). Then Γ1(N) is the preimage under ϕ of the stabilizer of
the vector

(
1
0

)
∈ (Z/NZ)2 and similarly, Γ0(N) = ϕ−1(Stab [ 1

0 ]) where [ 1
0 ] ∈ P1(Z/NZ). When

N = 1, Γ1(1) = Γ0(1) = SL2(Z).

3.2 Cusps

The action of SL2(Z) on P1(Q) = Q ∪ {∞} is defined by

m 7→ γ(m) =
am+ b

cm+ d
, γ =

(
a b
c d

)
∈ SL2(Z).
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Here, γ(∞) = a
c and if cm+ d = 0, γ(m) =∞ (similarly, if c = 0, γ fixes ∞).

The cusps of a congruence subgroup Γ are the Γ-orbits of P1(Q). It is a nontrivial fact that
the set of cusps for any congruence subgroup Γ is finite. If Γ = SL2(Z), there is only one cusp,
i.e. for any m1,m2 ∈ P1(Q), there always exists some γ ∈ SL2(Z) such that γ(m1) = m2. If
Γ = Γ1(4), one can easily check that there are 3 distinct orbits, normally represented by ∞, 0,
and 1

2 , and we say that there are the three cusps of Γ1(4).

Remark. Geometrically, adding the cusps of Γ to H “compactifies” the upper half plane with
respect to the action of Γ in the following sense. We can view Γ\H = YΓ(C) as a modular curve,
which can also be viewed as a Riemann surface. However, it is not compact, so we also consider
the quotient of the action of Γ on H∗ = H ∪ P1(Q) (the topology on H∗ is defined by using
the usual open sets of H along with the sets γ({x + iy : y > C} ∪ {∞}) for γ ∈ SL2(Z) and
C ∈ R≥0). This decomposes to XΓ(C) = YΓ(C) ∪ (Γ\P1(Q)), i.e. our original modular curve
with the cusps defined above added to it. XΓ(C) is a compact connected Riemann surface, thus
by Riemann’s existence theorem (see [30]), we can view and study it as a projective algebraic
curve over C. (It is also possible to define XΓ as a compactified moduli space of elliptic curves
with Γ-structure that makes sense over Q. Then one can show that its complex points give this
compactification of Γ\H (see [9], II.9))

3.3 Modular functions

For any integer k, define the weight k (right) action of SL2(Z) on the set of functions f : H→ C
as follows: For γ =

(
a b
c d

)
∈ SL2(Z) and f as above, define

f | [γ]k(z) =
f(γ(z))

(cz + d)k
.

Since SL2(Z) acts on H on the left, this yields a right action of SL2(Z) on the set of all functions
f : H→ C as

f | [γ1γ2]k = (f | [γ1]k) | [γ2]k.

Moreover, this action can be defined for any γ ∈ GL2(R) with positive determinant, where we
add multiplication by the factor of det(γ)k−1 in the right-hand side of the definition of f | [γ]k.)

A modular form of weight k ≥ 0 with respect to a congruence subgroup Γ is a function
f : H→ C such that for all z ∈ H,

1. f is holomorphic on H, i.e. limh→0
f(z+h)−f(z)

h exists independent of the path h may
approach 0 on;

2. f is invariant under the weight k action of Γ, i.e. f | [γ]k = f for all γ ∈ Γ;

3. f is holomorphic on the cusps of Γ.

We define the third condition as follows. Note that the matrix TN ∈ Γ(N), thus there exists
a smallest positive integer h such that f(z + h) = f(z) for all z ∈ H if f is a candidate for a
modular form of level N . In particular, f has a Fourier expansion (at ∞)

f(z) =
∞∑

n=−∞
ane

2πinz/h ∀z ∈ H.

Let q1/h = q1/h(z) = e2πiz/h, which we view as a map H→ D∗, where D∗ denotes the punctured
open unit disk (i.e., with origin removed). We then say f is holomorphic at ∞ if the map

11



F : D∗ → C defined by F (q(z)) = f(z) extends to and is well-behaved at 0, i.e. if an = 0 for all
n < 0 (one can check that this condition is independent of the choice of h).

Note that for α ∈ SL2(Z), f | [αγ]k = f | [α]k for all γ ∈ α−1Γα, thus the Fourier expansion
at∞ of f immediately gives one for f | [α]k. Then, f is holomorphic at the cusps of Γ if f | [α]k
is holomorphic at ∞ for all α ∈ SL2(Z). Furthermore, f vanishes at the cusps if f | [α]k is both
holomorphic at ∞ and a0 = 0 for all α ∈ SL2(Z). Checking if a0 = 0 when α = 1 gives the
criterion for vanishing at ∞.

The complex vector space of all modular forms of weight k on Γ will be denoted by Mk(Γ).
An important subspace Sk(Γ) consists of all modular forms that also vanish on all the cusps
of Γ, known as the space of cusp forms. It has an orthogonal complement, denoted Ek(Γ),
with respect to the inner product defined in Section 3.5. The space Ek(Γ) consists of modular
forms called Eisenstein series which do not vanish at every cusp of Γ. It is well known that
Mk(Γ) = Sk(Γ)⊕ Ek(Γ) has finite dimension over C (see [10]).

Remark. The matrix T = ( 1 1
0 1 ) ∈ Γ1(N) ⊆ Γ0(N) for all N , thus any modular form f ∈

Mk(Γ1(N)) ⊇Mk(Γ0(N)) has a q-expansion at ∞ of the form

f(z) =
∞∑
n=0

anq
n, q = e2πiz.

If f(z) ∈ Sk(Γ1(N)) or Sk(Γ1(N)), then a0 = 0 as well (but the converse implication does not
hold).

3.4 Hecke operators

We first restrict to the case of level 1 modular forms. For any positive integer n, let

Xn =
{(

a b
0 d

)
∈ Mat2(Z) : a ≥ 1, ad = n, and 0 ≤ b < d

}
.

It is not hard to see that Xn is in bijection with the set of sublattices of Z2 of index n (by letting
the rows, (a, b) and (0, d) define basis elements). Recall that the weight k action of γ ∈ Xn on
a function f : H→ C is

(f | [γ]k)(z) = nk−1 · d−k · f
(
az + b

d

)
.

The n-th Hecke operator of weight k, denoted Tn,k (or Tn since the weight will always be
obvious, corresponding to the weight of the modular form) is the operator on the set of functions
on H defined by

Tn,k(f) =
∑
γ∈Xn

f | [γ]k.

The Hecke operators of a fixed weight k satisfy the following formulas (see [29], 7.5.2, Lemma
2):

TmTn = Tmn if gcd(m,n) = 1,
Tpn = Tpn−1Tp − pk−1Tpn−2 if p is prime.

So in particular, the prime power Hecke operators Tpn can be written as integer-polynomials in
Tp. Furthermore, Hecke operators commute, i.e. for any n,m ∈ Z, TnTm = TmTn.

12



On modular forms of level 1, we can write the action of Tn explicitly when f is written as a
q-expansion. If q = e2πiz then the Fourier expansion of a modular form f of weight k is written
as
∑

n≥0 anq
n. A Hecke operator Tn (of weight k) acts on f as

Tn(f) =
∑
m∈Z

 ∑
d|gcd(m,n)

dk−1amn/d2

 qm,

where the summation runs over positive d ([29], 7.5.3). If f is a modular form, then Tn(f) is
also a modular form of the same weight ([29], 7.5.3, Prop. 12).

For the action of Hecke operators on modular forms of higher level N , first define the diamond
operator for all d - N ,

〈d〉k : f 7→ f | [σd]k where σd ≡
(
d 0
0 d

)
mod N,

where d ≡ d−1 mod N, and σd is any element of the modular group satisfying the equation.
Indeed, the action of 〈d〉k only depends on d mod N , not on the choice of σd.

The n-th Hecke operator of level N is then the operator on the set of functions on H defined
by

Tn(f) =
∑
γ∈Xn

(〈aγ〉f) | [γ]k;

here, aγ denotes the top left entry (i.e. the “a” entry) of the matrix γ. (Here, we are implicitly
assuming that f is a weight k modular form and the diamond operator is of the same weight,
thus Tn is a weight k action.) The Hecke operators of arbitrary level satisfy formulas similar to
those in the level 1 case. In particular,

TmTn = Tmn if gcd(m,n) = 1;
Tpn = Tpn−1Tp − pk−1〈p〉Tpn−2 if p - N is prime.

Remarks. In our notation, we are using the fact that diamond operators and Hecke operators
commute (with themselves and each other), (see [10], 5.2), e.g. it is okay to use notation Tnf
rather than f | Tn.

Furthermore, the action of Hecke operators and diamond operators preserve the decompo-
sition of the space of modular forms of a given weight into the cusp forms and the Eisenstein
series.

3.4.1 Operators on Mk(Γ0(N)) and Mk(Γ1(N))

As Γ1(N) ⊆ Γ0(N), all modular forms on Γ0(N) are modular forms on Γ1(N). The converse
is not true, but one can consider the action of elements of Γ0(N) on f ∈ Mk(Γ1(N)), because
Γ1(N) is a normal subgroup of Γ0(N) and furthermore, Γ0(N)/Γ1(N) ∼= (Z/NZ)×. The dia-
mond operators 〈d〉k defined earlier act on the spaceMk(Γ1(N)), and they in fact represent the
action of Γ0(N)/Γ1(N) on Mk(Γ1(N)). If ε : (Z/NZ)× → C× is a Dirichlet character mod N ,
view it as a map from Z by defining ε(p) = 0 for primes p | N and extending multiplicatively.
We say that a modular form f ∈Mk(Γ1(N)) has Nebentypus ε if it satisfies

(f | [γ]k)(z) = ε(dγ)f(z), ∀γ ∈ Γ0(N),

where dγ denotes the bottom right entry (the “d” entry) of the matrix γ. For a fixed Nebentypus
ε, these modular forms form a subspace of Mk(Γ1(N)) denoted Mk(Γ0(N), ε). Moreover, the
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spaceMk(Γ0(N), ε) can be thought of as the ε-eigenspace of the 〈d〉 for d ∈ (Z/NZ)×.Thus, an
equivalent definition of this space is

Mk(Γ0(N), ε) = {f ∈Mk(Γ1(N)) : 〈d〉f = ε(d)f ∀d ∈ (Z/NZ)×}.

