M.A. Lopuhaä

Field Topologies on Algebraic Extensions of Finite Fields

Bachelorscriptie, 24 juni 2011
Scriptiebegeleiders: dr. K.P. Hart, prof.dr. H.W. Lenstra

Mathematisch Instituut, Universiteit Leiden
Contents

1 Introduction 1

2 Approximations of local bases 3
 2.1 Definitions 3
 2.2 Expanding approximations 4
 2.3 Making topologies 5

3 Topologies with continuous automorphisms 9
 3.1 Definition and basic properties 9
 3.2 Expanding approximations 10

4 A field topology with nontrivial subfield topologies 13

Bibliography 14
Chapter 1

Introduction

Definition 1.1.1. Let K be a field, and \mathcal{T} a topology on K. We call \mathcal{T} a field topology if the maps

\begin{align*}
K \times K &\to K : (x, y) \mapsto x + y, \\
K \times K &\to K : (x, y) \mapsto x \cdot y, \\
K^* &\to K^* : x \mapsto x^{-1},
\end{align*}

are continuous, in which $K \times K$ is given the product topology and K^* the subspace topology.

In this thesis, we will be using methods developed by Podewski [1] to prove that any infinite countable field F admits exactly $2^{2^{\aleph_0}}$ field topologies. In the case of an algebraic closure of a finite field \mathbb{F}_q, we can ensure that all automorphisms are continuous with respect to these topologies. Furthermore, we will show that there exists a field topology on this algebraic closure such that the subspace topology on every infinite subfield is neither discrete nor antidiscrete. This raises the question whether such a topology exists such that all automorphisms are continuous as well.
CHAPTER 1. INTRODUCTION
Chapter 2

Approximations of local bases

This section largely reviews material from [1].

2.1 Definitions

Definition 2.1.1. Let K be a countably infinite field. Consider the following functions:

- $\zeta : \mathcal{P}(K) \to \mathcal{P}(K) : X \mapsto X - X = \{x - y : x, y \in X\}$;
- $\eta : \mathcal{P}(K) \to \mathcal{P}(K) : X \mapsto X \cdot X$;
- $\theta : \mathcal{P}(K) \to \mathcal{P}(K) : X \mapsto \frac{X}{X \setminus \{1\}}$;
- $\xi_A : \mathcal{P}(K) \to \mathcal{P}(K) : X \mapsto A \cdot X$, one for every $A \subset K^*$.

A family in K is a subset A of $[K]^{<\omega}$ such that every $a \in K$ is in some $A \in A$, and for all $A, B \in A$, the sets $A \cup B, \xi_B(A)$ and $\phi(A)$ are also in K, for all $\phi \in \{\zeta, \eta, \theta\}$. Given a family A in K, as A is countably infinite, we can choose a sequence $(\phi_n)_{n \in \omega}$ in $\{\zeta, \eta, \theta\} \cup \{\xi_A : A \in A\}$ such that every element occurs infinitely often (we employ the set-theoretic notation $\omega = \mathbb{Z}_{\geq 0}$). Occasionally, we will extend ϕ_n to a function $\phi_n : \mathcal{P}(K(X_1, \ldots, X_l)) \to \mathcal{P}(K(X_1, \ldots, X_l))$, for some integer l. We denote $d(n) = |\{k \leq n : \phi_k \in \{\zeta, \eta, \theta\}\}|$.

Example 2.1.2. For any field K, the collection of finite subsets of K is a family in K. Also, if $K \subseteq L$ is an extension and A is a family in L, then $\{A \cap K : A \in A\}$ is a family in K.

Lemma 2.1.3. Let $(V_n)_{n \in \omega}$ be a sequence of subsets of K such that, for every $n \in \omega$:

- $0 \in V_n$;
- $1 \notin V_n$;
- $V_{n+1} \subset V_n$;
- $\phi_n(V_{n+1}) \subset V_n$.

Then $\{x + V_n : x \in K, n \in \omega\}$ is the base for a field topology on K.

We omit the straightforward proof.

Definition 2.1.4. An approximation of a local base at 0, or briefly an approximation, is a function $f : \omega \cup \{-1\} \to [K]^{<\omega}$ (the set of finite subsets of K) such that the following conditions are satisfied:

1. $0 \in f(n)$ for all $n \in \omega$;
2. $1 \in f(-1)$;
3. \(f(n) \cap f(-1) = \emptyset \) for all \(n \in \omega \);
4. \(f(n + 1) \subset f(n) \) for all \(n \in \omega \);
5. \(\phi_n(f(n + 1)) \subset f(n) \) for all \(n \in \omega \).

The set of all approximations is denoted \(\mathcal{P} \). The set of all approximations whose image is in a given family \(\mathcal{A} \) is denoted \(\mathcal{P}_\mathcal{A} \).

