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Introduction

Let GQ the absolute Galois group of Q, A the Q-adèles and n a positive integer. The global
Langlands conjecture sets up a bijection between (isomorphism classes of) certain representations
of GLn(A) and (isomorphism classes of) certain Q`-valued representations of GQ of dimension
n. The Langlands conjecture is formulated for any global field K. In this thesis however, we will
only look at the case K = Q.

Relative to all positive integers n, there are not so many proved cases of this conjecture. The
case n = 1 is proved. Many cases for n = 2 are proved. For n ≥ 3 only very little is proved.
However, the reader should not underestimate the power of the results we already have. The
case n = 1 implies class field theory. The case n = 2 implies the modularity of elliptic curves.

In chapters 1-4 of this thesis we will give a precise statement of the Langlands conjecture
and the Fontaine-Mazur conjecture, setting up relations between automorphic forms, geometric
Galois representations and étale cohomology of proper and smooth Q-schemes. In chapter 5 we
prove that the one dimensional case of this conjecture is equivalent to class field theory for Q. In
chapter 6 we give two examples of two dimensional Galois representations and the corresponding
automorphic representation. In chapter 7 we explain the relation between the global Langlands
conjecture and the local Langlands theorem.

This thesis is based on the article of Taylor [39], of which we treat only a very tiny piece.
After reading this thesis, the reader is encouraged to look up this article.

I want to thank Bas Edixhoven, for helping me both with my bachelors thesis and my masters
thesis (which you are looking at now) and answering many other mathematical questions. Also
I want to thank him for advising me to go study in Orsay after my third year here in Leiden,
which turned out very well. Next, I thank Hendrik Lenstra, Lenny Taelman and Laurent Clozel
for their answers to my questions. I thank my entire family, especially my parents, sister and
grandparents, for their support, interest and coming over to visit me several times during my stay
in Paris, and finally my uncle for printing this thesis.





Chapter 1: Galois Representations

The global Langlands conjecture relates Galois representations with automorphic representa-
tions. In this chapter, and the next one, we introduce the “Galois side” of this correspondence.

1.1. `-adic representations

Let ` ∈ Z be a prime number and Q` be an algebraic closure of Q`. A finite dimensional
Q` vector space has a, up to equivalence unique, norm compatible with the norm on Q`, [26,
XII, prop. 2.2]. In particular, any finite extension E of Q` contained in Q` has a unique norm
extending the norm on Q`. Therefore Q` is also equipped with an unique norm extending the
norm on Q`. We will always normalise the norm on Q` so that ` ∈ Q` has norm `−1.

Let E be a topological ring, M a topological E-module and G a topological group. A continu-
ous G-representation in M is an E[G]-module structure on M such that the action G×M →M

is continuous. A morphism of continuous representations is a continuous morphism of E[G]-
modules.

Assume E is a subfield of Q` containing Q`. In this case, we call a continuous, finite dimen-
sional representation `-adic. If moreover G is the absolute Galois group of some field, then we
will speak of a Galois representation. In this entire thesis we fix an algebraic closure Q of Q,
and we write GQ = Gal(Q/Q). For every prime number p we fix an algebraic closure Qp of Qp

and we write GQp
= Gal(Qp/Qp). We are mainly interested in the `-adic representations of GQ

and GQp
. Let us give some examples.

Example. — There is a unique continuous morphism of groups, χ` : GQ → Z×` ⊂ Q
×
` , such that

for all `n-th roots of unity ζ ∈ µ`∞ and all σ ∈ GQ we have σ(ζ) = ζχ`(σ). This morphism is
the cyclotomic character. Through the character χ` we may let GQ act on Q` via multiplication,
this is an example of a one dimensional `-adic GQ-representation.

Example. — Let E/Q be an elliptic curve. We set T`(E) := lim←−n∈NE[`n], where E[`n] is the
`n-torsion subgroup of E(Q), and the morphisms of transition are given by E[`n+1] → E[`n],
x 7→ `x. The Z`-module T`(E) is free of rank 2; it is called the Tate module of E. We set
V`(E) := Q`⊗Z` T`(E). More generally, for any commutative group scheme A of finite type over
Q (or Qp) one may construct a Tate-module T`(A) and a GQ-representation V`(A). For example
Z`(1) := T`(Gm,Q) is a free Z`-module of rank 1 on which GQ acts via χ`.

Let E be a subfield of Q` containing Q`. Suppose ψ : GQ → E× is a continuous morphism.
We write E(ψ) for the GQ-representation with space E and GQ-action given by ψ. If ψ = χk for
some k ∈ Z then we will write E(k) := E(χk). More generally, if V is an arbitrary `-adic GQ-
representation, then we write V (ψ) := V ⊗EE(ψ) and V (k) = V ⊗EE(k). The GQ-representation
V (ψ) is called a twist of V by ψ.
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We call an `-adic representation irreducible, or simple, if it has precisely two invariant sub-
spaces. An `-adic representation is semi-simple if it is a direct sum of simple representations. An
`-adic representation V can be made semi-simple in a functorial manner in the following way.

Because V is Artinian as E[G]-module it has non-zero submodules that are minimal for the
inclusion relation. Such a module is a simple submodule. Therefore, any V has a simple submod-
ule. An E[G]-submodule of V generated by two semi-simple submodules is again semi-simple.
We define soc(V ) ⊂ V to be the maximal semi-simple submodule of V , it is called the socle
of V . The socle is also the E[G]-submodule of V generated by all simple E[G]-submodules. If
f : V → V ′ is an E[G]-morphism, then f(soc(V )) is semi-simple, and thus contained in soc(V ′).
Therefore soc(�) is a covariant endofunctor of the category of E[G]-modules.

The representation soc(V ) is not the semi-simplification of V because V/soc(V ) is not nec-
essarily semi-simple. Therefore one takes the inverse image of soc(V/soc(V )) in V to obtain a
submodule V2 ⊂ V containing V1 = soc(V ) such that V1 and V2/V1 are semi-simple. Again, V2

is functorial in V . One may continue in this manner, to make V into a E[G]-module equipped
with a functorial filtration. Because V is finite dimensional, the module Vi equals to V for i
large enough. The graded module gr(V ) :=

⊕∞
i=0 Vi+1/Vi associated to this filtration is V ss, the

semi-simplification of V .

Proposition 1. — Let Λ be an algebra over a field K of characteristic zero, and let ρ1, ρ2 be
two Λ-modules of finite K-dimension. Assume that ρ1 and ρ2 are semi-simple and TrK(ρ1(λ))
equals TrK(ρ2(λ)) for all λ ∈ Λ. Then ρ1 is isomorphic to ρ2.

Proof. — [5, chapter 8, §12, n◦ 1, prop. 3].

Proposition 1 has a variant for characteristic p coefficients.

Theorem 2 (Brauer-Nesbitt). — Let G be a finite group, E a perfect field of characteristic
p and ρ1, ρ2 two semi-simple E[G]-modules, of finite dimension over E. Then ρ1

∼= ρ2 if and
only if the characteristic polynomials of ρ1(g) and ρ2(g) coincide for all g ∈ G.

Proof. — [12, theorem 30.16].

Lemma 3. — Let λ : Q → Q` be a Q-prime lying above `. Then the image of λ is a dense
subfield of Q`. In particular the morphism ιλ : GQp

→ GQ is injective.

Proof. — The proof of this claim is an application of Krasner’s lemma [33, 8.1.6], in the following
manner. By Krasner’s lemma, the completion of an algebraically closed field is still algebraically
closed. Therefore (Q)λ is complete and algebraically closed for any Q-prime λ lying above `.
Therefore, (Q)λ contains Q`, consequently it contains an algebraic closure Q` of Q` and thus
also C`, which is the completion of Q`. Thus C` contains Q, is complete and is contained in
(Q)λ. By the universal property of the completion, we find C` = (Q)λ. Therefore, λ(Q) is dense
in C`, and in particular dense in Q`.
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Proposition 4. — Let G be a profinite group. For any `-adic representation (ρ, V ) of G with
Q`-coefficients, there exists a finite extension K ⊂ Q` of Q` and a OK [G]-submodule L ⊂ V

such that Q` ⊗OK L = V .

Proof. — Fix a Q-prime λ lying above `. By Lemma 3 the field Q is a dense subfield of Q`. If
α ∈ Q, and α1, . . . , αn are the GQ`

-conjugates of α, then we may pick β ∈ Q such that

|α− β| < |α− αi| for i = 2, . . . , n.

By Krasner’s lemma [33, 8.1.6], one gets Q`(α) ⊂ Q`(β). Therefore, the number of finite
extensions of Q` contained in Q` is countable.

After the choice of a basis, we may assume V = Q
n

` . The field Q` is a filtered union of
finite extensions Ei of Q` where i ranges over some countable index set I. Similarly, we have
GLn(Q`) =

⋃
i∈I GLn(Ei). Recall that a topological space X is a Baire space if and only if

given any countable collection of closed sets Fi in X, each with empty interior in X, their union
has

⋃
Fi has also empty interior. The image ρ(G) of G in GLn(Q`) is compact and therefore

complete as a metric space and in particular a Baire space, see [32, thm 48.2].
Let Fi be the closure of GLn(Ei) ∩ ρ(G) in the space ρ(G). Then ρ(G) =

⋃
i∈I Fi has non-

empty interior inside ρ(G). Therefore, there exists an i ∈ I such that Fi contains a non-empty
open subset U of ρ(G).

After translating and shrinking U , we may assume it is an open subgroup of ρ(G). The
quotient ρ(G)/U is covered by the sets GLn(Ej)∩ρ(G) mod U , with j ranging over all elements
of I such that Ei ⊂ Ej . Because the quotient ρ(G)/U is finite, we need only a finite number of
such j. The compositum K of the fields Ej is then finite over Ei, and we have found a finite
extension K of Q` such that ρ(G) ⊂ GLn(K).

Pick any OK-lattice L′ ⊂ Kn ⊂ En (e.g., the standard lattice) and let (ei)ni=1 be a OK-basis
of this lattice. The intersection of the stabiliser of the ei is open in G. Therefore, the G-translates
of L′ are finite in number. The OK-module L generated by these translates is therefore of finite
type over OK and generates Kn as K-vector space, so it is a lattice. This lattice L has the
desired property.

1.2. Ramification

The integral closure Zp of Zp in Qp is a valuation ring with residue field Fp and value
group Q. The kernel of the map GQp

→ Gal(Fp/Fp) is the inertia group IQp
⊂ GQp

. An
`-adic GQp

-representation (ρ, V ) is unramified if IQp
⊂ ker(ρ). In that case ρ factors over

GQp
/IQp

= Gal(Fp/Fp), and ρ(Frobp) is well-defined, where Frobp is the geometric Frobenius:
Frobp := (x 7→ x1/p) ∈ Gal(Fp/Fp) .

The choice of a Q-prime p lying above p induces an embedding GQp → GQ with image equal
to the decomposition group D(p/p). The image of IQp in GQ is denoted I(p/p). We can thus
restrict a GQ-representation (ρ, V ) to the GQp

-representation ρp := ρ|D(p/p). We will often
abuse notation and write ρp = ρp: The representation ρp depends on the choice of p/p, but
only up to isomorphism. We say that ρ is unramified at p if I(p/p) ⊂ ker(ρp). In this case
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ρp(Frobp) ∈ GL(V ) is well-defined. The element ρp(Frobp) depends on p/p, but only up to
conjugacy. Usually we will abuse notation and language, and say “Frobenius at p” and write
ρ(Frobp) = ρp(Frobp).

Theorem 5. — Let ρ, ρ′ be two `-adic GQ-representations both unramified for nearly all primes.
Their semi-simplifications are isomorphic if and only if Tr(ρ(Frobp) = Tr(ρ(Frobp)) ∈ Q` for
nearly all prime numbers p.

Proof. — Let S be the set of primes that are ramified in ρ or in ρ′. The field K = Q
ker(ρ)∩ker(ρ′)

is a Galois extension of Q which is unramified at nearly all primes. By the Chebotarev density
theorem, the set of Frobenius elements in Gal(K/Q) is dense subset. So the theorem is a
consequence of Proposition 1.

Recall that in [34, chap. IV], Serre equips the group GQp with a decreasing filtration (GQp,i)i∈Z
of normal subgroups of GQp

. We have GQp,i = GQp
for i ≤ −1, and GQp,0 = IQp

. The wild-
inertia subgroup I(p/p)wild ⊂ IQp

is the group GQp,1. This group is pro-p, and in fact the
p-Sylow subgroup of IQp

because the quotient IQp
/I(p/p)wild is isomorphic to

∏
` 6=p Z`.

A GQ-representation is tamely ramified at a prime p if I(p/p)wild is contained in the kernel of
the representation.

Proposition 6. — Let (ρ, V ) be an `-adic GQ-representation. Then ρ is tamely ramified for
nearly all primes p.