It follows that we have a decomposition of Mk(Γ1(N)) into subspaces Mk(Γ0(N), ε), indexed
by the Dirichlet characters mod N whereMk(Γ0(N), 1N ) =Mk(Γ0(N)) when the Nebentypus
is the trivial character 1N (see [10], 4.3). Since −1 =

(−1 0
0 −1

)
∈ Γ0(N), if the Nebentypus of

f ∈Mk(Γ1(N)) is ε, then

f | [−1](z) = ε(−1)f(z)⇒ (−1)−kf(z) = ε(−1)f(z),

for all z ∈ H. Hence we conclude that in order forMk(Γ0(N), ε) to be nontrivial, the Nebentypus
ε must have the property that ε(−1) = (−1)k. Thus, we conclude that

Mk(Γ1(N)) =
⊕
ε

Mk(Γ0(N), ε) where ε(−1) = (−1)k. (4)

The action of Hecke operators Tn preserves the decomposition for n coprime to N , i.e. if
f ∈ Mk(Γ0(N), ε), then Tnf ∈ Mk(Γ0(N), ε) and we can write out the q-series expansion of
Tnf in terms of f(z) =

∑
m≥0 amq

m

Tnf =
∑
m≥0

 ∑
d|gcd(n,m)

ε(d) · dk−1 · amn/d2

 qm,

where d runs through positive divisors and ε is the Dirichlet character viewed as a map on Z
(see [10], 5.3.1).

In the space Sk(Γ1(N)), cusp forms of a fixed Nebentypus ε form a subspace denoted
Sk(Γ0(N), ε). The diamond operators preserve cusp forms, thus the restriction of their ac-
tion to the subspace of cusp forms partition the space analogously with respect to the possible
Dirichlet characters ε mod N :

Sk(Γ1(N)) =
⊕
Sk(Γ0(N), ε), where ε(−1) = (−1)k.

In particular, the cuspidal ε-eigenspace Sk(Γ0(N), ε) = Mk(Γ0(N), ε) ∩ Sk(Γ1(N)). Conse-
quently, Hecke operators preserve this decomposition as well as the decomposition Ek(Γ1(N)) =⊕
Ek(Γ0(N), ε) (see [10], 5.2).

3.5 Petersson inner product

If Γ ⊆ SL2(Z) is a congruence subgroup, there is a “natural” inner product on the cuspidal space
Sk(Γ) known as the Petersson inner product. It allows us to focus our attention on certain types
forms that are eigenvectors for all Hecke and diamond operators.

If z = x + iy ∈ H, then the hyperbolic measure dµ(z) := dxdy
y2

on H is SL2(Z)-invariant. It
induces a measure on Γ\H, which is given by a smooth volume form outside the elliptic points.
In fact, the integral

∫
Γ\H dµ converges to the volume

VΓ = [SL2(Z) : ±Γ]
(π

3

)
.
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Note that for f ∈ Sk(Γ), |f(z)|2yk is Γ-invariant and bounded on H, hence the measure

dµf (z) := |f(z)|2yk−2dxdy = |f(z)|2ykdµ,

is Γ-invariant on H, and furthermore,
∫

Γ\H dµf converges to an element of R≥0 (see [10], 5.4).
Thus, there is an inner product

〈f, g〉 =
1
VΓ

∫
Γ\H

f(z)g(z)ykdµ, f, g ∈ Sk(Γ),

In fact, this inner product can be extended to a sesquilinear pairing Mk(Γ) × Sk(Γ) → C;
however, it is not an inner product on Mk(Γ) as the integral does not converge in the larger
space.

The set of f ∈ Mk(Γ1(N)) such that 〈f, g〉 = 0 for all g ∈ Sk(Γ1(N)) is exactly Ek(Γ1(N)).
(The statement also holds true for Γ0(N)) (see [10], 5.4).

3.5.1 Eigenforms & newforms

On the space of cusp forms Sk(Γ1(N)), one can show that the diamond and Hecke operators
away from the level are normal, i.e. they commute with their adjoints with respect to the
Petersson inner product. From linear algebra, Sk(Γ1(N)) then has an orthogonal basis of
elements which are eigenvectors simultaneously for all the operators away from the level. We
define an eigenform as a nonzero modular form f ∈ Mk(Γ1(N)) with this above property,
i.e. an eigenform is an eigenvector for all Hecke and diamond operators of level coprime to N .
However, the eigenspaces attached to these eigenforms may not necessarily be 1-dimensional.

In general, we say an eigenform f is normalized if the q-expansion of f has coefficient 1 for
q. Normalization is motivated by the fact that it forces an eigenform f ∈ Mk(Γ0(N), ε) to
have q-series coefficients described by the action of the Hecke operators (Tn(f) = anf when
gcd(n,N) = 1).

As a consequence, the q-series coefficients of a normalized eigenform
∑

n≥0 anq
n ∈Mk(Γ0(N), ε)

must satisfy a1 = 1 along with:

1. apr = apr−1ap − ε(p)pk−2apr−2 for all primes p - N and r ≥ 2

2. amn = aman when m and n are coprime to the level, and gcd(m,n) = 1.

Suppose M and N are positive integers such that M | N . For any divisor t | NM , define the
t-th degeneracy map of cusp forms of level M to those of level N as

ıt,M : Sk(Γ1(M)) ↪→ Sk(Γ1(N)), where ıt,M : f(z) 7→ f(tz).

On q-expansions, ıt,M sends
∑∞

n=0 anq
n 7→

∑∞
n=0 anq

tn. This map commutes with the action of
the diamond and Hecke operators coprime to N described previously (see [10], 5.6). Note also
that when t = 1, ıt,M is the identity inclusion.

The old subspace of Sk(Γ1(N)) is the sum of the images of all such ıt,M where M runs
through proper divisors of N , and t runs through all divisors of N

M (given M). We define the
new subspace to then be the orthogonal subspace in Sk(Γ1(N)) with respect to the Petersson
inner product, so in particular, we have the following decomposition,

Sk(Γ1(N)) = Sk(Γ1(N))new ⊕ Sk(Γ1(N))old.
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(The names are derived from the idea that forms from the old subspace originate from lower
levels, i.e. proper divisors M of N , while the forms from new subspace do not.) The Hecke and
diamond operators away from the level respect the decomposition of Sk(Γ1(N)) into old and
new subspaces, and furthermore, both subspaces have bases of eigenforms (see [10], 5.6). We
call the normalized eigenforms for Sk(Γ1(N))new, newforms. The set of newforms is a basis for
the new subspace in Sk(Γ1(N)), and in particular, the eigenspaces in the new subspace each
have dimension 1 (see [21]). Thus, since Hecke operators commute with each other, newforms
are eigenforms for all Hecke operators, including those that are not coprime to the level. We
can decompose Sk(Γ1(N)) as follows (due to Atkin and Lehner [1] and Li [21]):

Sk(Γ1(N)) =
⊕
M |N

⊕
t| N
M

it,M (Sk(Γ1(M))new).

Thus, for any normalized eigenform g ∈ Sk(Γ1(N)), there exists a unique newform f ∈
Sk(Γ1(M))new for some M | N such that the coefficients of qn for n coprime to the level in
the q-series expansions of g and f coincide. This decomposition allows us to view newforms as
eigenforms for all Hecke operators, including those that are not coprime to the level. A priori,
a newform f =

∑
anq

n has the property that the eigenvalue of Tn for n coprime to N is the
nth coefficient of the q-series for f . For any positive n ∈ N with nontrivial gcd(n,N) = 1,
the “additional” Hecke operators Tn also satisfy Tnf = anf (see [21]). This coincides with the
earlier formulas (1 and 2 above) viewing ε as a map on Z where ε(p) = 0 if p is a prime dividing
N , and extending multiplicatively. (For diamond operators 〈d〉 such that gcd(d,N) 6= 1, we
define 〈d〉f = 0, hence f is automatically an eigenform for such 〈d〉, with eigenvalues equal to
0.)

3.6 Geometric view

Modular forms on a congruence subgroup Γ also have a geometric interpretation, as holomorphic
sections of line bundles on the corresponding modular curves introduced in Section 3.2. The
main reference for this entire section is [9], II.

Let k ∈ Z≥0 and Γ a congruence subgroup satisfying the following conditions:

1. Either k = 0 or the image of Γ under the projection SL2(Z) → SL2(Z)/{±1} acts freely
on H.

2. If k is odd, then the cusps have unipotent stabilizer in Γ, i.e. the eigenvalues are 1. This
only occurs when −1 /∈ Γ. Under this assumption, if a cusp written as γ(∞) for some
γ ∈ SL2(Z) has unipotent stabilizer in Γ if it is contained in γS∞γ−1 where S∞ = {( 1 ∗

0 1 )}.

We call such cusps regular. Let X denote the modular curve Γ\H∗, and Y = Γ\H. SL2(Z) acts
on C×H by (

a b
c d

)
: (τ, z) 7→

(
(cz + d)kτ,

az + b

cz + d

)
.

The quotient of the action of Γ on C×H has a natural projection to Y , giving Γ\(C×H) the
structure of a complex line bundle over Y (see [9]). We extend it to a line bundle over X via
the trivial action on open neighborhoods of a cusp in H∗, defined as:

γ(τ, z) 7→ (τ, γ(z)), for any γ ∈ SL2(Z) and z = x+ iy with y > 0.
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(The image under γ ∈ SL2(Z) of the sets {x+ iy : y > C} ∪ {∞} extend the base of open sets
of H to H∗.) The sections that are defined to be generators are exactly those with q-expansions∑∞

m=0 amq
m such that a0 6= 0. Denote the resulting line bundle as ωk and let ψ : ωk → X

be the projection map. Consider the sheaf Gk on X of holomorphic sections on ωk. It is an
invertible sheaf of OX -modules, where OX denotes the sheaf of holomorphic functions on X
(also, OX = G0). A modular form f of weight k on Γ defines an element of Gk(Y ) which
sends z 7→ (f(z), z). Since f is holomorphic at the cusps of Γ, we automatically get that this
element extends to a holomorphic section φf : X → ωk. In fact, f 7→ φf produces a natural
correspondence between spaces Mk(Γ) and Gk(X) = H0(X,Gk).

For the analogous interpretation of cusp forms, let Ck denote the subsheaf of holomorphic
functions on X which vanish at the cusps, inside OX . We can define Fk = Gk ⊗OX Ck as the
invertible sheaf of OX -modules on X, which naturally lies in Gk. Thus, Fk(X) = H0(X,Fk)
lying inside Gk(X) corresponds to the cusp forms Sk(Γ).

3.6.1 Γ1(4) and its irregular cusp

Although Γ1(4) acts freely on H, the cusp 1/2 is irregular, i.e. the stabilizer of γ(∞) contains the
element γ

(−1 ∗
0 −1

)
γ−1, with eigenvalues equal to −1. Thus, the above discussion only applies

to Γ = Γ1(4) when the weight k is even. For k odd, consider the normal subgroup Γ(4) E Γ1(4).
One can check that its 6 cusps are regular, and since its image in SL2(Z)/{±1} has no nontrivial
elements of finite order, Γ(4) satisfies the above conditions, in particular when k is odd (see
[25], 4.2.10).