For two approximations \(f \) and \(f' \) we define \(f' \leq f \) if \(f'(n) \subset f(n) \) for every \(n \in \omega \cup \{-1\} \); this defines a partial order on \(\mathcal{P} \).

Lemma 2.1.5. Let \(C \) be a chain in \(\mathcal{P} \), and for \(n \in \omega \), define \(V_n^C = \bigcup_{f \in C} f(n) \). Then
\[
\{ x + V_n^C : x \in K, n \in \omega \}
\]
is the basis of a field topology on \(K \).

Again, the proof is fairly straightforward, so we omit it.

2.2 Expanding approximations

In this section, we describe the conditions under which approximations may be expanded in a way that will suit us in the coming sections.

Theorem 2.2.1. Let \(K \subset L \) be two fields, with \(\mathcal{A} \) and \((\phi_k)_{k \in \omega} \) defined in \(L \). Let \(f \in \mathcal{P}_{(A,A \in \mathcal{A}, A \subset K)} \)
and let \(n \in \omega \cup \{-1\} \), such that \(\phi_k \in \{\zeta, \eta, \theta\} \cup \{\xi_A : A \in \mathcal{A}, A \subset K\} \) for \(k < n \). Then there exist \(l \in \omega \) and a finite set \(G \subset K[X_1, \ldots, X_l] \) such that
\[
\phi_{\xi_A}(f(n + 1)) \subset f(n) \quad \text{for all finite subset } A \in \mathcal{A}
\]
for every \(n \in \omega \) such that \(f(n) \neq \emptyset \) and \(f(m) = f'(m) \) for all \(m > n \) and for \(m = -1 \) if \(n \neq -1 \).

2. none of the polynomials in \(G \) has a zero in \(A \).

Furthermore, if \(n \in \omega \), then \(l \) and \(G \) can be chosen to be such that \(l \leq 2d(n) \) and every \(g \in G \) is of degree \(\leq 2d(n) \).

Proof. For \(n = -1 \), given \(f \), let \(l = 1 \) and \(G = \{ X_1 - \alpha : \alpha \in f(0) \} \in K[X_1] \). Then every function as in 1 must satisfy \(f'' \geq f'' \), where the function \(f'' : \omega \cup \{-1\} \rightarrow [L[^\omega] \subseteq L \) given by
\[
f''(m) := \begin{cases} f(-1) \cup A, & \text{if } m = -1; \\ f(m), & \text{else.}\end{cases}
\]

Then \(f(-1) \cup A \in \mathcal{A} \), so \(f'' \in \mathcal{P}_\mathcal{A} \) if and only if \(A \cap f(0) = \emptyset \), which is true if and only if \(g \) has no zeroes in \(A \).

For \(n \in \omega \) we use induction on \(n \) to prove the stronger statement that \(G \) and \(l \) can be found with the properties in the lemma such that \(X_i - 1 \in G \) for all \(1 \leq i \leq l \). The proof for \(n = 0 \) is the same to that of \(n = -1 \), using \(l = 1 \) and \(G = \{ X_1 - \alpha : \alpha \in f(-1) \}; \) then \(l = 1 \leq 2d(0) = 1 \), and \(X_1 - 1 \in G \). Now assume the theorem holds for \(n \), and let \(l \in \omega \) be an integer and \(G \) a set of polynomials, satisfying the conditions of the theorem. We find a \(l' \) and \(G' \) that work for \(n + 1 \).

If \(\phi_n = \xi_B \) for some \(B \subset K \), then look at the set
\[
G' = \{ g(h_0, \ldots, h_l) : g \in G, h_i \in \{X_i\} \cup f(n + 1) \cup \xi_B((X_i \cup f(n + 1))) \subset K[X_1, \ldots, X_{2l}] \}.
\]

Then by the induction hypothesis, \(l \leq 2d(n) = 2^{d(n + 1)} \), and every polynomial in \(G' \) is of degree at most \(2d(n) = 2^{d(n + 1)} \); furthermore, for all \(1 \leq i \leq l \), \(X_i - 1 \in G \subset G' \). Note that for a set \(A \in \mathcal{A} \), no polynomial in \(G' \) has a zero in \(A \) if and only if no polynomial in \(G \) has a zero in \((A \cup f(n + 1) \cup \xi_B(A \cup f(n + 1))) \).
2.3. MAKING TOPOLOGIES

If \(\phi_n = \zeta \) or \(\phi_n = \eta \), then we take

\[G' = \{ g(h_1, \ldots, h_l) : g \in G, h_i \in \{ X_{2i-1}, X_{2i} \} \cup f(n+1) \cup \phi_n(\{ X_{2i-1}, X_{2i} \} \cup f(n+1)) \}. \]

Note that \(G' \) is a subset of \(K[X_1, \ldots, X_{2l}] \), and that here we have polynomials in \(2l \leq 2^{d(n)+1} = 2^{d(n+1)} \) variables of degree at most \(2l \). Also, it is easy to see that for all \(1 \leq i \leq 2l \), the polynomial \(X_i - 1 \) is in \(G' \). Again, for a set \(A \subset K \), no polynomial in \(G' \) has a zero in \(A' \) if and only if no polynomial in \(G \) has a zero in \((A \cup f(n+1))' \).