Proof. — Let I = Im(ρ); then I ⊂ GL(L) for some OK-lattice L ⊂ V and K/Q` a finite
extension. The group H = ker(GL(L) → GL(L/mKL)) is pro-`. Let σ ∈ I(p/p)wild be an
element of the wild inertia group at a prime p which does not divide ` · #GL(L/mKL). The
image of σ in GL(L/mKL) must be trivial, so ρ(σ) ∈ H. But the group H is pro-` and σ lies in
pro-p group, so ρ(σ) = 1.

Proposition 7. — Let χ : GQ → Q
×
` be a continuous morphism. Then χ is a product of a

continuous morphism GQ → Q
×
` with finite image, and a continuous morphism GQ → Q

×
` which

is unramified outside `. In particular χ is unramified for nearly all primes.

Proof. — Let K ⊂ Q` be a subfield such that the image of χ is contained in K×. Recall that K×

is the product of a finite group with a finite type, free OK-module M . A continuous morphism
GQ → Q

×
` with finite image is unramified for nearly all primes. After twisting, we may thus

assume that χ takes values in M . By class field theory, χ corresponds to a continuous morphism
χ′ : Ẑ× →M . One has Ẑ× = S× Ẑ where S = Z/2Z×

∏
p 6=2 F×p . The torsion submodule T of S

is dense in S. Because M has no torsion, χ′ is trivial on T , and by continuity also on S. We can
decompose Ẑ = Z` ⊕ Z{`}. For every p 6= `, the morphism χ is trivial on Zp ⊂ Z{`} (embedded
on the corresponding axis), and χ′ is trivial on

⊕
λ 6=` Zλ ⊂ Z{`} and by density on Z{`}. We

have reduced to a χ′ which is only ramified at `. This completes the proof.

Example. — Let us make a GQ-representation which is ramified at infinitely many primes of Q.
Let K ⊂ Q be the extension of Q obtained by adjoining all `n-th roots of all prime numbers p and
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all `n-th roots of unity, where n ranges over all elements of Z≥0. Then Gal(K/Q) = ZP
` o Z×` ,

where P is the set of prime numbers. Fix a sequence (xp) ∈ ZP
` such that limp→∞ xp = 0 and

xp 6= 0 for all p. Consider the surjection

ZP
` o Z×` −→ Z` o Z×` , ((tn)p∈P, y) 7→

( ∞∑
p=0

xptp, y

)
.

Note that Z×` o Z` =
(

Z×` Z`
0 1

)
⊂ GL2(Q`), so we may compose

GQ −→ ZP
` o Z×` −→ Z` o Z×` ⊂ GL2(Q`),

to obtain a two dimensional GQ-representation which is ramified at all prime numbers.

1.3. L-factors and L-functions

We recall the definition of invariants and co-invariants. Let G be a group, H ⊂ G a subgroup
and V a G representation over an arbitrary field. Then V H is the space of invariants for the
H-action on V

V H = {v ∈ V |∀h ∈ H : hv = v},
the group G acts on V H if H ⊂ G is normal. The space of co-invariants is defined as

VH = V/{v − h · v|h ∈ H, v ∈ V }.

If H ⊂ G is normal, then this is a G-representation. Both constructions are covariant in V . The
functor V 7→ V H is left exact, and the functor V 7→ VH is right exact. If G = GQp

, H = IQp

and V is an `-adic GQp
-representation, then V IQp and VIQp are two ways to make V into an

unramified representation of GQp
.

Let (V, ρ) be an `-adic GQp
-representation, where ` is not p. The L-factor of (V, ρ) is defined

by

Lp(V, s) :=
1

det(1− ρ|
V
IQp (Frobp) · p−s)

∈ Q`(p
−s),

where the symbol “p−s” is transcendental over Q`, and with the notation ρ|
V
IQp we mean the

representation ρ restricted to the space of invariants V IQp under the action of IQp on V .
In case of an `-adic GQ-representation (V, ρ), we define for primes p 6= `:

((I.1)) Lp(V, s) := Lp(V |D(p/p), s) ∈ Q`(p
−s),

which does not depend on the choice p/p. We should define the L-factor at ` also; unfortunately
this is not so easy as the above, we will not give a definition of the factor at ` in this thesis. For
the applications to the global GQ-representations that we have in mind, it suffices to know the
L-factors at nearly all primes anyway.

Let ρ, ρ′ be two semi-simple `-adic GQ-representations which are unramified for nearly all
primes. Then ρ ∼= ρ′ if and only if nearly all their L-factors agree (Theorem 5).

We now want to multiply the L-factors, evaluate them in s ∈ C and talk about convergence.
To do this, we see that we have a problem: The L-factors have coefficients in Q`, but we
want them to have coefficients in C. To solve it, we choose an embedding ι : Q` → C, and
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set L(ι)
p (ρ, s) := ι(Lp(ρ, s)) ∈ C(p−s). So now the problem is solved, and we can define the

L-function as:

L(ι)(V, s) = L
(ι)
` (V, s) ·

∏
p 6=`

L(ι)
p (V, s) (formal product).

Conjecturally for a geometrical representation (we will define this notion in chapter 2), the L-
factors have coefficients in Q so the operation “applying ι” should not be as strange as it seems.
Moreover, the L-function should converge in a right half-plane, have a meromorphic continuation,
and satisfy a functional equation. For a precise statement, see [39, conjecture 2.1].

Example. — The L-function of the cyclotomic character is

((I.2)) L(ι)(Q`(1), s) = L
(ι)
` (Q`(1), s) ·

∏
p 6=`

1
1− 1/p · p−s

= ζ(s+ 1),

where ζ(·) is the Riemann-zeta function (we admit that the factor at ` equals (1− 1/` · `−s)−1).
To see this, one may apply class field theory. Otherwise, you can also just chase the definitions.
Let us do it like this here. Let p 6= `, and consider Frobp ∈ GQ/ ker(χ). Pick any prime p of
K := Q

kerχ
lying above p. The composition

((I.3)) µ`∞(OK) ↪→ O×K −→ (OK/p)×,

is injective. To see this, assume ζ ≡ 1 mod p where ζ ∈ µ`∞(OK).

Let Φζ = X`
k
−1

X`k−1−1
∈ Z[X] be the minimal polynomial of ζ at 1. Then Φζ(1) = ` if ζ 6= 1,

and Φζ(1) = 0 if ζ = 1. Therefore, the norm NL/Q(ζ − 1) equals to ` if ζ 6= 1 and equals to 0
otherwise. We assumed ζ−1 ∈ p, so its norm should be divisible by p, therefore NL/Q(ζ−1) = 0
and ζ = 1, so the morphism in (I.3) is injective.

The automorphism Frobp acts by x 7→ x1/p on OK/p. By equation (I.3) we see it acts on
µ`∞(OK) by ζ 7→ ζ1/p and the eigenvalue of Frobp is 1/p. Thus the composition in equation (I.3)
is indeed injective.

If you apply the formula (I.1) to compute the factor at p = `, then you get L(ι)
` (Q`(1), s) = 1,

which is wrong. Namely, if the factor at ` would be 1, then the L-function of χ` is
ζ(s− 1) · (1− ` · `−s) which depends on `.

Conjecturally, irreducible geometric GQ-representations (like χ`) should come in families,
where ` varies, of `-adic representations, with all the same L-factors, so the L-function should
not depend on `. The family of χ` is {χλ|λ prime}. The factor at ` may be computed using χλ,
with λ a prime different from `. This gives L(ι)

` (χ`, s) = (1− 1/` · `−s)−1.

For characters χ : GQ → Q
×
` with finite image the L-functions are classical. Let us explain

this relation more explicitly. Via the Artin map of class field theory, χ corresponds to a character
χ′ : Ẑ× → Q

×
` . Under this correspondence we have

((I.4)) L(ι)
p (χ, s) =

1
1− ιχ(Frobp) · p−s

=
1

1− ιχ′(p̂) · p−s
∈ C(p−s),

for unramified p 6= `, where p̂ = (1, p−1) ∈ Z×p × Z{p},×.



1.4. EXAMPLE: THE L-FUNCTION OF AN ELLIPTIC CURVE 13

Remark. — To see that p̂ ∈ Ẑ×/Z×p = Z{p},× is the geometric Frobenius at p, prove that
p̂ acts as ζ 7→ ζ1/p on roots of unity of prime-to-p-order, with a similar argument to the one
in (I.3). Otherwise, use (geometrically normalised) class field theory in the following manner.
The inclusion Ẑ× ↪→ A× induces an isomorphism Ẑ× ∼→ Q×\A×/R×>0. The geometric Frobenius
in Q×\A×/R×>0 is the Z×p -class of the idèle in A× with p on the coordinate corresponding to
p and 1 on all other coordinates. To put this class Frobp in Ẑ× one should multiply it with
p−1 ∈ Q×, hence the definition of p̂.

For the ramified p 6= `, the L-factor L(ι)
p (χ, s) equals 1. Let N ∈ Z>0 be minimal such that

χ′ factors over (Z/NZ)× → Q
×
` . Extend χ′ to a map Z/NZ → Q`, by setting χ′(x) = 0 if

gcd(x,N) 6= 1. Then formul (I.4) is correct for every prime number p 6= `. We admit that for
p = ` the above formula is also correct.

1.4. Example: The L-function of an elliptic curve

If V is an `-adic GQ-representation, then V ∨ is the dual GQ-representation. It is defined as
follows. Apply the functor HomQ`[GQ](�,Q`) to V . This functor is contravariant, so GQ acts (a
priori) on the right on V ∨. Compose the anti-morphism GQ → GL(V ∨) with the anti-morphism
g 7→ g−1 to obtain a morphism GQ → GL(V ∨), this defines the dual representation.

Theorem 8. — Let E be an elliptic curve over Q. Fix a prime ` ∈ Z. Let Ẽ/Z be a Weierstrass
model for E. Let ap(E) := 1 −#Ẽ(Fp) + p for all prime numbers p. Then for all primes p we
have:

((I.5)) L(ι)
p (V`(E)∨, s) =

 1
1−ap(E)p−s+pp−2s E has good reduction at p

1
1−ap(E)p−s E has bad reduction at p.

Moreover, in case E has bad reduction at p, then

((I.6)) ap(E) =


1 if E has split multiplicative reduction

−1 if E has non-split multiplicative reduction

0 if E has additive reduction.

We do not prove this entire theorem, only certain special cases.
Some remarks are in order. First, we have not defined the L-factor at ` of an `-adic GQ-

representation, so the above statement does not (formally) have any sense for p = `. With the
above we want to suggest that with the right definition of the factor at `, this is what should
come out.

Emphasising this once more: In case we directly apply formula (I.1) to compute the factor
at `, we obtain something wrong. For example if E has good, ordinary reduction at `, then the
L-factor is 1 over a linear polynomial in `−s, but it should be a degree 2 polynomial. If E has
good, super singular reduction at `, then the formula yields 1 as L-factor, this is also wrong.

Recall the criterion of Ogg-Tate-Shaverevich [36, p. 184] which states that E has good re-
duction at a prime p 6= ` if and only if V`(E) is an unramified GQ-representation. The above



14 CHAPTER 1. GALOIS REPRESENTATIONS

theorem is stronger than this criterion. To see this, the degree of the polynomial in p−s in the
denominator of the L-factor Lp(V`(E), s) equals dimV`(E) = 2 if and only if the representation
V`(E) is unramified.

For an abelian variety A over Q the L-factor at a prime p of good reduction may be defined
without using Tate modules, which implies the independence of ` at those primes. Moreover, it
implies that the factors have coefficients in Z. Let us explain this very briefly. Let p be a prime
where A has good reduction and let Ã be a Zp-model of A×Qp. This means that Ã is an abelian
variety over Zp such that its generic fiber is isomorphic to A×Qp (the isomorphism is part of the
data). Such a model Ã is unique up to isomorphism. One shows that for any α ∈ End(Ã× Fp)
there exists a polynomial Pα(X) ∈ Q[X] of degree 2 dim(A), such that for all r ∈ Q we have
deg(1− [r] · α) = Pα(r). One takes α the Frobenius endomorphism of Ã×Fp, then the L-factor
at p is given by 1/Pα(p−s). For details see [27, prop. 12.9] or in the case of elliptic curves, [37,
remark 10.1].

By the theorem, the L-factors are completely independent of ι. This is also true for abelian
varieties. More generally (but only conjecturally) also for the Galois representations in the étale
cohomology spaces of proper smooth Q-schemes. However, we will also consider subquotients of
representations occurring in cohomology. For those representations it is no longer true that the
coefficients of the L-factors lie in Z. For example, take φ : GQ → Q

×
` a continuous morphism

with finite image of cardinality at least 3. Then the coefficients of L-factors of φ do not lie in Z
(they lie in Z[µ#φ(GQ)]).