Let Y ′ = Γ(4)\H, and X ′ = Γ(4)\H∗. There is a natural projection map π : X ′ � X.
Following the above discussion for Γ(4), we can produce an invertible sheaf G′k of OX′-modules
on X ′. Furthermore, we can define an action of Γ1(4) on the direct image sheaf π∗G′k which
factors through the quotient Γ1(4)/Γ(4). In particular, in the natural correspondence between
π∗G′k(X) = G′k(X ′) and Mk(Γ(4)), the action of γ on the sections coincides with the action
of the operator | [γ−1]k on the space of modular forms. Let Gk = (π∗G′k)Γ1(4) be the subsheaf
consisting of sections that are invariant under the action of Γ1(4). It is an invertible sheaf of
OX -modules and we can conclude,

Mk(Γ1(4)) = Gk(X) = H0(X,Gk).

For cusp forms, we let F ′k ⊂ G′k be the invertible sheaf of OX′-modules on X ′ obtained by
tensoring the subsheaf of holomorphic functions on X ′ which vanish at its cusps with G′k. The
action of Γ1(4) on π∗G′k restricts to an action on π∗F ′k, thus analogously, we let Fk = (π∗F ′)Γ1(4).
Fk is an invertible subsheaf of Gk of OX -modules. If Ck is the sheaf of holomorphic functions
which vanish at the regular cusps of Γ1(4), then it is also true that Fk = Gk ⊗OX Ck. This
results in

Sk(Γ1(4)) = Fk(X) = H0(X,Fk).

Remark. The above construction for odd k is not dependent on Γ(4). Starting with another
normal subgroup Γ′ of Γ1(4) satisfying the regularity and freeness conditions would have resulted
in sheaves that were canonically isomorphic to Gk and Fk. In fact, the entire discussion when k
is odd holds for any congruence subgroup Γ. One must choose a normal subgroup Γ′ satisfying
the two stated conditions, and if Γ = Γ′, the two definitions of Gk (and Fk) coincide.
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3.7 Proof of Lemma 1

To compute the dimension of Mk(Γ1(4)) and Sk(Γ1(4)), we can now use the Riemann-Roch
formula (below is the formulation necessary for Lemma 1) (see [15]).

Theorem 2 (Riemann-Roch). Let R be a compact Riemann surface of genus g. If D is a
divisor on R such that deg(D) > 2g − 2, then

dimCH
0(R, D) = deg(D)− g + 1.

First, assume k = 2. We can show that F2 can be viewed as the OX -sheaf of holomorphic
differentials on X. For an open subset U of X, consider a differential ω ∈ Ω1

X(U). If ϕ denotes
the natural map ϕ : H → X, let ϕ∗ω = f(z)dz where f is a holomorphic function on ϕ−1(U).
We can then define a holomorphic map U ∩ Y → ω2 which sends z 7→ (z, f(z)); this is an
element of F2(U ∩ Y ) and extends uniquely to an element φω of F2(U). In fact, the map
sending ω 7→ φω turns out to be a OX(U)-linear isomorphism between Ω1

X(U) and F2(U) (see
[9]). One can check that this is compatible with restriction, thus we can conclude that Ω1

X
∼= F2.

Since S2(Γ1(4)) = H0(X,F2), we furthermore get an isomorphism

Ω1
X(X) ∼−→ S2(Γ1(4)), ω 7→ f(z) where ϕ∗ω = f(z)dz.

This also allows us to conclude that the dimension of S2(Γ1(4)) is equal to the genus of X. (see
[25]). Note that the weight 2 case does not utilize 2

Recall from Section 3.2 that X = Γ1(4)\H∗ is a compact Riemann surface. To compute its
genus, we use the following general fact: if a congruence subgroup Γ ⊆ SL2(Z) and γ ∈ GL2(Q)
with positive determinant satisfy

Γ ⊂ γ−1 SL2(Z)γ,

then the map τ 7→ γ(τ) on points τ ∈ H∗ induces a holomorphic map (see [9])

Γ\H∗ −→ SL2(Z)\H∗ = H ∪ {∞} ∼= P1(C).

Viewed as a cover of the Riemann sphere, this map can have ramification over the cusp {∞}
and i and ζ = eπi/3, the points with non-trivial stabilizer in SL2(Z)/{±1}. On the Riemann
sphere, these correspond to the elliptic points 0, 1728, and ∞ ∈ P1(C). The Riemann-Hurwitz
formula then tells us that the genus of X can be calculated by

g(X) = 1 +
[SL2(Z) : Γ1(4)]

24
− νi

4
−
νζ
3
− # cusps

2
,

where ν{i,ζ} denotes the number of elliptic points over i and ζ (see [36], 1.6). Since Γ1(4) is an
index 12 subgroup of SL2(Z) with 3 cusps and no elliptic points, we can conclude that g(X) = 0,
i.e. the genus of the modular curve Γ1(4)\H∗ is 0, and thus S2(Γ1(4)) is trivial.

For arbitrary even k, note that ωk ∼= ω⊗k1 naturally, thus it is also true that Gk ∼= G⊗k1 ,
tensoring over OX . Furthermore, the isomorphism Ω1

X
∼= F2 for k = 2 induces

Fk ∼= Gk−2 ⊗OX Ω1
X

for all even k. We can also calculate the degree of these sheaves Gk and Fk as

deg(Gk) = (g − 1)k + (# of cusps) · k
2

=
k

2
,

deg(Fk) = (g − 1)k + (# of cusps)(
k

2
− 1) =

k

2
− 3.
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Since the genus is 0, Gk always satisfies deg(Gk) > 2g − 2 since k is non-negative. However,
deg(Fk) > 2g − 2 only when k > 2. For these cases, the Riemann-Roch formula gives

dimCMk(Γ1(4)) = 1− g(X) + deg(Gk) =
k

2
+ 1,

dimC Sk(Γ1(4)) = 1− g(X) + deg(Fk) =
k

2
− 2.

When k is odd, there is still a natural map G⊗k1 → Gk arising from ω⊗k1
∼= ωk. However, it

is not necessarily an isomorphism, specifically at the cusps of Γ1(4). Let Dk be the sheaf of
holomorphic functions with zeroes of order at least k/2. Then we have an isomorphism

G⊗k1
∼= Gk ⊗OX Dk

which can be checked by computing on the stalks of the cusps. In particular, the irregular cusp
takes away from the degree of Gk as computed before, and in fact

deg(Gk) = (g − 1)k + (# of reg. cusps) · k
2

+ (# of irreg. cusps) · k − 1
2

deg(Sk) = (g − 1)k + (# of reg. cusps) ·
(
k

2
− 1
)

+ (# of irreg. cusps) · k − 1
2

(for details, see [36], 2.4 & 2.6 or [25], 2.5). The degrees for both Gk and Sk are strictly greater
than −2 = 2g − 2 when k > 2, thus the Riemann-Roch formula says

dimCMk(Γ1(4)) = 1− g + deg(Gk) =
k + 1

2
(5)

dimC Sk(Γ1(4)) = 1− g + deg(Fk) =
k − 3

2
(6)

It follows from a similar argument (and the fact that the number of regular cusps is greater
than 2g − 2) that dimCM1(Γ1(4)) = (# of reg. cusps)

2 = 1 and dimC S1(Γ1(4)) = 0. For details,
see 2.5 of [25].

3.8 L-functions and the Mellin transform

To a modular form f(z) =
∑∞

m=0 ame
2πimz, one can attach a the Dirichlet L-series,

L(s, f) =
∞∑
m=1

amm
−s,

and vice versa. However, this correspondence between L-series and modular forms is more than
a formal relationship between series. One can obtain L(s, f) from f(z) by means of the Mellin
transformation (see [?]).∫ ∞

0
f(iy)ys−1dy = Γ(s)(2π)−sL(s, f) = Λ(s, f).

Here, Γ(s) =
∫∞

0 e−tts−1dt is the usual gamma function associated to the Riemann zeta function
ζ(s). Furthermore, to obtain f(z) from a Dirichlet L-series L(s) =

∑∞
m=1 amm

−s, we use the
inverse Mellin transform

f(iy) =
1

(2πi)

∫
Λ(s, f)x−sds,
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where the integral is taken on a vertical line in the right half of the complex plane. If f(z) is
an Eisenstein series, the constant coefficient is constructed by looking at the residue of Λ at
s = 0. Otherwise, if f(z) is cuspidal, L(s) is absolutely convergent. More precisely, we have the
following theorem.

Theorem 3. Let N be a positive integer and ε a Dirichlet character defined mod N . Let r be
a positive integer coprime to N and and χ a primitive Dirichlet character defined mod r. For
f(z) =

∑∞
m=0 ame

2πimz ∈Mk(Γ0(N), ε), let

Lχ(s, f) =
∞∑
m=1

χ(m)amm−s and Λχ(s, f) =

(
r
√
N

2π

)s
Γ(s)Lχ(s, f).

Then Lχ(s, f) can be holomorphically continued to the whole s-plane. Moreover, it satisfies a
functional equation

Λχ(s, f) = (−1)k/2ε(r)χ(N)

r−1∑
j=0

χ(j)e2πij/r

2

r−1Λχ(k − s, f | [γ]k),

where γ =
(

0 −1
N 0

)
. If f(z) ∈ Sk(Γ0(N), ε), then Lχ(s, f) is absolutely convergent for Re(s) >

1 + (k/2).

This theorem describing the correspondence between f(z) and L(s) is due to Hecke (see [36],
Thm. 3.66). Weil furthermore showed the converse also holds, i.e. if the functional equation
holds for Lχ(s) =

∑∞
n=1 χ(n)ann−s for “sufficiently many” characters χ, then the associated

f(z) belongs to Mk(Γ0(N), ε) for some N and ε depending on the functional equation for the
associated Λ(s). Moreover, if L(s) is absolutely convergent for s = k/2− ε for some ε > 0, then
f(z) is a cusp form (see [25], Thm. 4.3.15).

3.9 Modular forms with complex multiplication

For a normalized eigenform f ∈ Sk(Γ1(N)), let Kf be the field over Q generated by the coef-
ficients in its q-series expansion. Using the property that the rational subspace of Sk(Γ1(N))
generates the entire space over C and it is stable under the action of operators, one can show
that Kf is a number field. Furthermore, Kf contains the image of the Nebentypus of f (see
[28]). (This follows from the fact that two eigenforms of possibly different weight and level and
Nebentypus coincide everywhere (away from their levels) if the prime coefficients ap in their
q-series expansion coincide on a set of primes of density 1. In particular, they are of the same
weight, all of the coefficients of qn with n coprime to the levels are equal, and the images of the
Nebentypus are equal for all integers coprime to both levels (see [8], 6.3).)