If \(\phi_n = \theta \), then define

\[G'' = \{ g(h_1, \ldots, h_l) : g \in G, h_i \in \{ X_{2i-1}, X_{2i} \} \cup f(n+1) \cup \theta(\{ X_{2i-1}, X_{2i} \} \cup f(n+1)) \}. \]

Note that \(G'' \) is a subset of \(K(X_1, \ldots, X_{2l}) \). If we write the elements of \(G'' \) in the form \(j/h \), with \(j, h \in K[X_1, \ldots, X_{2l}] \) without common factors, we take \(G'' = \{ j : \exists h \in K[X_1, \ldots, X_{2l}] \text{ such that } j/h \in G'' \text{ and } \gcd(j, h) = 1 \} \). We will show that for every \((a_1, \ldots, a_2l) \in K^{2l} \), one has \(j(a_1, \ldots, a_2l) = 0 \) for some \(j \in G'' \) if and only if there is some \(g \in G'' \) such that \(g(a_1, \ldots, a_2l) \) is defined and equal to \(0 \). The ‘if’ part of the statement is obvious; as for the ‘only if’ part, if \(j \in G'' \) and \(j(a_1, \ldots, a_2l) = 0 \), and \(h \) is such that \(j/h \in G'' \) and \(\gcd(j, h) = 1 \), then either \(h(a_1, \ldots, a_2l) = 0 \), or \((j/h)(a_1, \ldots, a_2l) = 0 \) is defined and equal to \(0 \). If we write \(j/h = g(h_1, \ldots, h_2l) \) for some \(g \in G'' \) and \(h(a_1, \ldots, a_2l) = 0 \), then some \(h_l(a_1, \ldots, a_2l) \) must be undefined. This is possible only if \(h_l = \theta(X_{2l-1}, X_{2l}) = \frac{X_{2l-1}}{X_{2l}} \) for some \(x \in f(n+1) \). Either way, \(a_2l \) must be equal to \(1 \). As \(X_i - 1 \in G \), our construction ensures that \(X_{2l-1} - 1 \in G' \), so \((a_1, \ldots, a_2l) \) is a zero of the defined \(X_{2l-1} - 1 \in G' \). Note that here we have polynomials in \(2l \leq 2^{d(n)+1} = 2^{d(n+1)} \) variables of degree at most \(2l \).

Now we will show that for the set \(G' \), the statements 1 and 2 are equivalent. Let \(A \subset \mathcal{A} \) be such that no function in \(G' \) has a zero in \(A' \); hence no polynomial in \(G \) has any zeroes in \((A \cup f(n+1))' \). Since this set is in \(\mathcal{A} \), by the induction hypothesis there exists an approximation \(f'' \in \mathcal{P}_A \) such that \(f'' \geq f \) and \(A \cup f(n+1) \cup \phi_n(A \cup f(n+1)) \subset f''(n) \), and \(f(m) = f''(m) \) for all \(m > n \) and for \(m = -1 \). Now consider the function \(f' : \omega \cup \{-1\} \rightarrow \mathcal{A} \) given by

\[f'(m) := \begin{cases} f''(n+1) \cup A, & \text{if } m = n+1; \\ f''(m), & \text{otherwise.} \end{cases} \]

This is an approximation in \(\mathcal{P}_A \) which satisfies \(A \subset f'(n+1) \) and \(f(m) = f'(m) \) for all \(m > n+1 \) and for \(m = -1 \).

Now let \(A \subset \mathcal{A} \) be finite such that there exists an approximation \(f' \in \mathcal{P}_A \) such that \(f \leq f' \) and \(A \subset f'(n+1) \) and \(f'(m) = f(m) \) for all \(m > n \) and for \(m = -1 \). Consider the function \(f'' : \omega \cup \{-1\} \rightarrow \mathcal{A} \) given by

\[f''(m) := \begin{cases} f(n+1), & \text{if } m = n+1; \\ f'(m), & \text{otherwise.} \end{cases} \]

This is an approximation which satisfies \(A \cup f(n+1) \cup \phi_n(A \cup f(n+1)) \subset f''(n) \), and \(f''(m) = f(m) \) for all \(m > n+1 \) and for \(m = -1 \). By the induction hypothesis no polynomial in \(G \) has any zeroes in \((A \cup f(n+1))' \); but this means precisely that no polynomial in \(G' \) has any zeroes in \(A' \).