Also, the coefficients of the L-factors of the cyclotomic character are not integral over Z.
To know E up to Q-isogeny, is the same as to know (nearly) all its L-factors. This is a

consequence of (1) the isomorphism

Q` ⊗HomQ(E1, E2) ∼−→ Hom(V`(E1), V`(E2))GQ ,

for any pair of elliptic curves E1, E2 over Q [17], and the facts (2) two semi-simple Galois
representations are isomorphic if and only if nearly all their L-factors agree (Theorem 5), and
(3) that V`(E) is irreducible for all elliptic curves E/Q (Theorem 44), so a non-zero Q`[GQ]-
morphism V`(E1)→ V`(E2) exists if and only if the representations are isomorphic.

Alternatively, if you know the L-function of an elliptic curve then the modularity theorem
associates to the L-function of E a modular form f , and in turn to f an elliptic curve which is
isogeneous to E [15, p. 362, p. 241].

Proof of Theorem 8, for p 6= ` and E good reduction at p. — Let EQp = E ×Q Qp, Ẽ/Zp the
minimal Weierstrass model for EQp , and ẼFp the special fiber of Ẽ. Fix an algebraic closure Qp

of Qp. Consider the algebraic closure of Q inside Qp, let V`(EQp
) (resp. V`(E)) be constructed

relative to this choice of Qp (resp. Q). Then V`(EQp
) = V`(E) as Q`[GQp

]-modules.
Let φ : ẼFp → ẼFp be the Frobenius morphism sending (in projective coordinates) points

(x, y, z) ∈ Ẽ(Fp) to (xp, yp, zp). We have an isomorphism

((I.7)) V`(EQp
) ∼−→ V`(ẼFp).
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Let us define this morphism and prove it is an isomorphism. Let Ẽ[`n] be the kernel group
scheme of multiplication by `n on Ẽ. By definition this means, for any Zp-scheme S we have
Ẽ[`n](S) = ker([`n](S)). By the valuative criterion of properness, [21, II, thm 4.7], Ẽ[`n](Qp)
equals to Ẽ[`n](Zp). We have a morphism ϕn : Ẽ[`n](Zp)→ Ẽ[`n](Fp). The scheme Ẽ[`n]/Zp is
étale [28, thm 7.2]. By [20, cor I.6.2], the natural map

HomZp(A,B) −→ HomFp(A,B ⊗ Fp),

is bijective for every finite Zp-algebra B. On applying this for all finite Zp-subalgebras B of Zp,
we find that

ϕn : HomZp(A,Zp) −→ HomFp(A,Fp),

is bijective for all n. To obtain the isomorphism in (I.7), it suffices to take the limit over all n
and to tensor with Q.

On the left side in equation (I.7), V`(E(Qp)), the Frobenius Frob−1
p acts, and on the right

side, V`(Ẽ(Fp)), the endomorphism φ acts, and these actions correspond under the isomorphism
in (I.7). In particular, the characteristic polynomials of these operators coincide.

The characteristic polynomial of φ acting on V`(ẼFp) is of the form X2 + aX + b ∈ Q`[X].
Note that 1− φ is a separable isogeny, so

#Ẽ(Fp) = # ker(1− φ) = deg(1− φ) = (1− φ) ◦ (1− φ̂) = 1− (φ+ φ̂) + p ∈ Z,

where φ̂ : E → E is the dual isogeny of φ, and deg is the degree of φ. Therefore, a equals to
1−#Ẽ(Fp) + p. Because φ ◦ φ̂ = [p] as endomorphism of ẼFp , we get b = p.

In the above we have calculated the characteristic polynomial of φ which is of the form
det(X − φ). The L-factor at p is given by 1/ det(1 − φp−s). Therefore we get the formula
in the theorem.

Proof of Theorem 8 in case E has split multiplicative reduction at p, and p is different from `.
With these hypothesis, we have E(Qp) ∼= Q

×
p /q

Z for some q ∈ Q×p with |q| < 1, where the

isomorphism is as Z[GQp
]-modules [31]. Let n ≥ 1, then the `n-torsion of the group Q

×
p /q

Z is
given by the elements of the form

ζa`n · (q1/`n)b ∈ Q
×
p /q

Z,

where ζn` is a primitive `n-th root of unity, q1/`n ∈ Qp a root of the polynomial X`n−q ∈ Zp[X],
a ∈ Z and b ∈ Z≥0.

By definition, the canonical surjection Q
×
p → Q

×
p /q

Z is GQp
-equivariant. Let α ∈ (Q

×
p /q

Z)`n

and lift α to an element α̃ ∈ Q
×
p . Then α̃ is a root of the polynomial of the form

fn,b = X`n − qb ∈ Z`[X] for some b ≥ 0. Such a polynomial fn,b has only a single root modulo p,
so it is totally ramified. The IQp -orbits of the roots of fn,b in Qp correspond to the irreducible
factors of fn,b ∈ Zp[X]. This implies that Frobp acts trivially on the set of these IQp

-orbits, or
equivalently, trivially on the irreducible factors of fn,b ∈ Zp[X]. Moreover, the map x 7→ ζ`nx

induces IQp
-equivariant bijections between the IQp

-orbits of the roots of fn,b, so these orbits
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have the same cardinality, and the degrees of the roots of fn,b are all equal and thus a power of
`. Let d(n) be the degree of the irreducible factors of fn,1. We see

IQp
α̃ = αµdeg(α̃) ⊂ αµd(n),

where deg(α̃) is the degree of α̃ over Qp. Any element α ∈ (Q
×
p /q

Z)`n can be written as
ζa`n · (q1/`n)b mod qZ. The inertia group IQp acts trivially on ζ`n , so we conclude{

α

gα
|α ∈ (Q

×
p /q

Z)`n , g ∈ IQp

}
= µd(n).

Therefore,
E(Qp)`n,IQp

∼= (Q
×
p /q

Z)`n/µd(n),

as Z`[GQp
]-modules.

We already remarked that Frobp acts trivially on the IQp
-orbits of the polynomials fn,b.

Therefore we have an exact sequence

0 −→ µ`n/µd(n) −→ (Q
×
p /q

Z)`n/µd(n) −→ Z/`nZ −→ 0,

where GQp
acts trivially on Z/`nZ.

On taking the projective limit over all n, we find that T`(E)IQp surjects onto Z`(0) with finite
kernel. Therefore, V`(E)IQp is isomorphic to the trivial representation and ap(E) = 1.

Because E has split multiplicative reduction, the cardinality #Ẽ(Fp) equals to #Gm(Fp)
plus one, because the smooth locus of E is isomorphic to Gm as group scheme, and the plus
one comes from the singular point. Therefore #Ẽ(Fp) = (p − 1) + 1 = p. This completes the
proof.

Remark. — From the above calculation we see that the GQp -surjection T`(E)IQp → Z`(0) is
surjective with finite kernel. This morphism is not always an isomorphism. For example, if q
is an `-th power in Q×p then it is not an isomorphism. Only after extending scalars to Q` it
becomes an isomorphism.



Chapter 2: Geometric representations

In this chapter we will introduce the notion of “geometric representation”, and state the
Fontaine-Mazur conjecture.

2.1. Étale cohomology

Let X,Y be two schemes, a morphism X → Y is étale if it is smooth of relative dimension
zero.

Let X be a scheme. The étale site of X, notation Xét, is the category whose objects are
étale morphisms U → X and whose morphisms are the (étale) X-morphisms. The category Xét

is endowed with a Grothendieck topology . This is to say that open covers are prescribed: Let
U ∈ Xét, a set of objects U of Uét is an open cover of U if

⋃
V ∈U Im(V → U) = U (set theoretical

equality).
A presheaf of abelian groups F on X for the étale-topology is a contravariant functor

Xét → Ab.Groups. The presheaf F is a sheaf if for each U → X in Xét and each étale covering
U of U the diagram

F(U) //
∏
V ∈U F(V ) //

//
∏
V ′,V ′′∈U F(V ′ ×U V ′′),

is exact.
A morphism of presheaves is a natural transformation of functors, and a morphism of sheaves

is a morphism of presheaves. We obtain the category Ab(Xét) of sheaves on Xét. The categories
of sheaves and presheaves on Xét are abelian categories [29, prop 7.8].

The inclusion functor from Ab(Xét) to the category of presheaves on Xét admits a left adjoint
functor [29, prop 7.15]. This is the sheafification functor P 7→ P+ .

The category Ab(Xét) has enough injectives and the global sections functor Γ(X,�) is left
exact [29, prop 8.12]. Therefore, it has right derived functors Hq(Xét,�).

The cohomology Hq(Xét,Q`) with Q`-coefficients is not defined as the cohomology of the
sheaf associated to the constant presheaf U 7→ Q`: The definition is slightly more com-
plicated. First Hq(Xét,Z/`nZ) is the cohomology of the sheaf associated to the presheaf
U 7→ Z/`nZ. The cohomology Hq(Xét,Z`) is by definition lim←−n∈NHq(Xét,Z/`nZ), and
Hq(Xét,Q`) = Q` ⊗Z` H

q(Xét,Z`).
Let k be a field, ks/k a separable closure, and X a proper k-scheme. Define Xks := X ×k ks

and assume that all of the irreducible components of Xks have dimension at most n ∈ Z≥0. The
Z`-module Hq(Xks,ét,Z`) is finitely generated and the spaces Hq(Xks,ét,Z`) are 0 for q > 2n
[29]. The space Hq(Xks,ét,Z`) is contravariant in X. Therefore, if G is a group acting on X, the
cohomology is a G-representation. Let G = Gal(ks/k) be the absolute Galois group of k, the ks-
scheme Xks is equipped with a G-action, and the spaces Hq(Xks,ét,Q`) are `-adic representations
of G.

Example. — Let A/k be an abelian variety, and assume char(k) 6= `. Then
Hq(Aks,ét,Q`) =

∧m
V`(A)∨; see [27, 15.1].
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The idea of étale cohomology originates from cohomology of analytical spaces. Let us explain
this in precise terms. An analytical space is defined as follows. Let U ⊂ Cn be an open subset,
OU be the sheaf of holomorphic functions on U , I ⊂ OU (U) a finitely generated ideal, V (I) ⊂ U
the subspace on which all functions of I vanish. On V = V (I) we put the structure sheaf
OV = OU/I, making (V,OV ) into a locally ringed space. An analytical space is a locally ringed
space (X,OX) over Spec(C) which is locally isomorphic to a locally ringed space of the form
(V,OV ), where V is constructed as above.

On an analytical space X one has Betti cohomology. This it is defined as follows. The
category of sheaves of abelian groups on X is abelian, has enough injectives, and the global
sections functor Γ(X,�) is a left exact functor to the category of abelian groups. The right
derived functors Hn

Betti(X,�) of Γ(X,�) are the Betti cohomology on X.
A morphism between two analytical spaces X → Y is étale if it is locally an open immersion.

The site Xcl is the site of all étale morphisms of analytic spaces U → Xcl. Betti cohomology
on Xan is cohomology on the site XBetti of open immersions U → X. In the analytical setting,
every étale morphism can be covered by open immersions, so the toposses of abelian sheaves on
XBetti and Xcl are equivalent; in particular the two cohomologies “Betti” and “cl” coincide.

Let X be a scheme, locally of finite type over C. Consider the functor which associates to
an analytic space X the set of morphisms X → X of locally ringed spaces on C-algebras. This
functor is representable by an analytic space Xan, the analytification of X, or the analytic space
associated to X, see [20, exposé XII].

A morphism of varieties X → Y over C is étale if and only if the morphism of analytic spaces
Xan → Y an is if it is locally an open immersion, i.e. étale in the analytical sense [loc. cit ].

As we already mentioned before, any étale morphism U → X induces an étale morphism
Uan → Xan. This induces a morphism of sites Xcl → Xét, and, by pull back, one may associate
to any étale sheaf F an analytic sheaf Fan on Xcl. The morphism Γ(Xét,F) → Γ(Xcl,Fan)
induces morphisms on the cohomology Hq(Xét,F) → Hq(Xan

cl ,Fan). The comparison theorem
[1, exp. VI, thm 4.1] states that these morphisms are isomorphisms, provided F is a torsion
sheaf, and either X/C is proper or F is constructible.

Therefore, étale cohomology provides an extension of Betti cohomology to arbitrary schemes.
It coincides for varieties over C. There is one point of caution: The sheaves in question should
be torsion sheaves, for non-torsion sheaves, e.g. F the constant sheaf Z on a curve [1, exp. XI],
the comparison theorem is not true. This is why one defines cohomology with Z`-coefficients as a
projective limit of cohomology with Z/`nZ-coefficients, so that one has the comparison theorem
on each stage in this projective limit.