For any eigenform f , the structure of Kf depends on its Nebentypus. More precisely, Kf is
either a field with complex multiplication or a totally real field, and it is real if and only if the
Nebentypus ε factors through {±1} ⊆ C× and

ε(p)ap = ap ∀ primes p - N,

where as usual ap denotes the coefficient of qp in the Fourier expansion of f (see [28]). Recall
that a field with complex multiplication, also called a CM field, is an imaginary quadratic
extension of a totally real field.
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For a newform f ∈ Sk(Γ1(N)) of Nebentypus ε, we can twist by a Dirichlet character ϕ mod
D as follows:

f ⊗ ϕ =
∞∑
n=1

ϕ(n)anqn ∈ Sk(Γ0(ND2), εϕ2).

Moreover, f⊗ϕ is an eigenform as the action of the Hecke operator Tp for p - ND has eigenvalue
ϕ(p)ap.

We say that a form f has complex multiplication (or CM) by ϕ if f ⊗ ϕ = f . Note that one
must check that ϕ(p)ap = ap (or equivalently, either ϕ(p) = 1 or ap = 0) for a set of primes of
density 1 in order to conclude that f(z) =

∑
n≥1 anq

n has CM by ϕ. Furthermore, this implies
that εϕ2 = ε, so ϕ must be a quadratic character.

Remark. Using Γ1(N), we can define the notion of a CM cusp form on all Γ, namely in the
direct limit over all levels.
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4 Galois representations

The theory of Galois representations stems from the study of the absolute Galois group of Q and
number fields. Originating as a generalization to class field theory and the Kronecker-Weber
theorem, such representations have proven to be useful in a variety of subjects. The material
discussed here focuses on 2-dimensional `-adic representations, which are closely related to the
theory of modular forms (see Theorem 4). The main references for this material include [5],
[6], [9], [36], and [42]. In particular, the relationship between CM cusp forms and certain `-adic
representations as described in [28] allow us to prove Lemma 2.

4.1 Basic theory and notation

Fix an algebraic closure Q of Q and consider the profinite group Gal(Q/Q) with its natural
topology. Let K be a topological field. An n-dimensional representation of Gal(Q/Q) is a
homomorphism

ρ : Gal(Q/Q) −→ GLn(K),

which is continuous with respect to the topology of K. When the field K = C, such ρ are
called Artin representations, and continuity is equivalent to requiring that the representation ρ
factors through Gal(F/Q) where F is a finite and Galois extension over Q. When K is a finite
extension of Q`, for some prime `, they are called the `-adic representations. The case when
n = 1 is described by class field theory (particularly the Kronecker-Weber theorem), and the
2-dimensional case is particularly connected to the theory of modular forms on Γ1(N).

We can extend the usual theory of ramification at primes to infinite extensions as follows.
For any prime p, choose a place p of Q over p in order to fix a decomposition subgroup Dp of
Gal(Q/Q), which acts as a stabilizer. Let Ip denote the inertia subgroup inside Dp, arising from
the following exact sequence

1 −→ Ip −→ Dp
mod p−→ Gal(Fp/Fp) −→ 1.

The automorphism x 7→ xp (topologically) generates this Galois group of residue fields, and any
element of Dp in its preimage is a Frobenius element for the prime p (for all choices of Dp).
We say that a representation of Gal(Q/Q) is unramified at p if all Frobenius elements for p lie
in the same conjugacy class in the image (and the conjugacy class is therefore well-defined).
Equivalently, a map Gal(Q/Q)→ GLn(K) for a field K must vanish on any (and therefore all)
inertia subgroups Ip.

In general, we will implicitly assume that an `-adic representation, along with being contin-
uous, is unramified at all but finitely many primes. Unlike Artin representations, this is not
always true, and furthermore `-adic representations need not be semi-simple. However, any
semi-simple `-adic representation is completely determined by its trace (see [3], 8.12.1).

Example: The `-adic cyclotomic character. Consider the unique map defined by

χ` : Gal(Q/Q) −→ Z×` ↪→ Q×` , σ 7→ χ`(σ) s.t. σ(ζ) = ζχ(σ) ∀ζ ∈ Q×[`∞],

i.e., ζ is a `-power torsion element of Q×. In particular, it factors through Gal(Q(ζ∞` )/Q) =⋃
n Q(ζ`n). Furthermore, χ` is unramified at all primes p 6= `, and for such p, χ`(Frobp) = p.

Since it is a 1-dimensional `-adic representation, we call it a character.

Note that the image of χ` lies in Z×` . In fact, it is true that any continuous `-adic repre-
sentation has image in GLn(OK) after suitable conjugation (see [6], 3). Additionally, Artin
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representations can be viewed as (finite) `-adic representations by fixing an isomorphism of
fields Q`

∼= C.

After fixing an isomorphism Ql
∼−→ C, to any `-adic representation ρ, we can attach an

L-function L(s, ρ) by taking the product of the L-factors Lp(s) = det(1− ρ(Frobp)p−s)−1 over
all primes p:

L(s, ρ) =
∏
p

1
det(1− ρ(Frobp)p−s)

.

Semi-simple `-adic representations are completely determined by their L-functions.

4.2 `-adic Representations in connection with cuspidal eigenforms

Let f ∈ Sk(Γ1(N)) be an eigenform with Nebentypus ε, and denote Kf as the number field
generated by the q-series coefficients an of f in its q-series expansion (Recall that ap for n = p
prime also satisfy Tpf = apf).

Theorem 4. For any prime `, there exists an `-adic representation

ρ` : Gal(Q/Q) −→ GL2(Kf ⊗Q Q`)

such that for any prime p - `N :

1. ρ` is unramified at p;

2. For all choices of Frobp, ρ`(Frobp) has trace equal to ap;

3. Furthermore, ρ`(Frobp) has determinant equal to ε(p)pk−1.

This was first proven for the “classical” case of k = 2, using the Jacobian variety of X1(N)
(this follows from results of Eichler, Shimura, and Igusa [5]). Since X1(4) has genus 0, the
Jacobian J1(4) has dimension 0, i.e. J1(4) = 0, which corresponds to the fact that there are
no weight 2 cusp forms on Γ1(4). Serre conjectured the statement for k > 2 and it was later
proved by Deligne using étale cohomology for the space of forms of weight k on Γ1(N) (see [7]).
The final positive case, k = 1 was presented by Deligne and Serre using results from the higher
weight cases (see [8]).

Note that the Q`-algebra Kf ⊗Q Q` is the product of the completions of Kf at primes lying
over `, hence we have the decomposition

GL2(Kf ⊗Q Q`) =
∏
λ|`

GL2(Kλ).

Thus, we can define λ-adic representations of Gal(Q/Q) by composing an `-adic representation
ρ` with the projection GL2(Kf ⊗Q Q`)→ GL2(Kλ) to get

ρλ : Gal(Q/Q) −→ GL2(Kλ) and ρ` =
⊕
λ|`

ρλ.

We can then consider the λ-adic representation attached to a newform f , which is in fact a
Galois representation over a field.

It is also true that the `-adic representation attached to f whose existence is guaranteed by
the previous theorem is unique. This follows from the fact that for each λ | `, ρλ is simple, thus
ρ` is semi-simple with trace determined by the Fourier coefficients of f (see [28], 2).
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4.3 `-adic representations in connection with Eisenstein series

Although we have mostly discussed the action of operators on cusp forms, they are in fact well-
defined operators on all of Mk(Γ1(4)) (this is due to the fact that the Petersson inner product
mentioned in Section 3.5.1 can be extended to Mk(Γ) × Sk(Γ) −→ C), see Section 3.5 or [10],
5.4). The actions on the entire space extend as follows:

〈d〉f = ε(d)f for gcd(d,N) = 1 and Tpf = cp · f for p - N.

Here, ε is the Nebentypus as usual, but cp are eigenvalues that are not necessarily equal to the
coefficients ap unless f is a normalized eigenform (Eisenstein or cuspidal). If f is an Eisenstein
series, we can construct a representation ρ` on the number field generated by the image of ε
and cp. A classical result of Hecke (see [17], p. 690) tells us that there exist Dirichlet characters
ε1 and ε2 with the property that the product of their conductors divides N such that

ε1 · ε2 = ε and cp = ε1(p) + ε2(p)pk−1,

for all p - N . One can show that ε1 and ε2 have images contained in Kf , thus we can regard
them as characters of Gal(Q/Q) over K ⊗Q Q`. We can then attach to f the (reducible) `-adic
representation

ρ` = ε1 ⊕ ε2χ
k−1
` .

For primes p - `N , ρ` is unramified as ε1, ε2, and χ` are, and the trace and determinant of
ρ`(Frobp) are analogous to the cusp form case:

tr(ρ`(Frobp)) = ε1(p) + ε2(p)pk−1 = cp det(ρ`(Frobp)) = ε(p)pk−1.

With this construction, Theorem 4 holds for all eigenforms.

5 The space Scmk (Γ1(N))

Definition 2. The space of CM cusp forms denoted Scmk (Γ0(N), ε) is the subspace of Sk(Γ0(N), ε)
generated by cusp forms with complex multiplication. The corresponding subspace of CM cusp
forms of Sk(Γ1(N)) is Scmk (Γ1(N)) =

⊕
ε Scmk (Γ0(N), ε).

We will produce eigenforms fK,ψ(r · z) below attached to Hecke characters ψ which also have
complex multiplication. Later, Theorem 6 will imply that such forms are a basis for the space
of CM cusp forms.

5.1 Hecke characters of imaginary quadratic fields

Let K ⊆ C be an imaginary quadratic field of discriminant −d and ring of integers OK . Denote
χK as the quadratic character of conductor d defined in terms of the Kronecker symbol:

χK(p) =
(
−d
p

)
if p is prime and p - 2d

Let t ∈ N and f be a nonzero ideal of OK . An algebraic Hecke character of K of ∞-type t and
of conductor f is a homomorphism

ψ :
{

fractional ideals of K
which are prime to f

}
−→ C× s.t. ψ((α)) = αt if α ∈ K× and α ≡ 1 mod× f,
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where f should be minimal in the following sense: if ψ can be defined modulo f′, then f | f′.
Consider the homomorphism ωψ : Z→ C× such that

ωψ : a 7−→ ψ((a))
at

∀a ∈ Z s.t. a is coprime to f (or Nm(f)).

We call ωψ the character attached to ψ; it is a Dirichlet character mod Nm(f).

5.2 Hecke characters, idelically

Hecke characters can also be viewed as continuous homomorphisms on the idèle group of any
finite extension of Q. More precisely, let K be a number field with ring of integers OK . The
adèles of K are defined as

AK =

 ∏
p⊆OK

Kp

′ × (R⊗Q K) ,

where the first factor is a restricted product: for any element x = (xp)px∞ ∈ AK , for almost all
p, xp ∈ OK,p. We can think of R⊗K as the product of completions of the infinite places, i.e.,

KR = R⊗Q K =
∏
v|∞

Kv.