Corollary 2.2.2. Let \(f, n, G \) be as in the previous theorem. If \(\{0\} \in \mathcal{A} \), then for all \(g \in G \), the value \(g(0, \ldots, 0) \) is unequal to \(0 \).

Proof. This follows from the previous theorem and the fact that there is an approximation \(f' \) satisfying 1 of the previous theorem for \(A = \{0\} \), namely \(f' = f \).

2.3 Making topologies

Lemma 2.3.1. Using the family \(\mathcal{A} = [K]^{<\infty} \), let \(f \) be an approximation in \(K \), and let \(n \in \omega \cup \{-1\} \). Then for almost all \(r \in K \) (that is, for all \(r \in K \) except for a finite subset), there exists an approximation \(f' \geq f \) such that \(r \in f'(n) \) and \(f(m) = f'(m) \) for all \(m > n \) and for \(m = -1 \) if \(n \neq -1 \).
Proof. By theorem 2.2.1, using \(L = K \), there exists a finite set of polynomials \(G \subseteq K[X_1, \ldots, X_1] \) such that there exists an approximation \(f' \) satisfying the theorem if and only if for all \(g \in G \), \(g \) has no zero in \(\{ r \}^1 \). This is true if and only if \(g(r, r, \ldots, r) \neq 0 \) for all \(g \in G \). Because \(\{ 0 \} \in \mathcal{A} \), one has \(g(0, \ldots, 0) \neq 0 \), one has \(g(X, \ldots, X) \neq 0 \), and hence every \(g(X, \ldots, X) \) has only a finite number of zeroes. \(\square \)

Now we can use the approximations to make field topologies on \(K \). We regard every nonnegative integer as the set of its predecessors: \(n = \{ 0, 1, \ldots, n - 1 \} \). Furthermore, for two sets \(A \) and \(B \) we use the notation \(\uparrow B \) for the set of functions from \(A \) to \(B \), and \(^{<\omega}A = \bigcup_{n \in \omega}n\cdot A \). For every \(s \in ^{<\omega}2 \) we recursively define an approximation \(f^s \) such that for every \(n \geq 1 \) and \(s \in ^n2 \),

\[
f^{s|n-1} \leq f^s,
\]

where \(s \upharpoonright n - 1 \) denotes the restriction of \(s \) to \(n - 1 = \{ 0, 1, \ldots, n - 2 \} \), and

\[
f^s(-1) \cap \bigcap_{t \in ^n2 \setminus \{s\}} f^t(n) \neq \emptyset.
\]

(2.3.2)

For \(\emptyset \), the unique element of \(^02 \), we define \(f^\emptyset : \omega \cup \{-1\} \to [K]^{<\omega} \) by

\[
f^\emptyset(m) = \begin{cases}
\{1\}, & \text{if } m = -1; \\
\{0\}, & \text{otherwise.}
\end{cases}
\]

Now let \(n > 0 \), and assume we have defined \(f^s \) for all \(s \in ^{n-1}2 \). Let \(\{ s_1, \ldots, s_{2^n} \} \) be an ordering of \(^n2 \). Because of lemma 2.3.1 there exists an element \(\alpha \in K \) such that for every \(k \leq 2^n \) there exist \(f^s_k \in \mathfrak{P} \) such that

\[
f^{s_k|n-1} \leq f^{s_k}_1 \text{ for all } k \leq 2^n
\]

(2.3.3)

and

\[
\alpha \in f^{s_k}_1(-1) \cap \bigcap_{2 \leq k \leq 2^n} f^{s_k}_1(n).
\]

Now analogously define recursively for every \(2 \leq m \leq 2^n \), for every \(k \leq 2^n \) a function \(f^{s_k}_m \in \mathfrak{P} \) such that

\[
f^{s_k}_{m-1} \leq f^{s_k}_m \text{ for all } k \leq 2^n
\]

and

\[
f^{s_k}_k(-1) \cap \bigcap_{h \neq k} f^{s_k}_h(n) \neq \emptyset.
\]

Take \(f^{s_k} = f^{s_k}_{2^n} \); then \(f^s \) satisfies (2.3.2) for every \(s \in ^n2 \). For \(x \in ^{<\omega}2 \), define \(C_x = \{ f^x|n : n \in \omega \} \). This is a chain of approximations, and hence defines a field topology \(T_x \) on \(K \). For a subset \(X \subseteq ^{<\omega}2 \), define the field topology \(T_X = \bigvee_{x \in X} T_x \), the coarsest topology such that all the open sets of all the \(T_x \) are open; this is again a field topology. In any topology such that all the sets of \(T_g \) are open for all \(g \in X \), finite intersections of open sets from different \(T_g \) are also open. Therefore, \(T_X \) is the topology generated by elements of the form \(\bigcap_{i=1}^n U_i \), with \(n \) some integer and every \(U_i \) open in some \(T_y \). Since the collection of these sets is closed under intersection, these elements actually constitute a basis of \(T_X \).