2.2. Representations coming from geometry

Let X be a smooth and proper Q-scheme. There exists a number N ∈ Z such that X admits
a proper and smooth model X over S = Spec(Z[1/N ]). With this we mean the following data,
(1) a proper and smooth morphism π : X→ S, and (2) an isomorphism X×S Q ∼→ X.
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Theorem 9. — Let X be a smooth and proper Q-scheme. Let N ∈ Z be a natural number such
that X admits a smooth and proper model over Z[1/N ], then Hq(XQ,ét,Q`) is unramified outside
N · `.

Proof. — Let p be prime different from `, which does not divide N . Pick a Q-prime p lying
above p and let T be the spectrum of the localisation of Z at p. Denote with s be the special
point of T and with η the generic point of T . Let F be the constant sheaf Z/`nZ on XT .

The morphism η : XT → ST is proper and smooth. By smooth base change, the sheaf (Rqη∗)F
is locally constant and constructible. Because both the residue field and the fraction field of T
are separably closed, we find

Hq(Xs,Z/`nZ) = Hq(Xs,F|Xs) = Hq(XQ,F|XQ
) = Hq(XQ,Z/`

nZ),

functorially in X. Hence, Hq(Xs,Z/`nZ) = Hq(XQ,Z/`
nZ) as Z`[GQp ]-modules. But IQp acts

trivially on Xs, and so also trivially on Hq(XQ,Z/`
nZ) = Hq(XQ,Z/`

nZ).

In the coming sections we will be deriving, or stating, certain properties of irreducible sub-
quotients V of the spaces Hq(XQ,ét,Q`) as Galois representation, so that eventually we will
have enough to give some sort of (conjectural) representation theoretic classification of these
representations. This is what the Fontaine-Mazur conjecture is about.

Let V be an irreducible subquotient of Hq(XQ,ét,Q`). Apart from the condition that V is
unramified locally at nearly all prime numbers, there is another important condition: V is de
Rham at `. In the coming sections we define what this means, but let us first explain by example
why more conditions should be imposed on the representations.

We have the following example. Let a ∈ Z`. Let χ(a)
` be the composition

((II.8)) GQ
χ`−→ Z×` = F×` × (1 + `Z`) −→ 1 + `Z`

x 7→xa−→ 1 + `Z` −→ Z×` ,

and let Q`(χ
(a)
` ) be the GQ-representation with space Q`, and GQ-action given by χ

(a)
` . The

L-factor of χ(a)
` at a prime p 6= ` is given by (1− ι(χ(a)

` (p̂)) ·p−s)−1 ∈ C(p−s). If a /∈ Z, then this
character does not come from geometry (for the argument, see below). One may believe this, by
looking at the L-function,

((II.9)) L(ι)(χ(a)
` , s) = L

(ι)
` (χ(a)

` , s)×
∏
p 6=`

1

1− ι(χ(a)
` (p̂)) · p−s

(formal product!),

which appears to be really bad. If a /∈ Q, I expect χ(a)
` (p̂) to be transcendental over Q, at least

for one prime number p. So in this case, I think the L-function even depends on ι in an awful
manner.

We give a complete argument now, but we use notions and theorems that we will define
and prove only later. Assume that χ(a) occurs in the étale cohomology of some proper and
smooth Q-scheme. The global Langlands Conjecture 40 is true for one-dimensional represen-
tations. Therefore χ(a) corresponds to an automorphic representation π of GL1(A). Such a π

is a twist of a continuous homomorphism φ′ : Ẑ× → C× with a k-th power of the adelic norm
| · | : GL1(A) → C× where k ∈ Z, see formula (V.22). Under the global Langlands conjecture
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this automorphic representation corresponds to φ ⊗ χk` , where φ is obtained from φ′ by com-
posing with the isomorphism of global class field theory (geometrically normalised). Therefore
χ(a) = φ⊗ χk` . It is easy to check that this implies a = k, hence a is an integer.

2.3. Hodge-Tate representations

Let C` be the completion of Q`; it is an algebraically closed field and the Galois action of
GQ`

on Q` extends to C` by continuity. The Hodge-Tate ring BHT is the Z-graded C`-algebra
C`[t, 1/t] =

⊕
r∈Z C` · tr. The group GQ`

acts on C` ⊂ BHT via the Galois action, and on
t ∈ BHT via χ`, so for all σ ∈ GQ`

one has σ(t) = χ`(σ)t.

Theorem 10 (Tate). — For all subfields K ⊂ Q` containing Q` the ring BGal(Q`/K)
HT is the

completion of K.

Proof. — [10, thm 2.14, p. 31].

Let DHT be the functor that associates to an `-adic GQ`
-representation V

(over Q`) the Z-graded Q`-vector spaces (BHT ⊗Q`
V )GQ` with grading defined by

grrDHT(V ) := (grrBHT ⊗Q`
V )GQ` .

To an `-adic GQ`
-representation V over E we associate Hodge-Tate numbers HT (V ). It is the

multiset of integers in which an integer r ∈ Z occurs with multiplicity dimQ`
gr−rDHT(V ).

To avoid confusion, let us define the concept ‘multiset’. A multiset is a set X together with
a map f : X → Z≥0. An x ∈ X is called an element and f(x) is the multiplicity of x. We will
always suppress f from the notation. When we say a multiset of integers, or complex numbers,
etc we mean that X = Z, X = C, etc. We say that the multiset has finite cardinality if f has
finite support, and in that case we define the cardinality of the multiset as

∑
x∈X f(x). A good

example for this notion is the multiset of roots of a polynomial f ∈ K[X] over an algebraically
closed field K. The advantage is that the cardinality of the multiset of roots is always equal
to the degree of the polynomial, whereas the cardinality of the set of roots equals to the degree
of f if and only if f is separable. Later on in this thesis we will also see multisets of complex
numbers encoding in a natural way the C-algebra morphisms of C[X1, . . . , Xn]Sn into C (see
Corollary 37).

Remark. — Let X be a proper and smooth Q`-scheme. Consider the GQ`
-representation

((II.10)) C` ⊗Q`
Hn(XQ`,ét,Q`),

where GQ`
-acts on C` via the Galois action, on Hn(XQ`,ét,Q`) via pull-back functoriality, and

on the tensor product via the diagonal action. Next, consider the GQ`
-representation

((II.11))
⊕
q∈Z

(C`(−q)⊗Q`
Hn−q(X,ΩqX/Q`

)),

where GQ`
acts on C`(−q) via the Galois action, twisted by the (−q)-th power of the cyclotomic

character, trivially on Hn−q(X,ΩqX/Q`
), and on the tensor product via the diagonal action. Falt-

ings theorem states that there is an Q`[GQ`
]-isomorphism between the representation in (II.10)
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and the representation in (II.11). This isomorphism is functorial in X. Therefore, the multi-
plicity of an integer q ∈ Z in HT (Hn(XQ`,ét,Q`)) equals to the dimension of Hn−q(X,ΩqX/Q`

).
In particular, if one starts with a proper and smooth Q-scheme, the Hodge-Tate multiset of
Hn(XQ`,ét,Q`) does not depend on `, and is just the multiset coming from the de Rham coho-
mology of X.

Let V be an `-adic GQ-representation. Consider the morphism
αV : BHT ⊗Q`

DHT(V )→ BHT ⊗Q`
V , defined by λ⊗ (

∑n
i=1 µi ⊗ xi) 7→

∑n
i=1 λµi ⊗ xi.

Theorem & Definition 11. — The map αV is injective and the following are equivalent:

1. The map αV is surjective;
2. The dimension of V equals to the dimension of DHT(V );
3. There exists a map BHT ⊗Q`

V → Bdim(V )
HT which is an isomorphism of BHT-modules and

GQ`
-sets.

We call the representation V Hodge-Tate if one of the above conditions on V is true. Moreover,
the property “Hodge-Tate” is stable under tensor products, duals, direct sums and subquotients of
`-adic GQ`

-representations.

Proof. — [18, 2.13].

Example. — The continuous morphism χ
(a)
` : GQ`

→ Z∗` (see formula (II.8)) is Hodge-Tate if
and only if a ∈ Z. This follows from theorem 41.

2.4. de Rham representations

The notion “de Rham representation” is similar to “Hodge-Tate representation”, only the de
Rham ring BdR is more complicated than BHT. Let us recall briefly its construction. See [10,
2.2.2] for more details.

Let Ẽ
+

= lim←−n∈NOC`/`, as topological ring, with the quotient topology on OC`/` and with

respect to the maps x 7→ x`. The group GQ`
acts on Ẽ

+
. Let Ã

+
be the ring of Witt vectors of

Ẽ
+

. The GQ`
-action and the Frobenius automorphism on Ẽ

+
lift to Ã

+
. The ring Ã

+
is equipped

with a surjective morphism of rings θ : Ã
+ → OC` . This morphism is also GQ`

-equivariant. This

ring Ã
+

also has a Teichmuller character [·] : Ẽ
+
→ Ã

+
. On applying the functor �[ 1

` ] to θ we

obtain a morphism Ã
+

[ 1
` ]→ C`, also denoted by θ. The kernel I ⊂ Ã+[ 1

` ] of θ is principal and

GQ`
-stable; the ring B+

dR is the completion of Ã
+

[ 1
` ] with respect to the I-adic topology. The

ring BdR is the quotient field of B+
dR.

The rings B+
dR and BdR have the following properties:

dR1 B+
dR is a complete discrete valuation ring;

dR2 B+
dR and BdR are Q`-algebras;

dR3 The group GQ`
acts on B+

dR and with the induced action on BdR;
dR4 Denote with FilrBdR the r-th power of the maximal ideal of B+

dR. Then {FilrBdR : r ∈ Z}
make BdR into a Z-filtered ring. We have FilrBdR/Filr+1BdR = grrBHT for all r ∈ Z;
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dR5 For all subfields K ⊂ Q` containing Q` the ring BGKdR is the completion of K.

(These properties do not characterise the ring uniquely.)
Let DdR be the functor that associates to an `-adic GQ`

-representation over Q` the Z-filtered
Q`-vector space (BdR⊗Q`

V )GQ` with filtration FilrDHT(V ) := (FilrBdR⊗Q`
V )GQ` . Define the

morphism αV : BdR ⊗Q`
DdR(V )→ BdR ⊗Q`

V , λ⊗ (
∑n
i=1 µi ⊗ xi) 7→

∑n
i=1 λµi ⊗ xi.

Theorem & Definition 12. — The map αV is injective and the following are equivalent:

1. The map αV is surjective;
2. The dimension of V equals to the dimension of DdR(V );
3. There exists a map BdR ⊗Q`

V → Bdim(V )
dR which is an isomorphism of BdR-modules and

GQ`
-sets.

We call the representation V de Rham if one of the above conditions on V is true. Moreover,
the property “de Rham” is stable under tensor products, duals, direct sums and subquotients of
`-adic GQ`

-representations.

Proof. — [18, 2.13].

Assume V is an `-adic de Rham representation. By property dR4 we have an exact sequence
0 → Filr+1BdR → FilrBdR → C`(r) → 0. Tensor it with V , take GQ`

-invariants, and sum over
all r to obtain an injection

ϕ :
⊕
r∈Z

FilrDdR(V )/Filr+1DdR(V ) −→
⊕
r∈Z

grrDHT(V ) = DHT(V ).

The map ϕ is a surjection because the left hand side has dimension dimV , and
dim DHT(V ) ≤ dim(V ).

We conclude that the diagram of functors

{`-adic de Rham GQ`
-representations over Q`}

DdR //

DHT ,,XXXXXXXXXXXXXXXXXXXXXXX
{Z-filtered Q`-vector spaces}

gr

��
{Z-graded Q`-vector spaces}

is essentially commutative. In particular we have the following proposition.

Proposition 13. — Let V be a de Rham representation of GQ`
, then V is Hodge-Tate.

Theorem 14. — Let V be an `-adic GQ-representation isomorphic to a subquotient of the étale
cohomology of a smooth proper Q-scheme, then V is de Rham at `.

Proof. — The proof of this theorem is difficult. First one needs the results of Tsuji [40, 41],
proving the conjecture Cst of Fontaine which states the following. Let K be a finite extension
of Q`, and Y a proper and semi-stable scheme over OK , then Hi(YK,ét,Q`) is a semi-stable
representation of Gal(K/K). For the notion semi-stable morphism of schemes, see [3, 1.3], for
the notion semi-stable Galois representation, see [11] or [18].
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Next, one turns to the conjecture Cpst, also of Fontaine. This conjecture states that if X is
a proper and smooth K-scheme, then Hi(XK,ét,Q`) is a potentially semi-stable representation.
A Galois representation is potentially semi-stable, when it is semi-stable when restricted to an
open subgroup of the absolute Galois group, see [11] or [18]. To prove this conjecture, it suffices
that for each X in the conjecture Cpst there exists a Y as in the conjecture Cst such that X is
the generic fiber of Y . This follows from a result of de Jong, [25, thm 4.5].