The idèles of K are then

A×K = {x ∈ AK : for almost all p, |x|p = 1 and for all v, xv 6= 0}.

Automatically, AK has the restricted product topology, i.e. it is induced by the product topology
on the open subgroup

∏
OK,p × KR; however, the idèles have the topology induced from the

map
A×K ↪→ AK × AK , x 7→ (x, x−1).

Note that the image {(x, y) ∈ AK × AK : xy = 1} is closed, and the induced topology makes
A×K locally compact.

An (idelic) algebraic Hecke character of K is a continuous character ψ : A×K → C× which is
trivial on the diagonally embedded K×, and on the (connected component of the origin of the)
Archimedean factor,

t : (K×R )◦ → C×, z 7→
∏

σ:K↪→C
σ(z)t(ψ,σ),

where each t(ψ, σ) ∈ Z.

We have not yet defined the conductor of ψ. Given an integer m ≥ 0 and a finite prime
p ⊂ OK , define Up,m := {u ∈ O×K,p : vp(1 − u) ≥ m}. For an infinite place v | ∞, define Uv
as the connected component of K×v containing the origin. Then the subgroup attached to m, a
modulus m is

Um =
∏
p

Up,m(p) ×
∏

m(v)>0
v

Uv where m =
∏
p

pm(p) ·
∏
v

vm(v),

where only a finite number of m(p) are nonzero. An algebraic character ψ has modulus m if
ψ is trivial on Um. Note that every Hecke character has a modulus since the restriction of ψ
to the finite idéles has open kernel and each Um is also open. The conductor of ψ is then the
minimal modulus.
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For K an imaginary quadratic field, there is only one pair of complex embeddings (σ, σ) and
no real embeddings, thus for an algebraic Hecke character ψ on K, t ∈ Z2. However, when
studying Hecke characters in connection with the theory of classical modular forms, we are only
interested in Hecke characters ψ such that t(σ) = 0. Thus, the map t sends z 7→ zt(σ), and t(σ)
then coincides with the notion of ∞-type in the classical description of Hecke characters.

5.3 Cusp forms attached to Hecke characters

For a Hecke character ψ of conductor f with∞-type t on an imaginary quadratic field K, define
the q-series

fK,ψ(z) =
∑

a integral
coprime to f

ψ(a) · qNm(a) (q = e2πiz, Im(z) > 0) (7)

Theorem 5 (Hecke [17], Shimura [34] & [35]). The q-series fK,ψ(z) is a newform of weight
t+ 1 and level d ·Nm(f) in the space

fK,ψ ∈ St+1(Γ0(d ·Nm(f)), χK · ωψ)) ⊂ St+1(Γ1(d ·Nm(f))).

In addition, distinct cusp forms fK,ψ arise from distinct pairs (K,ψ).

Corollary 5.1. For any positive integer r,

fK,ψ(r · z) =
∑

a

ψ(a) · qr·Nm(a) ∈ St+1(Γ0(N), ε) ⇐⇒ r · d ·Nm(f) | N and χK · ωψ = χ

if ψ has ∞-type t. The second equality takes place while viewing χK , ωψ and χ as characters
on Z. Thus, for all primes p - N , χK(p) · ωψ(p) = χ(p).

Note that the cusp forms fK,ψ(r · z) have CM by χK . (By construction, the coefficient of qp

in the q-series expansion of fK,ψ(r · z) is 0 if no ideal of k has norm equal to p. Since ϕ(p) = −1
exactly when this holds for p, ap = ϕ(p)ap, the result holds.) However, it is not at all obvious
that these are all the cusp forms with complex multiplication in Sk(Γ1(N)). Using the theory
of Galois representations, Ribet proves that a newform f has CM by an imaginary quadratic
field K if and only if it arises from a Hecke character on K (see Theorem 6 below).

5.4 λ-adic representations in connection with CM cusp forms

If f ∈ Sk(Γ0(N), ε) is a newform, there are special properties of the `-adic representation that
depend on whether f has complex multiplication. If Kf denotes the field of eigenvalues of f , let
` be a prime in Q with λ lying over ` in Kf . For all newforms f , recall from the end of Section
4.2 that ρλ is irreducible over Kλ. It is furthermore true that the image of ρλ is not abelian.
(If σ ∈ Gal(Q/Q) denotes complex conjugation, note that ρλ(σ) has eigenvalues ±1, which are
distinct units in Kλ. Let S denote the subgroup of matrices in GL2(Kλ) which commute with
ρλ(σ). Note that S is abelian and diagonalizable, but since ρλ is irreducible, Im(ρλ) is not
contained inside S, so in particular there exists elements in the image which do not commute
with ρλ(σ).)

Additionally, the restriction of a semi-simple representation of a group to a subgroup with
finite index is again semi-simple, thus for any open subgroup H ⊆ Gal(Q/Q), ρλ|H is semi-
simple. Consider the composition of ρλ with the projection GL2(Kλ)� PGL2(Kλ), the quotient
group of GL2(Kλ) by the center K×λ . Then, the image of Gal(Q/Q) inside PGL2(Kλ) can be
shown to have infinite image (see [28], 4.3). Using these observations along with the Cebotarev
Density Theorem, one can deduce the following (see [28]):
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Proposition 1 (Ribet). One of the following is true.

1. For each open subgroup H of Gal(Q/Q), ρλ(H) is irreducible and non-abelian.

2. There exists an open subgroup H2 of index 2 such that for each open subgroup H of
Gal(Q/Q), ρλ(H) is abelian if and only if H ⊆ H2.

If H2 exists, then let K be the fixed field corresponding to H2 ⊂ Gal(Q/Q). K is quadratic and
unramified outside of `N , and f has complex multiplication by the character of K.

Conversely, if f has CM by a character ϕ and K is quadratic field associated to ϕ, then the
image of Gal(Q/K) under ρλ is abelian.

From Theorem 5 and Proposition 1, we can conclude that the space Scmk (Γ1(N)) is generated
by the eigenforms fK,ψ(r · z) with K, ψ and r satisfying the conditions in Corollary 5.1. The
precise statement is as follows.

Theorem 6 (Ribet, see [28]). If there exists an open subgroup H ⊂ Gal(Q/Q) of index 2
such that the image of H under ρλ is abelian, then for all primes λ′ of K, ρλ′(H) is abelian.
Furthermore, the fixed field of H is an imaginary quadratic field which is unramified at all
primes away from N , the level of f . Finally, f is obtained from an algebraic Hecke character
ψ of K as described in Corollary 5.1.

5.5 Proof of Lemma 2

Assume N = 4. First note that there are two Dirichlet characters on (Z/4Z)×, which we will
denote ε+ and ε− depending on where they send the only nontrivial element, −1 mod 4.

ε+ : ±1 7−→ 1 and ε− : ±1 7−→ ±1.

These can also be viewed as maps from Z→ C by sending any even integer to 0. Furthermore,
note that the decomposition of

Sk(Γ1(N)) =
⊕
ε

Sk(Γ0(N), ε)

occurs over all characters modulo N such that ε(−1) = −1 if k is odd and ε(−1) = 1 if k is
even due to (4). Thus,

Sk(Γ1(4)) =

{
Sk(Γ0(4), ε+) if k is even
Sk(Γ0(4), ε−) if k is odd.

Let ε denote the correct Dirichlet character such that Sk(Γ1(4)) = Sk(Γ0(4), ε) depending on
whether k is even or odd. We first want to understand the CM subspace Scmk (Γ0(4), ε). By
definition, the imaginary quadratic field K must have discriminant −d such that d | N , thus
for N = 4, d = 4, i.e. K = Q(i) (By Stickelberger’s theorem, there is no field of discriminant
−2 and d = 1 is associated to the field Q, which is not quadratic.) Note that χK is a nontrivial
Dirichlet character of conductor 4, thus χK = ε−.

Since the discriminant of K is −4, we are left with finding all Hecke characters ψ on K of
conductor 1 such that ψ = ε+ if the∞-type t of ψ is even, and ψ = ε− if t is odd. By definition,
if α ∈ K× then since (α) = (uα) for all u ∈ O×K ,

ψ((α)) = αt = (uα)t = ψ((uα)).
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Since O×K = 〈i〉, we can conclude that 4 | t, since if u = ±i, it = 1 if and only if t ≡ 0 mod 4. In
particular, there are no Hecke characters of odd ∞-type, hence Scmk (Γ0(4), ε) is trivial for even
k. In addition, Scmk (Γ0(4), ε) can only be non-trivial when k ≡ 1 (mod 4) and k > 1.

We now prove that there is a unique Hecke character with the properties described above for
each ∞-type t ∈ Z such that 4 | t. Let t be fixed such that t ≡ 0 (mod 4). Then χK · ωψ = ε−
for any ψ, hence the attached character ωψ must be trivial, or abusing notation, ωψ = ε+. Thus,
since OK = Z[i] is a PID, the algebraic Hecke characters on K are exactly those defined as

ψt : (α) 7−→ αt ∀α ∈ K× where t ∈ Z and 4 | t.

Thus, using Theorem 5, we conclude that the dimension of Scmk (Γ0(4), ε) ⊆ Sk(Γ1(4)) is 1 if
k ≡ 1 mod 4 and k ≥ 5 and is 0 otherwise.

6 Construction of bases for Ek(Γ1(4))⊕ Scmk (Γ1(4))

We describe how to construct “natural” generators for the space of elementary modular forms
on Γ1(4). We use the fact that each form can be decomposed into its Eisenstein and cuspidal
part, thus we treat the Eisenstein and CM cuspidal space separately.

6.1 Spaces of Eisenstein series

Suppose ε1 and ε2 are primitive Dirichlet characters modulo N1 and N2, and let Kε1,ε2 be the
number field containing their image. For positive k, denote the holomorphic function on H

Eε1,ε2k (z) = a0 +
∑
m≥1

∑
d|m

ε1(d) · ε2(m/d) · dk−1

 qm ∈ Kε1,ε2 [[q]], q = e2πiz

where d ranges over positive divisors, and a0 is defined below. This q-series arises from (cor-
rectly) normalizing and rewriting the summation

Gε1,ε2k (z) =
∑

nonzero

(m1,m2)∈Z2

ε1(m1)ε2(m2)
(m1z +m2)k

.

The value of a0 is nonzero only when ε1 = 1N1 , and it is related to the value of the Dirichlet
L-function at L(1−k, ε2). Explicitly, we can write a0 in terms of generalized Bernoulli numbers
attached to a character ε of conductor N . These are defined by satisfying the following identity
of infinite series:

N∑
j=1

ε(j) · x · ejx

eNx − 1
=
∞∑
m=0

Bε
k ·
xm

m!
.