Lemma 2.3.4. Let \(X, Y \subseteq ^{<\omega}2 \) be different. Then \(T_X \neq T_Y \).

Proof. Without loss of generality we may assume that we can choose \(h \in X \setminus Y \). Using the notation of 2.1.3, \(V_0^{<h} \cap V_1^{<h} \) is empty, so one has \(0 \notin V_1^{<h} \) in \(T_X \). A basis element of \(T_Y \) is of the form
$\bigcap_{i=1}^{m} g_i(n_i)$, with $n_i \in \omega$ and $g_i \in Y$. Let $n \in \omega$ be such that $n \geq n_i$ for all i and such that $h \upharpoonright n$ differs from all $g_i \upharpoonright n$. Then

$$
\emptyset \subseteq f^{h\upharpoonright n}(1) \cap \bigcap_{i=1}^{m} f^{g_i\upharpoonright n}(n)
\subseteq f^{h\upharpoonright n}(1) \cap \bigcap_{i=1}^{m} f^{g_i\upharpoonright n}(n_i)
\subseteq V_{-1}^{C_h} \cap \bigcap_{i=1}^{m} V_{n_i}^{C_{g_i}}.
$$

This implies that $0 \in V_{-1}^{C_h}$ in \mathcal{T}_Y, and hence $\mathcal{T}_X \neq \mathcal{T}_Y$.

Theorem 2.3.5. Let K be a countable field. Then there exist exactly $2^{2^{\aleph_0}}$ field topologies on K.

Proof. By lemma 2.3.4, there exist at least $2^{2^{\aleph_0}}$ field topologies on K. Because a topology is a set of subsets of K, this is also the maximum number.

\qed
Chapter 3

Topologies with continuous automorphisms

3.1 Definition and basic properties

Definition 3.1.1. Let K be an algebraic extension of a countable field F, and A a subset of K. We call A stable under $\text{Aut}_F(K)$ if $\sigma[A] \subset A$ for every $\sigma \in \text{Aut}_F(K)$. If f is an approximation, then f is said to be stable under $\text{Aut}_F(K)$ if $f(n)$ is stable under $\text{Aut}_F(K)$ for every $n \in \omega \cup \{-1\}$.

The reason for looking at these approximations is stated without proof in the following lemma.

Lemma 3.1.2. Let C be a chain of approximations that are stable under $\text{Aut}_F(K)$. Then the action $\text{Aut}_F(K) \times K \to K : (\sigma, x) \mapsto \sigma(x)$ is continuous, where $\text{Aut}_F(K)$ is given the Krull topology (see [2], p21) and K the topology induced by C.

Again, we omit the simple proof.

Definition 3.1.3. Let F_q be a finite field, and let $\alpha \in \overline{F_q}$, an algebraic closure of F_q. The degree of α is defined by

$$\deg \alpha = [F_q(\alpha) : F_q].$$

Note that this is equal to $\min\{n \in \omega : \alpha \in F_q^n\}$, see [2], p98.

Lemma 3.1.4. Let $x_n = \#\{\alpha \in F_q^n : \deg \alpha = n\}$. Then

$$\lim_{n \to \infty} \frac{x_n}{q^n} = 1.$$

Proof. Because F_q^n has, by definition, q^n elements, we have $x_n \leq q^n$. Furthermore, $\sum_{d|n} x_d = q^n$. Therefore,

$$x_n = q^n - \sum_{d|n, d<n} x_d \geq q^n - \sum_{d=1}^{\lfloor \frac{n}{2} \rfloor} q^d = q^n - \frac{q - 1}{q - 1}\left(q^{\lfloor \frac{n}{2} \rfloor} - 1\right),$$

from which the lemma follows easily. \square
Lemma 3.1.5. Let K be an infinite algebraic extension of a finite field F, and A the family in K consisting of all finite subsets of K stable under $\text{Aut}_F(K)$. Given A, let $(\phi_n)_{n \in \omega}$ be a sequence as in Definition 2.1.1, and f an approximation stable under $\text{Aut}_F(K)$, and $n \in \omega \cup \{-1\}$. Then there exists $l \in \omega$ and a finite $G \subset F[X_1, \ldots, X_l]$ such that for every $A \in A$, the following statements are equivalent:

- There exists an approximation $f' \geq f$ such that f' is stable under $\text{Aut}_{F_q}(K)$, $A \subset f'(n)$, and $f(m) = f'(m)$ for all $m > n$ and for $m = -1$ if $n \neq -1$.