Finally, one applies another conjecture of Fontaine, stating that an `-adic GQ`
-representation

is de Rham if and only if it is potentially semi-stable. This conjecture is proved in [18, section
6.5.2, prop A on page 164] and [2].

Definition 15. — Let V be an `-adic GQ-representation, unramified for nearly all primes, and
de Rham at `. Then V is called geometric.

Notice that we now have two notions of geometric, namely, “geometric” as in the above defi-
nition, and “coming from geometry”.

2.5. The Fontaine-Mazur conjecture

Conjecture 16. — Let V be an irreducible geometric GQ-representation. There exists a smooth
projective Q-scheme X, integers i, r ∈ Z with i ≥ 0 such that V is isomorphic to an irreducible
subquotient of Hi(XQ,ét,Q`(r)).

We only deal with the base field K = Q in this thesis, to simplify matters. All of the above
is also formulated for general number fields. After ‘the de Rham’ condition has been defined for
all p-adic fields, the Fontaine-Mazur conjecture states that any `-adic GK-representation which
is de Rham locally at all primes dividing ` and unramified for nearly all primes, occurs as a
subquotient in the étale cohomology of some smooth projective K-scheme, maybe twisted with
some power of the cyclotomic character. Assume the conjecture is true for Q, let us indicate how
it can be deduced for a number field K. Let V be an irreducible geometric GK-representation,
then V ′ = IndGQGK (V ), is a geometric GQ-representation, so V ′ occurs in Hi(XQ,ét,Q`(r)) for
some smooth projective Q-scheme X. By Frobenius duality, the representation V ′ contains the
representation V , so V occurs in the cohomology of X ×Q K.

Let ρ : GQ → GL(V ) be an irreducible `-adic GQ-representation over Q` with finite image,
then ρ factors over G := Gal(K/Q) where K/Q is some finite Galois extension. One has
H0(Spec(K)Q,ét,Q`) ∼= Q`[G] as G-representations, and Q`[G] decomposes as the direct sum of
all (modulo isomorphism) irreducible G-representations. So the conjecture is true for represen-
tations with finite image.

The abelian case of the conjecture is also true. Any geometric irreducible abelian represen-
tation is of the form χr` ⊗ φ, where φ : GQ → Q` is a continuous morphism with finite image
and r ∈ Z (Theorem 41). Note that both these instances have only little to do with the general
statement. To illustrate this: in both cases the Q-scheme can be chosen to be finite over Q.





Chapter 3: Smooth Representations

In the previous chapters we introduced the Galois side of the Langlands correspondence, in
the following two we will explain the automorphic side.

3.1. Restricted products

Let Σ be an index set and assume we are given for each v ∈ Σ a locally compact group Gv, a
finite set Σ∞ ⊂ Σ, and for all v ∈ Σ\Σ∞ a maximal compact open subgroup Kv ⊂ Gv.

For each finite subset S ⊂ Σ with Σ∞ ⊂ S we set G(S) =
∏
v∈Σ\S Kv ×

∏
v∈S Gv, as

topological groups with the product topology. The set of the G(S) when S varies, together with
the inclusions G(S) ⊂ G(S′), is an inductive system of topological groups. The inductive limit∏′
v∈ΣGv := lim−→S

G(S) of this system is the restricted product of the Gv with respect to the Kv.
The group G :=

∏′
v∈ΣGv is locally compact.

Note that for every S we have an inclusion G(S) →
∏
v∈ΣGv, and thus an inclusion

G →
∏
v∈ΣGv . The image of this inclusion is the set of (xv)v∈Σ ∈

∏
v∈ΣGv with xv ∈ Kv

for nearly all v. It is important to know that the topology on G is not necessarily the topology
induced from the inclusion G→

∏
v∈ΣGv.

If Ω ⊂ Σ is a finite subset, then

∏
v∈Ω

Gv ×
∏′

v∈Σ\Ω
Gv =

∏
v∈Ω

Gv × lim−→
S⊂(Σ\Ω)

G(S) = lim−→
S⊂(Σ\Ω)

(∏
v∈Ω

Gv

)
×G(S) = G.

((III.12))

In particular, if Σ is finite, we see that finite restricted products are just products.
In case the groups Gv are topological rings and Kv compact open subrings, then G is a

topological ring. The ring of adèles A of Q is the restricted product of the rings Qv over all
places v with respect to the subrings Zv ⊂ Qv for finite v. The ring of finite adèles of Q, A∞, is
the same product, but taken over the finite places. The group GLn(A) is the restricted product∏′

all v GLn(Qv) with respect to the subgroups GLn(Zv) ⊂ GLn(Qv) for finite v.
We return to the general case, where the Gv are locally compact groups. Let Πv be for each

v ∈ Σ a complex vector space together with a representation Gv → GL(Πv). Let S ⊂ Σ be a
finite subset with Σ∞ ⊂ S and define T (S) =

⊗
v∈Σ\S ΠKv

v ⊗
⊗

v∈S Πv, then T (S) is a G(S)-
representation. Define T := lim−→S

T (S) where S ranges over all finite subsets S ⊂ Σ with Σ∞ ⊂ S.
Then, for each S, G(S) acts on T . By passage to the inductive limit, G acts on T . We define the
restricted tensor product

⊗′
v Πv as the space T together with the morphism G→ GL(T ) defined

above.
If ΠKv

v is 0 for infinitely many v, then
⊗′

vΠv = 0. By definition, a Gv-representation Πv is
called unramified if ΠKv

v 6= 0. When forming a restricted tensor product, we will usually assume
that Πv is unramified for nearly all v.
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If Ω ⊂ Σ is a finite subset then⊗
v∈Ω

Πv ⊗
⊗′

v∈Σ\Ω
Πv =

⊗
v∈Ω

Πv ⊗ lim−→
S⊂Σ\Ω

(⊗
v∈Σ\(S∪Ω)

ΠKv
v ⊗

⊗
v∈S

Πv

)
= lim−→
S⊂Σ\Ω

T (Ω ∪ S) =
⊗′

v∈Σ
Πv.((III.13))

In particular, if Σ is finite then the restricted tensor product is a usual product.

Proposition 17. — Let Πv (resp. Π′v) for each v ∈ Σ be an irreducible Gv-representation,
unramified for nearly all v, such that

⊗′
v∈Σ Πv

∼=
⊗′

v∈Σ Π′v. Then Πv
∼= Π′v for every v ∈ Σ.

Proof. — By equation (III.13), it suffice to do the case where Σ = {1, 2} contains only two
elements, so a classical tensor product and a classical product of groups. There is a non-zero
G(1)-composition Π1 → Π(dim Π2)

1
∼→ Π′(dim Π′2)

1 → Π′1, hence Π1
∼= Π′1. The case i = 2 is left to

the reader.

Remark. — Usually in the literature the following alternative definition of restricted tensor
product is used. Let Σ,Σ∞, Gv,Kv,Πv be as above. Let moreover be given for nearly all
v ∈ Σ\Σ∞, an invariant vector xv ∈ ΠKv

v . Then
⊗′

v Πv can also be defined as the subspace of
the full tensor product

⊗
v Πv generated by elementary tensors of the form

⊗
v yv with yv = xv

for nearly all v. In case dim ΠKv
v = 1 for nearly all v, this notion of restricted tensor product

coincides with the notion of restricted tensor product defined above, in the sense that the two
objects are G-isomorphic. For the groups GLn(Qp), it is true that dim ΠGLn(Zp)

p ∈ {0, 1}, for
any irreducible smooth-admissible GLn(Qp)-representation Πp. As we will see, this follows from
the fact that the Hecke algebra H(GLn(Qp) : GLn(Zp)) is commutative.

The ultimate generality in which one wants to work with restricted tensor products is when G
is a reductive algebraic group over a global field F , and where Gv = G(Fv) for all v. One lets OF
be the ring of integers of F in case it is a number field; in case F has characteristic p, one picks
a random F -place v and one lets OF be the ring of x ∈ F which have non-negative valuation for
all F -places w 6= v. Then G has a model G̃ over some open subscheme U of Spec(OF ). One may
now define Kv = G̃(Fv) for nearly all F -places v ∈ U .

I expect (but cannot prove) that H(Gv : Kv) is commutative for nearly all v, in the above
described generality. If this is so, then the two notions of tensor products will coincide for
restricted tensor products of irreducible, smooth-admissible Gv-representations.

In case this is not so for a certain reductive group over F , problems with both definitions
will appear. With the definition of restricted tensor product that we gave, I think it is not
true (in general) that the restricted tensor product of smooth-admissible representations is again
smooth-admissible. With the definition that is given in the literature, I think the isomorphism
class of a restricted tensor product will (in general) depend on the choice of the vectors xv.

In this thesis, we will quickly start assuming Gp = GLn(Qp) and Kp = GLn(Zp), which avoids
all of the above problems and suffices for the applications we have in mind.
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3.2. Locally profinite groups

Let G be a totally disconnected locally compact topological group, then G is called locally
profinite. The next lemma explains the terminology.

Lemma 18. — Let G be a topological group. Then G is locally profinite group if and only if
there exists a profinite open subgroup K ⊂ G.

Proof. — The implication “⇐” is true because profinite groups are totally disconnected and
compact. For the other implication, assume G is totally disconnected and locally compact. Let
U1 ⊂ G be open such that 1 ∈ U1 and the closure U1 ⊂ G in G is compact. Because G is
totally disconnected there exists a closed and open subset U2 ⊂ U1, with 1 ∈ U2. Because U1 is
compact, it follows that U2 is compact. Therefore, U2 ⊂ G is compact open and contains 1. We
define:

K = {g ∈ U2|∀h ∈ U2 : g−1h ∈ U2}.

We claim that K is a profinite open subgroup of G. Let us verify this. If g, g′ ∈ K and h ∈ U2

then (gg′)−1h = (g′)−1g−1h ∈ U2, so gg′ ∈ K. Because also 1 ∈ K, we see that K is a subgroup
of G. Let us prove that K is also open in G. Define

m̃ : U2 × U2 −→ G, (g, h) 7→ g−1h.

Let p2 : U2 × U2 → U2, (g, h) 7→ h be the projection on the second coordinate. Then p2 is closed
and open. If S ⊂ G is a subset, then we denote with S{ the complement of S in G. We have the
equality

p2m̃
−1(U{

2 ) = {g ∈ U2|∃h ∈ U2 : g−1h /∈ U2},

so K = U2 ∩ (p2m̃
−1(U{

2 )){ is open in G.
The group K is a closed and contained in U2, so K is compact. We conclude that K is profinite

and open in G.

Example. — Let F be a non-Archimedian local field and X a finite type F -scheme. Then X(F )
is locally compact and totally disconnected. In particular if G is a finite type F -group scheme,
then G(F ) is a locally profinite group. The Weil group (see Section 7.1) of F is locally profinite.

Let Σ be an index set, Gv a locally profinite group for every v ∈ Σ, and Kv ⊂ Gv a compact
open subgroup in Gv for all v ∈ Σ. Then

∏
vKv is a profinite open subgroup of

∏′
v Gv, therefore

the restricted product of locally profinite groups is again a locally profinite group.
Therefore, if G is a finite type Q-group scheme, then G(A∞) is a locally profinite group.

3.3. Smooth representations

Let G be a locally profinite group and Π be a complex vector space, together with a repre-
sentation G → GL(Π). Then Π is smooth as G-representation if for every v ∈ Π the stabiliser
stab(v) ⊂ G is open. The smooth representation Π is smooth-admissible if for all open sub-
groups H ⊂ G the space of invariants ΠH is finite dimensional. A morphism of smooth or
smooth-admissible G-representations is a G-equivariant morphism of vector spaces.
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Lemma 19. — Let G1 and G2 two groups and Π1 (resp. Π2) a complex G1 (resp. G2) repre-
sentation. Then (Π1 ⊗Π2)G1×G2 = ΠG1

1 ⊗ΠG2
2 .

Proof. — Consider the exact sequence

((III.14)) 0 −→ ΠG1
1 −→ Π1 −→

⊕
g∈G1

Π1,

where the last map in this exact sequence is given by (x 7→ (x − gx)g∈G1). Tensor the se-

quence (III.14) with Π2 and use
(⊕

g∈G1
Π1

)
⊗ Π2 =

⊕
g∈G1

(Π1 ⊗Π2), to find the exact
sequence

0 −→ ΠG1
1 ⊗Π2 −→ Π1 ⊗Π2 −→

⊕
g∈G1

(Π1 ⊗Π2) .

The last map in this sequence is given by (x 7→ (x−gx)g∈G1). Therefore, (Π1⊗Π2)G1 = ΠG1
1 ⊗Π2.

Moreover,
(Π1 ⊗Π2)G1×G2 =

(
(Π1 ⊗Π2)G1

)G2 = (ΠG1
1 ⊗Π2)G2 ,

and, by the same argument as above,

(ΠG1
1 ⊗Π2)G2 = ΠG1

1 ⊗ΠG2
2 .