When ε1 is the trivial character, a0 = −
Bε2
k

2k
; otherwise, as noted above a0 = 0 (see [41]). We

then have the following description if Eisenstein eigenforms (see [25], Ch. 7 or [41], 5.3).

Theorem 7. Let ε1 and ε2 be primitive of conductors N1 and N2 and let k and t be positive
integers.

1. Suppose k 6= 2. Then the q-series Eε1,ε2k (qt) is a modular form of weight k on Γ1(N1N2t).
Furthermore, it has Nebentypus ε = ε1 · ε2.
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2. Furthermore, when k 6= 2, the set of Eisenstein series Eε1,ε2k such that ε1 · ε2 = ε and
N1N2t | N form a basis for the Eisenstein eigenspace Ek(Γ0(N), ε). Furthermore, they are
(normalized) eigenforms.

3. When k = 2, E2(q) = E1,1
2 (q) − tE1,1

2 (qt) is a (normalized) eigenform of weight 2 in
M2(Γ1(t)) of trivial Nebentypus.

The action of Hecke operators on these eigenforms can thus be written explicitly (see [41],
5.3). As usual, the eigenvalue of Tp is the coefficient of qp:

Tp E
ε1,ε2(s)
k =


(ε1(p) + ε2(p)pk−1) · Eε1,ε2k (q) if k 6= 2,
(1 + p) · E2(q) if k = 2 and p - t
1 · E2(q) if k = 2 and p | t.

6.2 Eisenstein series via Galois representations

Assume that k ≥ 3. We can produce the same basis for this space Ek(Γ1(4)) as above using an
analogous approach to the construction of cusp forms involving Galois representations.

Case 1. First, assume the weight k is even. Lemma 1 implies that the dimension of the space
Ek(Γ1(4)) is 3 when k > 2. Recall from Section 5.5 that there are two Dirichlet characters with
conductor dividing 4, the trivial character ε+ = 14 with image {1}, and ε− = χ4 which sends
±1 mod 4 7→ ±1. From 4, we know that

Ek(Γ1(4)) = Ek(Γ0(4), 14)

since Ek(Γ0(4), χ4) is trivial when k is even. Thus, we want to produce three linearly independent
Eisenstein series of trivial Nebentypus.

Let ` be a prime. For f ∈ Ek(Γ1(4)), recall from Section 4.3 that the 2-dimensional reducible `-
adic representation will have the form ρl = ε1⊕ε2χ

k−1
` , where the Dirichlet characters ε1·ε2 = 14.

Since f must have level 4, both characters are trivial (since there are no primitive characters of
conductor 2). Thus, consider the `-adic representation

ρ = 1⊕ χk−1
` : Gal(Q/Q) −→ GL2(Q`).

The L-series attached to this representation is

L(s, 1⊕ χk−1
` ) =

∏
p

1
1− p−s

·
∏
p

1
1− pk−1p−s

=
∑
m1≥1

1
ms

1

·
∑
m2≥1

mk−1
2

ms
2

=
∑

m1,m2≥1

 ∑
d|m1m2

dk−1

 1
m1ms

2

=
∑
m≥1

∑
d|m

dk−1

 1
ms

.

Applying an inverse Mellin Transform gives us the q-series
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E(z) = a0 +
∑
m≥1

∑
d|m

dk−1

 qm. (8)

In order to calculate a0, we consider the functional equation of L(s, ρ). Since the level N = 4,
let

Λ(s, ρ) = π−sΓ(s)L(s, ρ),

where Γ(s) denotes the usual gamma function. If Λ(s) = π−s/2Γ(s/2)ζ(s), then Λ(s, ρ) satisfies
the following functional equation:

Λ(s)Λ(s− k + 1) =
2πk/2

µ(s)
Λ(s, ρ), where µ(s) =

(
s− k + 1

2

)(
s− k + 1

2
+ 1
)
...

(
s− 1

2

)
,

(see [25], 4.7). Thus, Λ(s, ρ) is holomorphic for all s except s = 0 and k. At s = 0, one can
calculate that it has residue −a0 = −ζ(1− k)/2, in terms of the Riemann zeta function. Thus,

a0 = −Bk
2k

where Bk = B1
k is the kth Bernoulli number associated to the trivial character as defined in

Section 6.1.

From Weil’s converse of Theorem 3, E(z) lies inside Ek(SL2(Z)) ⊆ Ek(Γ1(4)) since the con-
ductor of the trivial character is 1 (see Section 3.8, [25], §4.7, and [23], Ch. 9). However, this
implies that the q-series E(q2) and E(q4) are also in Ek(Γ1(4)), and furthermore, they are clearly
linearly independent. These are all eigenforms, and since the dimension of Ek(Γ1(4)) is three,
B = {E(q), E(q2), E(q4)} is a basis.

Case 2. Now assume k is odd. Here, Lemma 1 implies that the dimension of the space Ek(Γ1(4))
is 2 for k > 1. Furthermore, Ek(Γ1(4)) = Ek(Γ0(4), χ4) since now 14(−1) = 1 6= (−1)k, making
Ek(Γ0(4), 14) trivial by (4). Thus, we want to produce 2 linearly independent Eisenstein series
with Nebentypus χ4.

As above, let ` be a prime. An Eisenstein series f with the above properties will have an
`-adic representation ε1 ⊕ ε2χ

k−1
` where ε1 · ε2 = χ4, thus one of the two characters must be

χ4 while the other must be trivial. This gives two possible 2-dimensional reducible Galois
representations

ρ1 := χ4 ⊕ χk−1
` : Gal(Q/Q) −→ GL2(Q`),

ρ2 := 1⊕ χ4χ
k−1
` : Gal(Q/Q) −→ GL2(Q`).

The L-series attached to these representations are

L(s, ρ1) =
∏
p

1
1− χ4(p)p−s

·
∏
p

1
1− pk−1

p−s

=
∑
m1≥1

χ4(m1)
ms

1

·
∑
m2≥1

mk−1
2

ms
2

=
∑

m1,m2≥1

 ∑
d|m1m2

χ4

(m1m2

d

)
dk−1

 1
m1ms

2

=
∑
m≥1

∑
d|m

χ4

(m
d

)
dk−1

 1
ms

,
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L(s, ρ2) =
∏
p

1
1− p−s

·
∏
p

1
1− χ4(p)pk−1p−s

=
∑
m1≥1

1
ms

1

·
∑
m2≥1

χ4(m2)mk−1
2

ms
2

=
∑

m1,m2≥1

 ∑
d|m1m2

χ4(d)dk−1

 1
m1ms

2

=
∑
m≥1

∑
d|m

χ4(d)dk−1

 1
ms

.

Applying an inverse Mellin Transform to the above L-functions produces two q-series

E1(q) = a0,1 +
∑
m≥1

∑
d|m

χ4

(m
d

)
dk−1

 qm, (9)

E2(q) = a0,2 +
∑
m≥1

∑
d|m

χ4(d)dk−1

 qm. (10)

As in the previous case, we calculate a0,1 and a0,2 by considering the functional equations for
L(s, ρ1) and L(s, ρ2). As before, let Λ(s, ρi) = π−sΓ(s)L(s, ρi) for i ∈ {1, 2}. If Λ(s, χ4) =(
π
4

)−s/2 Γ( s+1
2 )L(s, χ4) and again Λ(s) = π−s/2Γ( s2)ζ(s), then Λ(s, ρi) satisfy the following

functional equations:

Λ(s, χ4)Λ(s− k + 1) =
2πk/2

µ1(s)
Λ(s, ρ1), and Λ(s)Λ(s− k + 1, χ4) =

22−kπk/2

µ2(s)
Λ(s, ρ2),

where µ1(s) =
(
s−k+1

2

) (
s−k+1

2 + 1
)
...
(
s
2 − 1

)
and µ2(s) =

(
s−k

2 + 1
) (

s−k
2 + 2

)
...
(
s−1

2

)
(see

[25], 4.7). Both Λ(s, ρi) are holomorphic for all s except s = 0 and k. At s = 0, one can
calculate that Λ(s, ρ1) has residue −a0,1 = −L(1− k, χ4)/2, in terms of the L-series associated
to the Dirichlet character χ4, and Λ(s, ρ2) = −ζ(1− k)/2 = 0 has residue −a0,2 = 0. Thus,

a0,1 = −
Bχ4

k

2k
, and a0,2 = 0.

From Theorem 3 and its converse, both E1(q) and E2(q) are distinct eigenforms on Γ1(4) of
weight k, hence the two series are linearly independent (see Section 3.8, [25], §4.7, and [23], Ch.
9). By construction, E1(q), E2(q) ∈ Ek(Γ1(4)), thus we can take B = {E1(q), E2(q)} as a basis
for the Eisenstein space.

Remarks. The cases for k = 1 and k = 2 have not been discussed here. Those are treated in
Section 8 while finding elementary formulas for θ2 and θ4.

One can easily see that the Eisenstein series produced here coincide exactly with those in the
previous section.

6.3 CM cusp forms via L-functions of Hecke characters

Although Theorem 5 gives the q-expansion of the CM cusp form on Γ1(4), we give an alternative
construction which demonstrates the relationship to (potentially abelian) Galois representations
(see [13]).

31



By Lemma 2, Scmk (Γ1(4)) is nontrivial if and only if k ≡ 1 (mod 4) and k > 1. Restrict
ourselves to such k, and note that the dimension of the CM subspace is equal to 1 (we showed
this by proving there exists exactly one Hecke character satisfying the requirements of Corollary
5.1). Let ψ denote the algebraic Hecke character unramified away from 2 on K = Q(i) with
∞-type k−1. Viewing it idelically, ψ acts on C× by sending z 7→ z−k+1, and on primes π ∈ OK ,
ψ sends π 7→ πk−1. The L-series attached to this character is

L(s, ψ) =
(

1 + (1 + i)k−12−s
)−1 ∏

p≡3 mod 4

1
1− pk−1p−2s

∏
p≡1 mod 4

1
(1− πk−1p−s)

(
1− πk−1p−s

)
=

1
4

∑
m≥1

 ∑
d∈Z[i]

Nm(d)=m

dk−1

 1
ms

.

Applying an inverse Mellin transform as described in Section 3.8 gives the normalized q-series

C(q) =
1
4

∑
m≥1

 ∑
d∈Z[i]

Nm(d)=m

dk−1

 qm (11)

= q + (−4)
k−1
4 q2 + 2k−1q4 + ...