- For every $g \in G$, the polynomial g has no zeroes in A'.

Proof. By Theorem 2.2.1 there exist $l \in \omega$ and $G \subset K[X_1, \ldots, X_l]$ such that for every $A \in A$:

1. There exists an approximation $f' \geq f$ such that f' is stable under $\text{Aut}_F(K)$, $A \subset f'(n)$, and $f(m) = f'(m)$ for all $m > n$ and for $m = -1$ if $n \neq -1$.

2. Every $g' \in G'$ has no zeroes in A'.

Let $G = \{g : g$ is the product of the conjugates of g' for some $g' \in G'\}$. Then, because A is closed under $\text{Aut}_{F_q}(K)$, some $g \in G$ has a zero in A' if and only if there is some $g' \in G'$ with a zero in A'; this proves our lemma.

\[\blacksquare\]

3.2 Expanding approximations

Lemma 3.2.1. Let t and n be integers greater than or equal to 2, and G be the directed graph having the set Z/nZ as vertices and $\{(k, k+1) : k \in Z/nZ\}$ as edges, and let $a_1, \ldots, a_t \in Z/nZ$. Then there is a $k \in A = \{a_1, \ldots, a_t\}$ such that the distance in G from k to any other point in A is at most $\lfloor \frac{t-1}{n} \rfloor$.

Proof. Note that for $a,b \in Z/nZ$, the distance from a to b is $|b-a|$, where $|x|$ denotes x considered modulo n and taken between 0 and $n-1$. Let a_1', a_2', \ldots, a_t' be an enumeration of the a_i in ascending order (from 0 to $n-1$), and $a_i' + 1 = a_i', a_i' + 1 = a_i$ for $i \leq t - 1$, and $f_i = a_i' - a_i'$. Then f_i sum to n, so there must be some m such that $f_m \geq \lfloor \frac{t-1}{n} \rfloor$. For this m we have $[a_i'-a_m]+1, \ldots, [a_i'-a_m+1] \leq \lfloor \frac{t-1}{n} \rfloor$; to see this, note that $[a_i'-a_m]+1 = n + a_i'-a_m+1 \leq n + a_i'-a_m+1 \leq \lfloor \frac{t-1}{n} \rfloor$ for $j \leq m$, and for $j > m$, it holds that $[a_i'-a_m+1] = a_i'-a_m+1 = \sum_{i=m+1}^{t} f_i \leq n - f_m \leq \lfloor \frac{t-1}{n} \rfloor$, as the f_i are nonnegative. Hence $a_i'+1$ satisfies the conditions of the lemma.

\[\blacksquare\]

Theorem 3.2.2. Let K be an infinite algebraic extension of a finite field F_q, and let f be an approximation stable under $\text{Aut}_{F_q}(K)$, and $m \in \omega \cup \{-1\}$. Let x_n be as in lemma 3.1.4, and for $n \in Z\geq0$ such that $F_{q^n} \subset K$, let B_n be the set of $\alpha \in K$ such that deg $\alpha = n$ and there exists $f' \in F$ stable under $\text{Aut}_{F_q}(K)$ such that $f' \geq f$, $\alpha \in f'(m)$ and $f'(k) = f(k)$ for $k > m$ or $k = -1$ if $m \neq -1$. Then $\lim_{n \to \infty} \frac{B_n}{x_n} = 1$, where n ranges over the integers such that $F_{q^n} \subset K$.

Proof. For $\alpha \in K$, the set of conjugates of α is the set $\{\alpha, \alpha^p, \alpha^{p^2}, \ldots, \alpha^{p^{deg_{\alpha} - 1}}\}$ (see [2], p25). By lemma 3.1.5, there exists a finite set of polynomials $G \subset F_q[X_1, \ldots, X_l]$ such that there exists an approximation f' satisfying the above conditions if and only if no $g \in G$ has any zeroes in $\{\alpha, \alpha^p, \alpha^{p^2}, \ldots, \alpha^{p^{deg_{\alpha} - 1}}\}$; let $k = \prod_{g \in G} g$. For α of a fixed degree n, this implies that such an approximation exists if and only if α is not a zero of any polynomial of the form $k(X^{q^{e_1}}, X^{q^{e_2}}, \ldots, X^{q^{e_l}})$, where $0 \leq e_1, \ldots, e_l < n$. By Lemma 3.2.1, there is an e_m such that all the values $[e_i - e_m]$ are lesser than or equal to $\lfloor \frac{t-1}{n} \rfloor$. Now $\alpha^{q^{e_m}}$ is a zero of the polynomial

$$k \left(X^{q^{e_1-e_m}}, X^{q^{e_2-e_m}}, \ldots, X^{q^{e_l-e_m}}\right) \in F_q[X].$$