Proposition 20. — Let A and B be two unitary associative algebras over an algebraically closed
field Ω. Let M resp. N be a simple module over A resp. B. Then M ⊗ N is simple as
A⊗B-module. Furthermore, let C(A) (resp. C(B), C(A⊗B)) be the set of isomorphism classes
of simple modules over A (resp. B, A ⊗ B), which are finite dimensional over Ω. The map
C(A)× C(B)→ C(A⊗B), (M,N) 7→M ⊗N is a bijection.

Proof. — [5, p. 94, chap. 8].

We need to fix some notations. Let (Σ,Σ∞, Gv,Kv,Πv) be given by

Σ := an index set;

Σ∞ := ∅;

Gv := a locally profinite group for all v ∈ Σ;

Kv := a maximal compact open subgroup of Gv, for all v ∈ Σ;

Πv := a complex smooth Gv-representation for all v, unramified for nearly all v;

G :=
′∏
v∈Σ

Gv;

GS :=
′∏
v∈Σ\S

Gv for S ⊂ Σ subset;

GS :=
′∏
v∈Σ\S

Gv for S ⊂ Σ subset;

K :=
∏

v∈S
Kv for S ⊂ Σ subset.

((III.15))
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Proposition 21. — Let (Σ, Gv,Kv,Πv) be as in ( III.15). The restricted tensor product
⊗′

vΠv

is smooth.

Proof. — Recall that, in a topological group, to show that a subgroup H of G is open, it suffices
to show that it contains an open subgroup of G. Let x ∈

⊗′
v Πv. Write x as a finite sum of

elementary tensors. The stabiliser of x in G contains the intersection of the stabilisers of these
elementary tensors. Therefore, we may assume that x =

⊗
v xv is an elementary tensor. We

have stab(x) =
∏′
v stab(xv) ⊂ G. Because stab(xv) ⊂ Gv is open and stab(xv) ⊃ Kv for nearly

all v, this subgroup stab(x) ⊂ G is open.

Lemma 22. — Let (Σ, Gv,Kv,Πv) be as in ( III.15). Let, moreover Hv ⊂ Gv for each v be an
open subgroup such that Hv = Kv for nearly all v. Then

(⊗′
vΠv

)H
is the inductive limit over

all S ⊂ Σ of the spaces
⊗

v∈Σ\S ΠKv
v ⊗

⊗
v∈S ΠHv

v .

Proof. — The functor �H is left exact, so it commutes with inductive limits and we have(⊗′
vΠv

)H
= lim−→S

(⊗
v∈Σ\S ΠKv

v ⊗
⊗

v∈S Πv

)H
. If S contains all v ∈ Σ such that Hv 6= Kv,

then, by the Lemma 19 ⊗
v∈Σ\S

ΠKv
v ⊗

⊗
v∈S

Πv

H

=
⊗
v∈Σ\S

ΠKv
v ⊗

(⊗
v∈S

Πv

)Q
v∈S Hv

=
⊗
v∈Σ\S

ΠKv
v ⊗

⊗
v∈S

ΠHv
v .

This completes the proof.

Proposition 23. — Let (Σ, Gv,Kv,Πv) be as in ( III.15). Assume furthermore that
dim ΠKv

v ≤ 1 for nearly all v, and that Πv is Gv-smooth-admissible for all v. Then
⊗′

vΠv

is a smooth-admissible G-representation.

Proof. — Let H ′ ⊂ G be an open subgroup. There exists a subgroup H ⊂ H ′ such that H ⊂ G
is of the form

∏′
vHv with Hv ⊂ Gv open for every v ∈ Σ and Hv = Kv for nearly all v ∈ Σ.

We have ΠH′ ⊂ ΠH , so it suffices to show that ΠH is finite dimensional. By Lemma 22 we have
ΠH ∼=

⊗′
vΠ

Hv
v , so dim ΠH =

∏
v dim ΠHv

v is finite.

Theorem 24. — Let (Σ, Gv,Kv,Πv) be as in ( III.15). Assume furthermore that Πv is Gv-
smooth-admissible for all v, and that dim ΠKv

v = 1 for nearly all v. The restricted tensor product
Π =

⊗′
v Πv is G-irreducible if and only if Πv is Gv-irreducible for all v.

Proof. — Assume that Πv has a non-trivial Gv-invariant subspace V ⊂ Πv for some v ∈ Σ.
Then Π has admits V ⊗

⊗′
w 6=vΠw as non-trivial subspace, so it is reducible. This proves the

implication “⇒”.
The other implication follows from Proposition 20 in case #Σ = 2. By induction, the state-

ment follows follows for finite Σ. The remaining case, #Σ = ∞, is now easy. Assume Πv is
Gv-irreducible for every v ∈ Σ. Let x, y ∈

⊗′
vΠv. We show that there exists a λ ∈ C[G] such

that λx = y. Let S ⊂ Π be a finite set such that x, y ∈
⊗

v∈Σ\S ΠKv
v ⊗

⊗
v∈S Πv =: T (S)

and dim ΠKv
v = 1 for all v ∈ Σ\S. The space T (S) is an irreducible representation of

the group GS =
∏
v∈S Gv. We may now find a λ′ ∈ C[GS ] such that λ′x = y. Recall

G(S) = GS ×
∏
v∈Σ\S Kv. The canonical surjection G(S) → GS induces a surjection on the
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group algebras C[G(S)]→ C[GS ]. Take any λ in C[G(S)] ⊂ C[G] mapping to λ′. For this λ we
have λx = y.

3.4. Hecke algebras and restricted tensor products

In the previous section we took restricted tensor products of Gv-representations to obtain a
G-representation. We will now do the inverse, i.e. we want to go from a representation Π of G to
representations Πv of the Gv such that Π ∼=

⊗′
v∈Σ Πv. In general this is not possible: We need

to impose strong conditions on the Gv and on the Πv. At the end we will have to verify that the
groups GLn(Qp) satisfy those properties.

There are two technical hypotheses that we will impose on our locally profinite groups G
considered:

(Hyp)
For all (equivalently, one) open profinite subgroups K ⊂ G the index |G/K| is
countable, and any left Haar measure on G is also a right Haar measure on G

(unimodular, see [23].).

For any affine algebraic group G over a non-Archimedian local field F the group G(F ) has
a countable index open profinite subgroup. To see this, pick a closed immersion G ↪→ GLn,
then pull back the subgroup GLn(OF ) ⊂ GLn(F ) in G(F ). In general, the group G(F ) is not
unimodular (for example the F -points of the Borel group ( ∗ ∗∗ ) ⊂ GL2). The group GLn(F ) is
unimodular.

Assume G is locally profinite and satisfies (Hyp). Fix a Haar measure µ on G. LetH(G) be the
set of locally constant complex valued functions G → C with compact support. If f, g ∈ H(G)
are two such functions, then their sum f + g is defined by x 7→ f(x) + g(x), and their product is
the convolution:

((III.16)) f ∗ h :=
(
g 7→

∫
G

f(x)h(x−1g)dµ(x)
)
.

Together with the operations +, ∗, and scalar multiplication with elements c ∈ C, the set H(G)
is an associative C-algebra. The algebra H(G) has no unit if G is not compact, usually H(G) is
not commutative.

Let Π be a smooth G-representation, and π : G→ GL(Π) the structural morphism. Then we
can let H(G) act on Π in the following manner. Let x ∈ Π and h ∈ H(G). Pick a compact open
subgroup K ⊂ G which fixes v and h (under right translation). We define:

((III.17)) h · v := µ(K) ·
∑

g∈G/K

h(g)π(g)x,

(in Lemma 25 we check that this makes sense). The sum in equation (III.17) is usually written
as an integral:

((III.18)) h · v =
∫
G

h(g)gxdµ(g).

Lemma 25. — In equation ( III.17), the number of g ∈ G/K such that h(g)π(g)x 6= 0 is finite.
Moreover, the sum µ(K)

∑
g∈G/K h(g)π(g)x does not depend on the choice of K.
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Proof. — The mapping
G −→ V, g 7→ h(g)π(g)x,

has compact support because h has compact support. Therefore, the sum in equation (III.17) is
finite.

Let us prove the second statement. Assume K ′ is another compact open subgroup of G fixing
x and f . Then K ′∩K also fixes x and f , so we may assume K ′ ⊂ K. Let g ∈ G/K. If g′ ∈ G/K ′

equals to g modulo K, then h(g′)π(g′)x = h(g)π(g)x. For each g, there are exactly n = [K : K ′]
such g′, so ∑

g′∈G/K′
h(g′)π(g′)x = n

∑
g∈G/K

h(g)π(g)x.

Note µ(K) = nµ(K ′), so we conclude

µ(K) ·
∑

g∈G/K

h(g)π(g)x = µ(K ′) ·
∑

g∈G/K′
h(g′)π(g′)x.

This completes the proof.

If Π → Π′ is a morphism of G-representations, then it is also a morphism of H(G)-modules
with respect to the module structure on Π,Π′ defined in equation (III.17). Thus Π is naturally
an H(G)-module. We call an H(G)-module smooth if H(G) ·Π = Π. Any H(G)-module obtained
from a smooth G-representation is a smooth H(G)-module.

If H ⊂ G is compact open, then we write eH ∈ H(G) for the locally constant function taking
value 1

µ(H) on H, and 0 on H{ ⊂ G. We define H(G : H) := eH ∗ H(G) ∗ eH . This algebra is
the endomorphism ring of the functor Π 7→ ΠH from the category of smooth G-representations
to the category of complex vector spaces. More precisely, if h ∈ H(G : H), then h acts on ΠH

for all smooth G-representations Π, and it does so functorially in Π: If Π1 → Π2 is a morphism
of smooth G-representations, then ΠH

1 → ΠH
2 is h-equivariant. Therefore we have a morphism

H(G : H) to the endomorphism ring of the functor Π→ ΠH . This morphism is an isomorphism.
The algebra H(G : H) is also equal to the algebra of functions f : H\G/H → C with fi-

nite support, where the product of two such functions is defined by the convolution integral
(see (III.16)).

Theorem 26. — Let G be a locally profinite group satisfying (Hyp).

1. The category of smooth G-representations is isomorphic to the category of smooth H(G)-
modules.

2. Let H ⊂ G be a compact open subgroup. Then Π 7→ ΠH induces a bijection between the set
of equivalence classes of smooth irreducible G-representations with ΠH 6= 0, and the set of
isomorphism classes of simple H(G : H)-modules.

Proof. — [7, section 1.4].

Lemma 27. — Let G1 and G2 be two locally profinite groups satisfying (Hyp). Write
G = G1 × G2, and let Π be an irreducible smooth-admissible G-representation. There exist
an irreducible smooth-admissible Gi-representation Πi for i = 1, 2 such that Π ∼= Π1 ⊗ Π2. The
Πi are unique up to (non-canonical) isomorphism.
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Proof. — Let K = K1 × K2 ⊂ G a compact open subgroup, such that ΠK 6= 0.
Then ΠK is finite dimensional over C and H(G : K)-simple by Theorem 26. Note that
H(G : K) = H(G1 : K1) ⊗ H(G2 : K2), so we may apply Proposition 20, to find (up
to isomorphism unique) simple H(Gi : Ki)-modules Π(Ki)

i for i = 1, 2 and an isomor-
phism aK : ΠK ∼→ Π(K1)

1 ⊗ Π(K2)
2 . Pick K ′ ⊂ K another compact open in G, and let

bK,K′ : Π(K1)
1 ⊗ Π(K2)

2 → Π(K′1)
1 ⊗ Π(K′2)

2 be the unique H(G : K)-morphism making the dia-
gram

((III.19)) ΠK
aK //

��

Π(K1)
1 ⊗Π(K2)

2

bK,K′

���
�
�

ΠK′
aK′ // Π(K′1)

1 ⊗Π(K′2)
2

commute. We have bK,K′ = b1(K1,K
′
1) ⊗ b2(K2,K

′
2) for certain H(Gi : Hi)-morphisms

bi(Ki,K
′
i) : Π(Ki)

i → Π(K′i)
i . To see this, we have

Π(K1)
1 ⊗Π(K2)

2
∼−→ ΠK = (ΠK′)K ∼−→ (Π(K′1)

1 ⊗Π(K′2)
2 )K = (Π(K′1)

1 )K1 ⊗ (Π(K′2)
2 )K2 .

On comparing the left and right hand side, we get from Theorem 20 isomorphisms
Π(Ki)
i

∼→ (Π(K′i)
i )Ki and by composing with the embedding (Π(K′i)

i )Ki ⊂ Π(K′i)
i the sought for

morphisms bi(Ki,K
′
i).