By Theorem 3, this is a cusp form on Γ1(4) of weight k, and by construction, it has complex
multiplication by the Dirichlet character χ4 attached to Q(i). Thus C(q) ∈ Scmk (Γ1(4)) and in
fact, generates the space.
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7 Proof of Theorem 1

We want to prove that θn is elementary, i.e. θn ∈ En/2(Γ1(4)) ⊕ Scmn/2(Γ1(4)) if and only if
n = 2, 4, 6, 8, and 10. Lemma 1 implies that for n = 2, 4, 6, 8, θn is a linear combination of
Eisenstein series since there are no cusp forms on Γ1(4) of weight k ≤ 4. Furthermore, Lemma
2 implies that the “first” CM cusp form on Γ1(4) is of weight 5, and in fact, combining the two
lemmas implies that S5(Γ1(4)) = Scm5 (Γ1(4)), thus θ10 must be elementary as well. It remains
to show that for even n > 10, θn is not elementary, i.e. one must calculate the coefficients of a
non-CM cusp form in order to calculate the representation of integers by sums of n squares.

First assume that n ≡ 0 (mod 4), i.e. θn as a modular form has even weight k = n
2 . By

Lemma 2, there are no CM cusp forms, so consider the previously constructed basis B of
Eisenstein series from (8) for Ek(Γ1(4))

E(q) = a0 +
∑
m≥1

∑
d|m

dn/2−1

 qm

E(q2) = a0 +
∑
m≥1

∑
d|m

2

dn/2−1

 qm

E(q4) = a0 +
∑
m≥1

∑
d|m

4

dn/2−1

 qm

If θn ∈ Ek(Γ1(4)), then it can be written as a linear combination of the above series. Consider
the determinant of the matrix of coefficients of the 4 q-series:

det(M) =

2n 4
(
n
2

)
8
(
n
3

)
16
(
n
4

)
+ 2n (coefficients of θn)

1 1 + 2n/2−1 1 + 3n/2−1 1 + 2n/2−1 + 4n/2−1 (coefficients of E(q))
0 1 0 1 + 2n/2−1 (coefficients of E(q2))
0 0 0 1 (coefficients of E(q4))

The determinant of M is zero if and only if there is a linear dependence amongst the coefficients,
i.e. if the coefficients of q, q2, q3, and q4 of θn can be written in terms of coefficients of the
forms in B. Solving for the determinant gives

det(M) = −
(

2n ·
(

1 + 3
n
2
−1
)
− 8
(
n

3

))
= −2n− 2n · 3

n
2
−1 + 8

n(n− 1)(n− 2)
6

Note that the negative exponential term takes over the growth of the function, and for n > 8,
det(M) as a function on n is monotonically decreasing. The determinant is 0 when n = 4, 8,
thus det(M) is nonzero for all n > 8, i.e. θn /∈ En/2(Γ1(4)) for n ≡ 0 (mod 4). By Lemma 1,
this implies that θn is not elementary for n > 8, n ≡ 0 (mod 4).

Now assume n ≡ 2 (mod 4). First note that when n ≡ 6 (mod 8), θn has odd weight,
but there is no CM subspace of Mn/2(Γ1(4)) since n

2 ≡ 3 mod 4. Thus, we first check that
θn /∈ En/2(Γ1(4)) for all n ≡ 2 mod 4 and n > 6, which will reduce the problem to whether there
is a contribution by a CM cusp form when n ≡ 2 mod 8.

When k = n/2 is odd, En/2(Γ1(4)) has a basis of eigenforms from (9) and (10)

E1(q) = a0,1 +
∑
m≥1

∑
d|m

χ4

(m
d

)
dn/2−1

 qm, E2(q) = a0,2 +
∑
m≥1

∑
d|m

χ4(d)dn/2−1

 qm
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To show θn /∈ En/2(Γ1(4)), we check if the following matrix of coefficients for q, q2, and q3 has
non-zero determinant:

det(N) =
2n 4

(
n
2

)
8
(
n
3

)
(coefficients of θn)

1 2n/2−1 −1 + 3n/2−1 (coefficients of E1(q))
1 1 1− 3n/2−1 (coefficients of E2(q))

Solving for the determinant,

det(N) = 2n
(

2n/2−1+
)(

1− 3n/2−1
)
− 8
(
n

2

)(
1− 3n/2−1

)
+ 8
(
n

3

)(
−2n/2−1

)
=

(
−4n2 + 6n

)
+ 2n/2−1 ·

(
−4

3
n3 + 4n2 − 2

3
n

)
+ 3n/2−1 ·

(
4n2 − 6n

)
+ 6n/2−1 · (−2n)

Note that for n > 6, the positive portion of det(N) is 6n+ 4n2 · 2n/2−1 + 4n2 · 3n/2−1. However,
viewing this as a function on n, the growth of −2n · 6n/2−1 is much faster, hence det(N) is
monotonically decreasing. For n = 6, det(N) = 0, thus since n = 10 gives negative determinant,
monotonicity implies that det(N) < 0 for all n > 6. We conclude that for n ≡ 2 mod 4 and
n > 6, θn is not a linear combination of Eisenstein series. By Lemma 2, this implies that for all
positive n ≡ 6 mod 8 except n = 6, θn is not elementary.

Thus, θn can be elementary only when n ≡ 2 mod 8. Since the weight n
2 ≡ 1 mod 4, the

space Scmn/2(Γ1(4)) is nontrivial. It is generated by the newform attached to the Hecke character
of Q(i) of ∞-type n

2 − 1 (see (11))

C(q) =
1
4

∑
m≥1

 ∑
d∈Z[i]

Nm(d)=m

d
n
2
−1

 qm

= q + (−4)
n−2

8 q2 + 2
n−2

2 q4 + ...

Thus, θn is not elementary if the determinant of the matrix of coefficients for q, q2, q3 and
q4,

det(N ′) =

2n 4
(
n
2

)
8
(
n
3

)
16
(
n
4

)
+ 2n (coefficients of θn)

1 2n/2−1 −1 + 3n/2−1 4n/2−1 (coefficients of E1(q))
1 1 1− 3n/2−1 1 (coefficients of E2(q))
1 (−4)

n−2
8 0 2

n−2
2 (coefficients of C(q))

has non-zero determinant.

A straightforward calculation demonstrates the fact that det(N ′) as a function on n is mono-
tonically decreasing with growth on the order of O(12n/2−1). For n = 10, det(N ′) = 0, but for
n = 18, det(N ′) = −439, 038, 812, 160. Thus, we can conclude that det(N ′) is nonzero for all
n > 10 such that n ≡ 2 mod 8. This proves the theorem.

7.1 Another proof.

We provide another proof which makes use of the constants of the Eisenstein series and is
motivated by the following lemma.

Lemma 3. For any f ∈ Scmk (Γ1(4)) with k > 1, Tp(f) = 0 for any prime p ≡ 3 (mod 4).
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Proof. Recall that Theorem 6 and Corollary 5.1 tells us that when k ≡ 1 (mod 4), Scmk (Γ1(4))
is generated over C by forms fQ(i),ψ(z) defined by (7). In order for fQ(i),ψ(z) to have CM by
the quadratic character χQ(i), note that ap = 0 for all inert primes p, thus for any prime p ≡ 3
(mod 4), Tp(f) must necessarily vanish.

Thus, if we show that the cuspidal part of θn which vanishes on all three cusps of Γ1(4)
has nonzero coefficient of qp such that p ≡ 3 (mod 4), then θn is not elementary. Since θn ∈
Mn/2(Γ1(4)) = En/2(Γ1(4)) ⊕ Sn/2(Γ1(4)), write θn as a linear combination of an Eisenstein
series and cusp form, i.e. θn(z) = fn/2(z) + sn/2(z).

Lemma 4. If sn/2(z) denotes the cuspidal part of θn(z), then a3(sn/2) 6= 0 if n > 10.

Proof. The fundamental facts we use are formulas for the odd coefficients of Fourier expansions
for the Eisenstein part

fn/2(z) = 1 +
∞∑
m=1

bmq
m ∈ En/2(Γ1(4))

due to Siegel (see [39]) and Shimura (see [38] and [37]). Let Ek denote the kth Euler number
and Bj denote the jth Bernoulli number, which are defined by the following identities

2
et + e−t

=
∞∑
k=0

Ek
tk

k!
, and

t

et − 1
=
∞∑
j=0

Bj
tj

j!
.

The magnitudes of these numbers are related to values of L-series associated to the primitive
Dirichlet characters of conductor 1 and 4:

Bj =
2 · j!

(2πi)j
· ζ(j) if j > 0 even, and

Ek =
22k+3 · k!
(2πi)k+1

· L(k + 1, χ4) if k > 0 even,

where we let χ4 denote the Dirichlet character of conductor 4 as usual. For odd m, the coeffi-
cients of the Eisenstein series fn/2 are

bm =


4

|En/2−1|
·
(
χ4(m) · 2n/2−1 + χ4

(n
2

))
·
∑
d|m

χ4(d)dn/2−1 if n ≡ 2 (mod 4) and n > 2

n

(2n/2 − 1)|Bn/2|
·
∑
d|m

dn/2−1 if n ≡ 0 (mod 4)

From (2), recall that rn(3) = 8
(
n
3

)
= 4n(n−1)(n−2)

3 . We can calculate the third coefficient of the
q-series expansion of sn/2(z) = θn(z)− fn/2(z) using this equality:

sn/2(z) =
∞∑
m=1

amq
m =

∞∑
m=0

rn(m)qm −
∞∑
m=0

bmq
m ∈ Sn/2(Γ1(4).

Thus, taking the difference of b3 and rn(3) gives the coefficients of sn/2(z) :

a3 =


4n(n− 1)(n− 2)

3
+
(

4
|En/2−1|

)
·
(

2n/2−1 − χ4

(n
2

))
·
(

1− 3n/2−1
)

if n ≡ 2 (mod 4)

4n(n− 1)(n− 2)
3

+
(

n

|Bn/2|

)
·

(
1 + 3n/2−1

1− 2n/2−1

)
if n ≡ 0 (mod 4)
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In particular, we notice that if a3 is viewed as a function on n, it can have at most six zeroes.
(This is due to the fact that the values of |Bj | and |Ek| for even j, k have bounds (see [20]),

4

√
πj

2

(
j

2πe

)j
< |Bj | < 5

√
πj

2

(
j

2πe

)j
, and 8

√
k

2π

(
2k
πe

)k
< |Ek|.

Some asymptotic calculations then demonstrate that a3 is monotonically increasing for n > 18
and 20.)

Four of these zeroes occur when n = 4, 6, 8, 10, and calculating the values of a3 for n =
12, 14, 16, 18 as seen in the table below along with the monotonicity show that no other zeroes
occur.

n b3 rn(3) a3 = rn(3)− b3

4 32 32 0
6 160 160 0
8 448 448 0
10 960 960 0
12 1952 1760 -192
14 189280/61 2912 -11648/61
16 70016/17 4480 6144/17
18 1338240/277 6528 470016/277
20 157472/31 9128 125248/31

Thus, the cuspidal part of θn has a nonzero coefficient for q3 in the Fourier expansion. From
Section 3.4, the first q-series coefficient of T3(sn/2) is a3 which is nonzero for n > 10.