Now α is a zero of this polynomial as well; hence, for every $x \in K$ of degree n, one has $x \in B_n$ if and only if there are no $0 \leq e_1, e_2, \ldots, e_l \leq \lfloor \frac{t-1}{n} \rfloor$ such that x is a zero of $k(X^{q^{e_1}}, X^{q^{e_2}}, \ldots, X^{q^{e_l}})$.

\[\blacksquare\]
3.2. EXPANDING APPROXIMATIONS

Because \(k(0, \ldots, 0) \neq 0\) by Corollary 2.2.2, polynomials of this form are not the zero polynomial, and of degree at most \(\deg(k) \cdot \max_i \{q^{e_i}\}\), so they cannot have more than \(\deg(k) \cdot \max_i \{q^{e_i}\}\) zeroes. This implies that

\[
|B_n| \geq q^n - \sum_{e_1=0}^{\lfloor \frac{l-1}{l} \cdot n \rfloor} \cdots \sum_{e_t=0}^{\lfloor \frac{l-1}{l} \cdot n \rfloor} \deg(k) \cdot \max_i \{q^{e_i}\}
\]

\[
\geq q^n - \left(\frac{l-1}{l} \cdot n + 1\right)^t \cdot q^{\lfloor \frac{l-1}{l} \cdot n \rfloor} \cdot \deg(k).
\]

Hence \(\lim_{n \to \infty} \frac{|B_n|}{x_n} = \lim_{n \to \infty} \frac{|B_n|}{q^n \cdot x_n} = 1\).

Theorem 3.2.3. Let \(F\) be a finite field, and let \(K\) be an infinite algebraic extension of \(F\). Then there exist \(2^{2^{\aleph_0}}\) field topologies on \(K\) such that the action of \(\text{Aut}_F(K)\) on \(K\) is continuous.

Proof. This can be proven similarly to theorem 2.3.5. Analogously, for every \(l \in <\omega_2\) we define an approximation \(f^l\) stable under \(\text{Aut}_F(K)\) such that (2.3.2) holds, starting with \(f^0: \omega \cup \{-1\} \to [K]^{<\omega}\) defined as in section 2.3. Because of theorem 3.2.2, we can expand the approximations. Now we can make topologies, which analogously to theorem 2.3.4 are all different. \(\Box\)
Chapter 4

A field topology with nontrivial subfield topologies

In this section, we refine the methods in section 2.3 to construct a Hausdorff field topology on an algebraic closure of a finite field F such that for every infinite algebraic extension $F \subset L$, the induced topology on L is not discrete. We start off with some definitions:

Definition 4.1.1. Let $F = F_q$ be a finite field, and \overline{F} an algebraic closure of F. Then we define the following subfields of \overline{F}, where p is a prime and P an infinite set of primes:

\[
\begin{align*}
F_p &= \{ x \in \overline{F} : [F(x) : F] is a power of p \} \\
F_P &= \{ x \in \overline{F} : [F(x) : F] is squarefree, and its prime divisors are elements of P \} \\
F_{<p} &= \{ x \in \overline{F} : all primes dividing [F(x) : F] are smaller than p \}
\end{align*}
\]

To make this topology, we desire further constraints on $(\phi_n)_{n \in \omega}$: for $n \leq 2k - 3$, ϕ_n must be an element of $\{\zeta, \eta, \theta\} \cup \{\xi_A : A \subset F_{<p_k}, A \ finite\}$ (we use $A = [L]^{<\infty}$), where p_i denotes the i-th prime. Furthermore, $2^{d(n)}$ must be smaller than p_n. Also, let $(q_i)_{i \in \omega}$ be a sequence of primes such that $q_i \leq p_i$ for all i, and every prime occurs in $(q_i)_{i \in \omega}$ an infinite number of times.

Theorem 4.1.2. Let F be a finite field. Then there exists a field topology on F such that for any infinite subfield $L \subset \overline{F}$ the induced topology is nontrivial, i.e., neither discrete nor antidiscrete.

For the proof of this theorem, we need two lemmas, which we will prove later on.

Lemma 4.1.3. Let $F = F_q$ be a finite field. Then for any infinite algebraic extension $F \subset L$, the field L must contain a subfield either of the form F_p for some prime p, or F_P for some infinite set of primes P.

Lemma 4.1.4. There exists an increasing sequence of approximations $(f^n)_{n \in \omega}$ satisfying the following conditions:

- for every $k \geq 2$, the image of f^{2k-2} is contained in $F_{<p_k}$;
- for every $k \geq 3$, the image of f^{2k-3} is contained in $F_{<p_k}$;
- for every n and every $m > n$, the set $f^n(m)$ is equal to $\{0\}$;
- for every n, the set $f^n(-1)$ is equal to $\{-1\}$;
- for every $k \geq 1$, the set $f^{2k}(2k)$ is of the form $\{x\}$ for some $x \in F_{q_i}$;
- for every $k \geq 1$, the set $f^{2k-1}(2k - 1)$ is of the form $\{x\}$ for some x of degree p_k.