These bi(Ki,K
′
i) are unique once they exist, so the set consisting of the ΠKi together with

the bi(Ki,K
′
i) is an inductive system, and we may form the inductive limit Πi

def= lim−→Π(Ki)
i with

K = K1 × K2 ranging over the compact open subgroups of G. Hence ΠKi
i = Π(Ki)

i , and by
taking the inductive limit of the aK , we get an isomorphism Π ∼= Π1 ⊗Π2.

Theorem 28. — Let (Σ, Gv,Kv, GS ,Πv) be defined as in ( III.15). Assume that the Gv sat-
isfy (Hyp) and that H(Gv : Kv) is commutative for nearly all v ∈ Σ. Then for any smooth-
admissible irreducible G-representation Π there exist unique irreducible smooth-admissible Gv-
representations Πv, unramified for nearly all v, such that Π ∼=

⊗′
v∈Σ Πv as G-representations.

The Πv are unique up to (non-canonical) isomorphism.

Proof. — Let S ⊂ Σ be the finite subset of v ∈ Σ such that H(Gv : Kv) is not commutative. We
have

G = GS ×
∏
v∈S

Gv.

By the Lemma 27, there exists a GS-representation ΠS and for every v ∈ S, an Gv-representation
Πv such that

Π ∼= ΠS ⊗
⊗
v∈S

Πv.

Therefore, we may (and will) assume that H(Gv : Kv) is commutative for all v. Let K =
∏
vKv.

The morphism ⊗
v∈Σ

H(Gv : Kv) −→ H(G : K),
⊗
v∈Σ

fv 7→
∏
v

fv,
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is surjective. Therefore, H(G : K) is commutative. The H(G : K)-module ΠK is simple (The-
orem 26), and thus one-dimensional over C. Let x ∈ ΠK be a basis of this one-dimensional
space.

Let S ⊂ Σ be a finite subset and GS :=
∏
v∈S Gv. Consider the morphism

C[GS ] −→ Π, λ 7→ λx.

We denote with ΠS the image of this morphism, and with IS the kernel of this morphism. If
S = {v} is a singleton, then we will write Πv = Π{v} and Iv := I{v} to relax notations.

The GS-representation ΠS is irreducible. To see this, we prove it is isomorphic to an irreducible
GS-representation. By Lemma 27, there exists Π̃S (resp. Π̃S) irreducible GS (resp. GS) repre-
sentations such that ϕ : Π ∼→ Π̃S ⊗ Π̃S as G-representations. Take K-invariants on both sides,
to obtain an isomorphism ΠK ∼= Π̃KS

S ⊗ (Π̃S)K
S

, where KS =
∏
v∈S Kv and KS =

∏
v∈Σ\S Kv.

The space (Π̃S)K
S

is one-dimensional; we choose a basis y ∈ (Π̃S)K
S

for it, so that Π̃S⊗ (Π̃S)K
S

is isomorphic to Π̃S as C[GS ]-modules. The C[GS ]-submodule of Π generated by ΠK is ΠS , and
is, via the basis y and the isomorphism ϕ, identified with a non-trivial C[GS ]-submodule of Π̃S .
Because Π̃S is irreducible as GS-representation we obtain an C[GS ]-isomorphism ΠS

∼= Π̃S . In
particular ΠS is irreducible.

Fix S ⊂ Σ a finite subset. Define the S-multilinear map ψ by

ψ :
∏
v∈S

C[Gv] −→ ΠS , (λv)v∈S 7→

(∏
v

λv

)
x.

The ideal
∏
v Iv ⊂

∏
v∈S C[Gv] is contained in the kernel of ψ. Therefore, ψ induces a S-

multilinear surjection ∏
v∈S

C[Gv]/Iv =
∏
v∈S

Πv −→ ΠS ,

and hence a GS-surjection ⊗
v∈S

Πv −→ ΠS .

Because
⊗

v∈S Πv is GS-irreducible, this surjection is an isomorphism. If S′ ⊂ Σ is a
finite subset containing S, then we have a map ιS,S′ :

⊗
v∈S Πv →

⊗
v∈S′ Πv given by⊗

v∈S xv 7→
⊗

v∈S′\S x⊗
⊗

v∈S xv. The map ιS,S′ fits in the following commutative diagram:⊗
v∈S Πv

ιS,S′

��

// // // ΠS

��⊗
v∈S′ Πv // // // ΠS′

The inductive limit of the
⊗

v∈S Πv relative to the morphisms ιS,S′ is the restricted tensor product⊗′
v∈Σ Πv. The inductive limit of the ΠS , where S varies, relative to the inclusion morphisms, is

the representation Π. Therefore Π is isomorphic to
⊗′

v∈Σ Πv.
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3.5. The groups GLn(Qp) ⊃ GLn(Zp)

Proposition 29. — Let G be a locally profinite group satisfying (Hyp), and let K ⊂ G a compact
open subgroup. Then H(G : K) is abelian if there exists an isomorphism ϕ : G→ Gop (of locally
profinite groups) such that ϕ2 = id and ϕ acts trivially on the set {KgK|g ∈ G}.

Proof. — This is a straightforward calculation. Let f, h ∈ H(G : K). We write fϕ for the
function sending g to f(ϕ(g)) (and similarly for hϕ). For all g ∈ G

(f ∗ h)(g) =
∫
G

fϕ(ϕ(x))hϕ(ϕ(g)ϕ(x)−1)dµ(x)

=
∫
G

h(ϕ(g)ϕ(x)−1)f(ϕ(x))dµ(x)

=
∫
G

h(ϕ(g)x)f(x−1)dµ(x)

= (h ∗ f)(ϕ(g))

The morphism ϕ acts trivially on the characteristic functions 1KgK of the classes KgK, so ϕ

also acts trivially on f2 ∗ f1; hence (f2 ∗ f1)(ϕg) = (f2 ∗ f1)(g).

Corollary 30. — The Hecke algebra H(GLn(Qp) : GLn(Zp)) is commutative.

Proof. — We take ϕ in the above theorem the morphism sending a matrix to its transpose. The
classes GLn(Zp)gGLn(Zp) for g ∈ GLn(Qp) are represented by matrices g which are diagonal.
Therefore, ϕ acts trivially on the set of these classes.

The Satake isomorphism gives in fact an isomorphism between H(GLn(Qp) : GLn(Zp)) and
the commutative algebra C[X1, . . . , Xn, X

−1
1 , . . . , X−1

n ]Sn , where Sn = AutSets({1, . . . , n}) acts
on the algebra by permutation of the variables. For more details, see [16].

Corollary 31. — Let for every prime number p, Πp be an irreducible smooth GLn(Qp)-
representation, unramified for nearly all p, and Π :=

⊗′
p Πp. Then:

1. The GLn(A∞)-representation Π is irreducible and smooth-admissible.
2. For unramified p the dimension of ΠGLn(Zp)

p is 1.
3. Assume that {Π′p : p prime} is another set of representations like above, then⊗′

p Π′p ∼=
⊗′

p Πp if and only if for all primes p we have Π′p ∼= Πp.

Inversely, if Π′ is an irreducible and smooth-admissible GLn(A∞)-representation, then for ev-
ery p there exists an irreducible and smooth-admissible GLn(Qp)-representation Π′p such that
Π′ ∼=

⊗′
p Π′p.

Proof. — We first prove the second point. By Theorem 26 the H(GLn(Qp) : GLn(Zp))-module
ΠGLn(Zp)
p is simple, and by Corollary 30 the algebra H(GLn(Qp) : GLn(Zp)) is commutative,

hence the dimension of ΠGLn(Zp)
p is one.

By the second point, the conditions of Theorem 23 are verified, so the restricted product of
smooth-admissible is again smooth-admissible. By Theorem 24, the restricted tensor product is
irreducible.
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To prove the last statement, it suffices to note that by Corollary 30, Theorem 28 applies.
The third point follows from uniqueness in Theorem 28.

3.6. The infinite part

Let O(n) ⊂ GLn(R) be the orthogonal group, i.e. matrices g for which the transpose is the
inverse. Let gln = Mn(C) be the complexified Lie-algebra of GLn(R), with Lie-brackets defined
by [X,Y ] := XY − Y X, for all X,Y ∈Mn(C).

An (O(n), gln)-module is a complex vector space V , with an action of gln and a locally finite
and continuous action of O(n). This last continuity condition of the action of O(n) on V means
that V is the union of the finite dimensional continuous O(n)-subrepresentations of V . The
actions of O(n) and gln on V are subject to the following conditions. For all v ∈ V , all k ∈ O(n),
all X ∈ gln we have:

1. k(Xv) = (kXk−1)(kv);
2. dim C[O(n)]v <∞;
3. ∀Y ∈ Lie(O(n))⊗C ⊂ gln : (Y v) = d

dt (etY v)
∣∣
t=0

.

The module V is admissible if for all irreducible O(n)-representations W the dimension of
HomO(n)(W,V ) is finite. A morphism of (O(n), gln)-modules is a morphism of vector spaces
which is equivariant for the action of both factors.

An (O(n), gln) × GLn(A∞)-module is a complex vector space V with actions of GLn(A∞),
gln and O(n), such that there exists a smooth-admissible GLn(A∞)-representation V1 and a
(O(n), gln)-module V2, such that there exists a C-linear bijection V ∼→ V1⊗V2 which is equivariant
for the actions of GLn(A∞), gln and O(n).

We say that the (O(n), gln) × GLn(A∞)-module V is smooth-admissible if the module V2 is
admissible. We say that V is irreducible, if it has precisely two subspaces which are stable for
the actions of GLn(A∞), gln and O(n). In this case, V1 and V2 are also irreducible.

3.7. L-factors

Let (π, V ) be a smooth-admissible GLn(Qp)-representation. Let (π∨, V ∨) be the contragredi-
ent representation of π (the subrepresentation of the dual representation (π∗, V ∗) consisting of
all vectors with open stabiliser in G). We denote the paring V ∨ × V → V by 〈·, ·〉. The space
of coefficients Cπ of π is the C-subspace of Map(GLn(Qp),C) generated by all functions of the
type GLn(Qp) → C, g 7→ 〈v′, π(g)v〉, for v ∈ V, v′ ∈ V ∨. A coefficient f of π is an element of
Cπ. If f is a coefficient of π, then f∨ := (g 7→ f(g−1) is a coefficient of π∨.

Let Mn(Qp) be the space of n×n-matrices with entries in Qp. Embed GLn(Qp) in Mn(Qp) in
the usual way. Denote with Sn(Qp) the space of locally constant compactly supported functions
Mn(Qp)→ C. Fix a non-trivial continuous morphism ψ : Qp → C×.



36 CHAPTER 3. SMOOTH REPRESENTATIONS

Let µ be the self-dual Haar measure on Mn(Qp) with respect to ψ ◦ Tr. Let us recall what
this means. First, the Fourier transform Φ∧ of a Φ ∈ Sn(Qp) is defined by

Φ∧(x) =
∫

GLn(Qp)

Φ(y)ψ[Tr(yx)]dµy.

A Haar-measure is self-dual , with respect to the fixed morphism ψ ◦ Tr: Mn(Qp) → C×, if
Φ∧,∧(x) = Φ(−x) for all Φ ∈ Sn(Qp) and all x ∈ Mn(Qp). Given a continuous morphism
Mn(Qp)→ C×), there is precisely one self-dual Haar measure with respect to this morphism.

Let f ∈ Cπ,Φ ∈ Sn(Qp) and s ∈ C, we write Z(Φ, s, f) for the integral∫
GLn(Qp)

Φ(g)|det g|sf(g)dν(g),

where ν is a Haar measure on GLn(Qp).

Theorem 32 (Jacquet, Godement). — Assume π is irreducible. The following holds:

1. There exists an s0 ∈ R such that the integral Z(Φ, s, f) converges absolutely on the half-
plane C≥s0 := {s ∈ C| <(s) ≥ s0}.

2. For all Φ ∈ Sn(Qp) and all f ∈ Cπ, there exists a unique rational function ZΦ,f ∈ C(X)
such that ZΦ,f (p−s) = Z(Φ, s, f) for all s ∈ C≥s0 .

3. Write ZΦ,f = TΦ,f/NΦ,f with TΦ,f , NΦ,f ∈ C[X] coprime and NΦ,f monic. The elements
NΦ,f ∈ C[X] with Φ resp. f ranging over Sn(Qp) resp. Cπ have a non-zero least common
multiple.

4. Let ψ 6= 1 be a continuous morphism Qp → C×. There is a rational function
G(x, π, ψ) ∈ C(x) such that for all coefficients f of π and Φ ∈ Sn(Qp) we have

Z(Φ∧, 1− s+ (n− 1)/2, f∨) = G(ps, π, ψ)Z(Φ, s, f),

for all s ∈ C≥s0 .

Proof. — [19].

In the next section we give a brief outline of the proof of this theorem, let us first indicate the
important consequence of this theorem.