We have shown that the cuspidal part of θn does not lie in the CM subspace of Sn/2(Γ1(4))
for n > 10, hence θn cannot be elementary for these cases. Theorem 1 then follows from the
above two lemmas once we show that θn is elementary for n = 2, 4, 6, 8, 10. Note that this proof
does not rely on the dimension arguments of Lemmas 1 and 2.
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8 Elementary formulas for small n

We produce the classical nice formulas for n = 2, 4, 6, 8, and 10 in the manner analogous to the
constructions in the proof of Theorem 1. These are originally due to Jacobi (n = 2, 4, 6, 8) and
Liouville (n = 10).

8.1 Sum of 2 squares

By Lemma 1, we know that the dimension over C of weight 1 modular forms on Γ1(4) is 1, and
the basis element is Eisenstein. We produce this generator by considering the 2-dimensional
reducible Galois representation unramified away from 2. To have the correct trace and deter-
minant, as described by Section 4.3, consider the representation

ρ = 1⊕ χ4 : Gal(Q/Q)→ GL2(Ql)

where χ4 as usual can be viewed as the Dirichlet character (Z/4Z)× → C× extended to a
map (Z/4Z) → C by mapping 0, 2 7→ 0. Note that this is the same representation as in the
construction of basis elements during the proof of Theorem 1 since here, n2 −1 = 0. The L-series
attached to this Galois representation is

L(s, ρ) = L(s, 1) · L(s, χ4) =
∏
p

1
(1− p−s)

∏
p

1
(1− χ4(p)p−s)

=
∑
m1≥1

1
ms

1

∑
m2≥1

χ4(m2)
ms

2

=
∑
m≥1

∑
d|m

χ4(d)

 1
ms

.

Applying the inverse Mellin transform gives the q-seriesG(q) = a0,G+
∑

m≥1

(∑
d|m χ4(d)

)
qm,

analogous to the construction in the proof of the theorem. Theorem 3 and Lemma 1 imply that
M1(Γ1(4)) = C · G(q), thus we can write θ2(q) = a · G(q) where a ∈ C. Calculating the first
few r2(m) thengives us

θ2(q) = 1 +
∞∑
m=1

4

∑
d|m

χ4(d)

 qm. (12)

8.2 Sum of 4 squares

When n = 4, the dimension of M2(Γ1(4)) = E2(Γ1(4)) is 2 by Lemma 1. We produce a
2-dimension reducible Galois representation of conductor 1 where the two characters have ∞-
type 0 and 1 respectively and is unramified at 2. Analogous to the situation for n ≡ 0 mod 4
but n > 8, consider the system of `-adic representations 1 ⊕ χ` : Gal(Q/Q) → GL2(Q`) where
χ` as usual denotes the `-adic cyclotomic character. Note however that the L-function attached
to χ` originally has a contribution from the prime 2. Under an inverse Mellin tranform, the
Galois representation has conductor 1, hence L(s, 1⊕χ`) would give a modular form of weight 2
on SL2(Z), which does not exist. A priori, we know there exist modular forms of weight 2 with
level 2, hence, we “correct” the L-function to have no contribution from the prime 2, which
increases the conductor to 2. (This construction is equivalent to the special case of Theorem 7
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for Eisenstein series of weight 2. Thus, the L-series we attach to this representation is

L∗(s, 1⊕ χ`) =
∏
p

1
1− p−s

·
∏
p>2

1
1− p1−s =

∑
m1≥1

1
ms

1

·
∑
m2 odd

m2≥1

m2

ms
2

=
∑
m≥1

∑
d odd

d|m

d

 1
ms

.

Mellin transform results in the following q-series and its “square”

G′(q) = a0,G′ +
∑
m≥1

∑
d odd

d|m

d

 qm, G′(q2) = a0,G′ +
∑
m≥1

∑
d odd

d|m

d

 q2m.

Note that G′(q) ∈ M2(Γ1(2)) ⊆ M2(Γ1(4)) thus, G′(q2) ∈ M2(Γ1(4)) and {G′(q), G′(q2)}
forms a basis for this space. We write θ4(q) = a · G′(q) + b · G′(q2) and solve for the complex
constants in order to produce a formula consisting of a linear combination of Eisenstein series.
Calculating the first few r4(m) and the first few coefficients of the two Eisenstein series, we
conclude that a = 8 and b = 16, thus

θ4(q) = 1 +
∞∑
m=1

8

∑
d odd

d|m

d

+ 16

∑
d odd

d|m
2

d


 qm. (13)

8.3 Sum of 6 Squares

When n = 6, we note that the determinant of the matrix N is zero, hence there is a linear
dependence between the element θ6(q) and the basis B = {E1(q), E2(q)} from (9) and (10)
of the space M3(Γ1(4)) (by Lemma 1, the space of cusp forms is trivial). Thus, we solve for
constants a, b ∈ C in the equation

θ6(q) = a · E1(q) + b · E2(q).

The first few coefficients force a = 16 and b = −4, hence we can conclude that

θ6(q) = 1 +
∞∑
m=1

16

∑
d|m

χ
(m
d

)
d2

− 4

∑
d|m

χ(d)d2

 qm. (14)

8.4 Sum of 8 Squares

When n = 8, θ8(q) ∈M4(Γ1(4)) and from the proof of Theorem 1, we have constructed a basis
B = {E(q), E(q2), E(q4)} from (8) for this space. Thus, there exist constants a, b, c ∈ C such
that

θ8(q) = a · E(q) + b · E(q2) + c · E(q4).

Comparing the first few coefficients of each of these q-series, we find that a = 16, b = −32, and
c = 256, thus we can conclude that

θ8(q) = 1 +
∞∑
m=1

16

∑
d|m

d3

− 32

∑
d|m

2

d3

+ 256

∑
d|m

4

d3

 qm. (15)
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8.5 Sum of 10 Squares

Finally when n = 10, there is a non-trivial subspace of cusp forms equal to Scm5 (Γ1(4)). By the
construction in the proof of Theorem 1 for the case of n ≡ 2 mod 8 but n > 10, we claim that
there exist constants a, b, c ∈ C such that

θ10(q) = a · E1(q) + b · E2(q) + c · C(q)

using (9), (10), and (11) since θ10(q) ∈ M5(Γ1(4)). Using the matrix of coefficients, we find
that a = 4

5 , b = 64
5 , and c = 32

5 , hence

θ10(q) = 1 +
∞∑
m=1

4
5

∑
d|m

χ(d)d4

+
64
5

∑
d|m

χ
(m
d

)
d4

+
8
5

 ∑
d∈Z[i]

Nm(d)=m

d4


 qm. (16)
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9 Motivation for definition of “elementary” modular forms

The motivation behind the definition of an “elementary formula” is computational: an elemen-
tary modular form should have Fourier coefficients which can be computed in a straightforward
manner in polynomial time in log(m) (for the coefficient of qm). One can broaden this by as-
suming factorization of m while calculating the coefficient of qm as is the case for small n, where
the set of divisors of m was needed to calculate rn(m). We have provided the nice formulas for
the exceptional cases of elementary θn, and these give way for efficiently computing rn(m) for
n = 2, 4, 6, 8, and 10 (factorization of m is necessary). To demonstrate that modular forms on
Γ1(4) that involve a non-CM cusp form are not “nice”, we consider the case of n = 12.

9.1 n = 12

Note that the subspace of M6(Γ1(4)) consisting of Eisenstein series has dimension 3 and the
subspace of cusp forms has dimension 1 by Lemma 1. Furthermore, by Lemma 2, Scm6 (Γ1(4))
is trivial, and we can in fact use a well-known cusp form for the basis:

√
∆(2z) = η12(2z) := q

∞∏
n=1

(1− q2n)12 = q
[
1− 12q2 + 54q4 − 88q6 − 99q8 + ...

]
η(2z) is a cusp form on Γ1(2) of weight 1/2, hence

√
∆(2z) ∈M6(Γ1(4)) and it is clearly a cusp

form but does not have complex multiplication.

From above and (8), take {E(q), E(q2), E(q4),
√

∆(q2)} as a basis for M6(Γ1(4)). We then
calculate the constants a, b, c, d ∈ C such that

θ12(q) = a · E(q) + b · E(q2) + c · E(q4) + d ·
√

∆(q2).

Note that by Theorem 1, c3 must be nonzero. Using the first few coefficients of the q-series in
the basis,

E(q) = a0 + q + 33 · q2 + 244 · q3 + 1057 · q4 + ...

E(q2) = a0 + q2 + 33 · q4 + ...

E(q4) = a0 + q4 + ...√
∆(q2) = q − 12 · q3 + ...

Since we know that the first few coefficients r12(m) are

θ12(q) = 1 + 24 · q + 264 · q2 + 1760 · q3 + 7944 · q4 + ...,

thus a = 8, b = 0, and c = −512, d = 16.

Here, we can conclude that it is necessary to calculate the coefficients of η12 in order to
calculate θ12(n). Furthermore, the converse is true.

From Serre’s point of view, η12 is not lacunary, thus not only is η12 not a CM cusp form,
it also has a positive density of non-zero coefficients in its q-series (see [33]). The formulas for
n = 2, 4, 6, 8, and 10 illustrate that rn(m) can be calculated efficiently if the prime factorization
of m is known (thus for primes p,rn(p) can be computed easily). In the case of n = 12, this
is not enough information as there is no analogous description of the coefficients of η12(2z) in
terms of divisors.

Remark. Recently, Bas Edixhoven, Jean-Marc Couveignes, and Robin de Jong have proven
that if f =

∑
anq

n is a modular form on SL2(Z), then the coefficients ap for p prime can be

40



calculated in time polynomial in the weight k and log(p) (assuming GRH). This implies that the
prime Fourier coefficients τ(p) of ∆ can be calculated in polynomial time with respect to log(p).
Furthermore, Peter Bruin in his forthcoming PhD thesis [4] will give a probabilistic algorithm
in time polynomial to k and log(p) which under the assumption of GRH, computes the Fourier
coefficient of qp of eigenforms of level 2N where N is squarefree. This includes calculating
rn(m) for all even n as discussed here, whether or not θn has an elementary formula or not.
In particular, showing that θn is not elementary, and therefore does not have a nice formula,
outside of the small finite set n ∈ {2, 4, 6, 8, 10} demonstrates the usefulness and necessity for
such an algorithm. Other than understanding classical arithmetic functions, these results are
useful in computing eigenvalues of Hecke operators or equivalently, coefficients of eigenforms
(see [12]).
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