13
Proof of Theorem 4.1.1 from 4.1.3 and 4.1.4. By Lemma 4.1.3, it is sufficient to construct a topology such that the induced topology on every F_p and F_P is nontrivial. This is true if and only if 0 is not an isolated point in any of those fields and the topology is not antidiscrete. Take the field topology induced by the sequence $(f_n)_{n \in \omega}$ of Lemma 4.1.4. As our construction gives neighborhoods of 0 not containing 1, the topology will not be antidiscrete. For any prime p, elements of F_p occur in $f^{2k}(2k)$ for arbitrarily large k, so 0 will not be an isolated point in F_p. Also, for any infinite set of primes P, elements of F_P occur in $f^{2k-1}(2k - 1)$ for arbitrarily large k, so 0 will not be discrete in F_P; hence this topology is nontrivial on any infinite subfield of F.

Proof of Lemma 4.1.3. Define $A \subset \mathbb{Z}_{\geq 1}$ as $A = \{ n \in \mathbb{Z}_{\geq 1} : F_{q^n} \subset L \}$. Then A is infinite and $L = \bigcup_{n \in A} F_{q^n}$. Furthermore, if m and n are elements of A, then so are any of their divisors, as well as their least common multiple. This means that A is defined by the prime powers occurring in it. As A is infinite, either an unlimited number of primes must occur in A, or arbitrarily large powers of a certain prime must occur in A; so L either has a subfield of the form F_P for a certain infinite set of primes P, or a subfield of the form F_P for a certain prime p.

Proof of Lemma 4.1.4. We recursively define our approximations by setting $f^0 = f^0$ as defined in section 2.3; indeed the image of f^0 is contained $F_{<2} = F$. For $n = 2k$ given an approximation f^{2k-1} satisfying the conditions in the lemma, we want to choose an approximation f^{2k} such that:

- the image of f^{2k} is contained in $F_{<p^{k+1}}$;
- $f^{2k-1} \leq f^{2k}$;
- $f^{2k-1}(m) = f^{2k}(m)$ for $m = -1$ and $m > 2k$;
- $f^{2k}(2k) = \{ x \}$ for some $x \in F_{q^k}$.

As $f^{2k-1}(m)$ equals $\{ 0 \}$ for all $m > 2k - 1$, condition 5 from 2.1.2 is implied by condition 1 for $n \geq 2k - 1$; hence for $n \geq 2k - 1$, we may assume without loss of generality that $\phi_n = \xi_0$ for those n; as $\phi_n \in \{ \zeta, \eta, \theta \} \cup \{ \xi_n : a \in F_{<p^{k+1}} \}$ for $n < 2k - 1$, we may assume that ϕ_n is defined within $F_{<p^{k+1}}$. As the image of $f^{2k-1}(m)$ is contained in $F_{<p^{k+1}}$, we may apply lemma 2.3.1 with $K = F_{<p^{k+1}}$, $f = f^{2k-1}$ and $n = 2k$. As F_{q^k} is an infinite subfield of $F_{<p^{k+1}}$, there is an $x \in F_{q^k}$ such that f^{2k} satisfies the above conditions.

For $n = 2k - 1$, given f^{2k-2} satisfying the conditions in the lemma, we wish to make f^{2k-1} such that:

- the image of f^{2k-1} is contained in $F_{<p^{k+1}}$;
- $f^{2k-2} \leq f^{2k-1}$;
- $f^{2k-2} \leq f^{2k-1}$, $f^{2k-2}(m) = f^{2k-1}(m)$ for $m > 2k - 1$;
- $f^{2k-1}(2k - 1) = \{ x \}$ for some x of degree p_k.

To see this is possible, note that, as above, we assume without loss of generality that ϕ_n is defined within $F_{<p^{k+1}}$. Then we may apply theorem 2.2.1 for $K = F_{<p^k}$, $L = F_{<p^{k+1}}$ and $A = [L]^{<\omega}$, to show that there exists a set of polynomials $G \subset F_{<p}[X_1, \ldots, X_l]$ of degree at most $2^d(n)$ such that we can add x in the manner described above if and only if $g(x, x, \ldots, x) \neq 0$ for all $g \in G$. But any $x \in F_{q^m}$ satisfies $[F_{<p^m}(x) : F_{<p^k}] = p_k > 2^d(n)$, but the degree of any $g \in G$ is at most $2^d(n)$, so $g(x, x, \ldots, x) \neq 0$, and such an approximation exists.
Bibliography