Proposition 33. — Let I(π) be the C-subspace of C(x) spanned by the ZΦ,f where Φ ∈ Sn(Qp)
and f ∈ Cπ vary. Then

1. The space I(π) ⊂ C(x) is a C[x, x−1]-fractional ideal;
2. One has 1 ∈ I(π);
3. There exists a generator P ∈ C[x] such that I(π) = (1/P ) and P (0) = 1.

Definition 34. — Let (π, V ) be a smooth irreducible GLn(Qp)-representation. The L-factor
of (π, V ) is defined by L(s, π) := P (p−s)−1. The ε-factor of (π, V ) with respect to a continuous
morphism ψ : Qp → C× is defined by ε(s, π, ψ) = G(s, π, ψ)L(s, π)/L(1− s, π∨).
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Proof of Proposition 33. — (1) We prove C[x, x−1] · I(π) ⊂ I(π). To show this, it suffices
that x · I(π) = I(π) holds, which is true if x · Z(Φ, s, f) = c · Z(Φ1, s, f1), for a certain
c ∈ C,Φ1 ∈ Sn(Qp) and coefficient f1. Let h ∈ GLn(Qp) be a matrix with det(h) = p, and define
Φ1 := (g 7→ Φ1(gh)), f1 := (g 7→ f(gh)). Then f1 is again a coefficient of π and Φ1 ∈ Sn(Qp).
Two rational functions on C are equal if and only if they agree on an infinite subset of C, hence,
by Proposition 33 it suffices to show Z(Φ1, s, f1) = c · Z(Φ, s, f) for all s ∈ C≥s0 where s0 ∈ R
is large enough. We compute:

Z(Φ1, s, f1) =
∫

GLn(Qp)

Φ(gh)|det g|sf(gh)dµ(g) =
∫

GLn(Qp)

Φ(g)|det gh−1|sf(g)|deth|dµ(g)

= |deth|−s|deth|
∫

GLn(Qp)

Φ(g)|det g|sf(g)dµ(g) = q−s|deth|Z(Φ, s, f).

Hence I(π) is an C[x, x−1]-submodule of C(x). By 33.(3), the module I(π) is a fractional ideal.
(2) Notice that h = (g 7→ Φ(g)|det g|sf(g)) is a locally constant function on GLn(Qp) for all

Φ and f . Pick an open and closed neighborhood U ⊂ Mn(Qp) of e ∈ GLn(Qp) such that h|U
is constant. Let χU : Mn(Qp) → C be the characteristic function U and take Φ′ = Φ · χU . If Φ
and f are such that Φ(e)|det e|sf(e) 6= 0, then Z(Φ′, s, f) ∈ I(π) is constant and non-zero.

(3) The ring C[x, x−1] is a principal ideal domain.

3.8. Remarks on the proof of Theorem 32

The proof of Theorem 32 is long. At the moment I do not have much interest in studying
those calculations, but I do want to make the L-factors more explicit. Therefore, I have to say
some words on the proof.

We introduce the notion “cuspidal representation”. Assume α = (n1, . . . , nr) ∈ Zr≥1 with
r ∈ Z≥1 is a partition of n, i.e.

∑
ni = n. Set

Pα =

(GLn1 ∗

. . .
GLnr

)
⊂ GLn, Uα =

( In1 ∗

. . .
Inr

)
⊂ P,

where Ini is the ni × ni-identity matrix. Identify Pα/Uα with
∏r
i=1 GLni via the obvi-

ous isomorphism. Now assume (σ, V ) is a representation of GLn(Qp); we may restrict it
to obtain a representation of Pα(Qp). The largest quotient on which Uα(Qp) acts trivially,
Vα/〈σ(u) · v − v : σ ∈ Uα(Qp)〉, is a Pα(Qp)/Uα(Qp)-representation, denoted rα(σ). The repre-
sentation σ is called cuspidal if for all non-trivial partitions α (so with r > 1) the representation
rα(σ) is 0.

From Frobenius duality, it follows that any non-cuspidal irreducible GLn(Qp)-representation is
obtained in the following way. Let σi be a smooth GLni(Qp)-representation, where i ∈ {1, . . . , r}.
Let σ =

⊗r
i=1 σi be the representation of Pα/Uα(Qp) induced by the σi, and define:

((III.20)) I(σ1, . . . , σr) := ι
GLn(Qp)

Pα(Qp) (Pα(Qp) −→ Pα/Uα(Qp)
σ−→ GL(Π)),

where Π is the space of σ. The ιGLn(Qp)

Pα(Qp) is the unitary induction. Let us very briefly explain this
construction, for more details see [7]. Let G be locally profinite and H ⊂ G a closed subgroup.
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The forgetful functor from the category of smooth complex G-representations to the category
of smooth complex H-representations admits a right adjoint functor IndGH . For V a smooth H-
representation, IndGHV may be defined as the space of locally constant functions f : G→ V such
that for all h ∈ H, all g ∈ G we have f(hg) = ρ(h)f(g) and there is a compact open subgroup
Kf such that f factors over G/Kf .

Let δH be the modulus of H, this means the following. Let µ be a left Haar measure on
H, then any other left Haar measure ν differs by a scalar from µ, we denote this scalar by µ

ν .
For any automorphism σ ∈ Aut(H) we see that µ ◦ σ is a Haar measure; we put ∆(σ) := µ◦σ

µ ,
which provides a morphism Aut(H)→ R×>0. We can compose this morphism with H → Aut(H)
(h ∈ H maps to conjugation by h), to obtain a continuous morphism δH : H → R×>0 ⊂ C×; this
δH is the modulus of H.

We are now in place to define the unitary induction. By definition ιGH := IndGH ⊗ δ
1/2
H .

The unitary induction has some technical advantages over usual induction, most notably (1)
it preserves unitary representations, (2) it is compatible with direct sums and local Langlands
(suitably normalized).

Theorem 35. — Let Π be an irreducible smooth-admissible GLn(Qp)-representation. There
exists a partition n = n1 + · · · + nr, with ni, r ∈ Z≥1, smooth-admissible cuspidal GLni(Qp)-
representations σi for i = 1, . . . , r, such that Π is an irreducible subquotient of I(σn1 , . . . , σnr ).

Proof. — This follows from the discussion above.

Using the notion of cuspidal, the proof of Theorem ?? reduces to the following 4 steps.

1. If Theorem 32 is true for σ1, . . . , σr, then Theorem 32 is also true for I(σ1, . . . , σr). (Proved
in paragraphs (2.4)—(2.6) in [24].)

2. Theorem 32 is true in case n = 1. (Proved in Tate’s thesis, [9].)
3. Theorem 32 is true in case n > 1 and the representation is cuspidal. (Proved in [19].)
4. If the conclusions of Theorem 32 hold for a (not necessarily irreducible) smooth-admissible

GLn(Qp)-representation π, then the theorem is also true for the irreducible subrepresenta-
tions of π. (Proved in (2.7) in [24].)

3.9. Unramified L-factors

If a smooth-admissible irreducible GLn(Qp)-representation is unramified, then there exist
morphisms σ1, . . . , σn : Q×p → C× (with open kernel) such that Π = I(σ1, . . . , σn). In particular,
the L-factor of Π is just the product of the L-factors of the σi, namely:

L(Π, s) =
n∏
i=1

(1− σi(p)p−s)−1.

Because the morphisms σi are unramified, the unramified representation is completely determined
by its L-factor.

We now understand, before even having stated it properly, that there is a Langlands corre-
spondence for local, unramified representations. Let ArtQp

: GL1(Qp)
∼→ Gab

Qp
be the reciprocity
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morphism (geometrically normalised). The map{
unramified, semi-simple, n-dimensional

`-adic GQp -representations

}
/∼=

−→

{
unramified, irreducible, smooth-admissible

GLn(Qp)-representations over Q`

}
/∼=

ρ ∼=
n⊕
i=1

σi 7−→ I(σ1 ◦Art−1
Qp
, . . . , σn ◦Art−1

Qp
),

is a bijection preserving the L-factors. The crucial point is that ρ decomposes as a direct sum of
one dimensional representations.

Recall that any irreducible (O(n), gln) × GLn(A∞)-module is a restricted tensor product of
local representations Πv, unramified for nearly all v. In particular Πv = I(σv,1, . . . , σv,n) for
nearly all v. I have not treated properly the prime at infinity, so we regard only v = p a finite
place, and we assume that it is different from `. The idea of the global Langlands conjecture is
that for “good” (O(n), gln) × GLn(A∞)-modules, the representations

⊕n
i=1 σv,i ◦ Art−1

Qp
should

all be restrictions of one global Galois representation ρ : GQ → GLn(Q`) to the decomposition
group at p.

3.10. The L-function associated to an (O(n), gln)×GLn(A∞)-module

Let Π be an irreducible smooth-admissible (O(n), gln)×GLn(A∞)-module. We define

((III.21)) L(Π, s) =
∏

p prime

L(Πp, s),

where the Πp are admissible GLn(Qp)-representations such that Π ∼=
⊗′

p Πp.
Similar to what we saw in chapter 1 on Galois representations, the L-function has no reason

to converge in some right half plane. It will converge only for certain special representations.

3.11. The space of smooth functions on GLn(A)

A complex valued function f : GLn(A)→ C is called smooth if for all x ∈ GLn(A) there exist
open subsets U ⊂ GLn(R) and V ⊂ GLn(A∞) and a C∞-smooth function f̃ : U → C such that

x ∈ U × V and f |U×V equals to the composition U × V → U
f̃→ C. We denote with C∞ the

C-vector space of all smooth functions GLn(A)→ C.
Several groups/algebras act on the space C∞. The group GLn(A) acts on C∞ via right

translations, GLn(A)×C∞ → C∞, (g, f) 7−→ (h 7→ f(hg)). The GLn(A)-action on C∞ induces
an action of gln on C∞ given by:

gln × C∞ −→ C∞, (X, f) 7→
(
h 7→

[
d
dt
f
(
hetX

)]
t=0

)
.

Finally, let zn be the endomorphism ring of the identity functor, idgln-rep, on the category of
gln-representations (representations as Lie-algebra). Then zn acts on C∞, because C∞ is gln-
representation.
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3.12. The algebra zn

We have to know more of the structure of the algebra zn.

Lemma 36. — Let A be an associative unitary C-algebra. Denote with Z(A) the center of A.
The canonical morphism

Φ: Z(A) −→ End(idA-mod), a 7→ multiplication by a,

is an isomorphism.

Proof. — Define the map

Ψ: End(idA-mod) −→ Z(A), F 7→ F (A)(1).

Here with F (A)(1) we mean the following. Note that A is a module over itself, so F (A) defines
an endomorphism of A as A-module. With F (A)(1) we mean the image of 1 ∈ A under this
endomorphism. For any a ∈ A we have aF (A)(1) = F (A)(a) = F (A)(1)a, so F (A)(1) ∈ Z(A),
so the image of Ψ lies in the center of A.

Let a ∈ Z(A), then (Ψ ◦Φ)(a) = a · 1 = a, so Ψ ◦Φ = idZ(A). Inversely, let F ∈ End(idA-mod).
Let M be an A-module and let m ∈M . We have a commutative square

A
F (M) // M

A

OO

F (A)

// A

OO

where the vertical morphisms send 1 to m. The bottom map is multiplication by F (A)(1), and
therefore, the top map sends m to F (A)(1) ·m. This proves that (Φ ◦ Ψ)(F ) = F , so it proves
lemma.

The universal enveloping algebra U(gln) of gln is defined by the equality of functors from
C-algebras to sets

HomC-algebras(U(gln),�) = HomLie-algebras(gln,�),

(any C-algebra is also a Lie-algebra). In particular the category of gln-representations is iso-
morphic to the category of U(gln)-modules. Therefore zn is also the endomorphism ring of the
functor idU(gln)-mod, hence we get an identification zn = Z(U(gln)), where Z(U(gln)) is the cen-
ter of U(gln). The algebra U(gln) may be constructed as the quotient of the tensor algebra,⊕

r∈N gl⊗rn modulo the ideal 〈[x, y]− xy + yx|x, y ∈ gln〉.
Let Sn = AutSets({1, . . . , n}) act on C[X1, . . . , Xn] by permutation of the variables. Let

H = (x1, . . . , xn) ∈ Cn be an n-tuple of complex numbers. We define θH : C[X1, . . . , Xn]Sn → C,
f 7→ f(x1, . . . , xn). There exists a canonical isomorphism

γHC : Z(U(gln)) ∼−→ C[X1, . . . , Xn]Sn ,

called the Harish-Chandra isomorphism. See [6] or [16]. The isomorphism is characterised as
follows. Assume a1 ≥ a2 ≥ · · · ≥ an are integers and (ρ, V ) is the irreducible representation of
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gln with (a1, . . . , an) ∈ Zn, as highest weight (for the usual choice of maximal torus and Borel
subgroup). Let H(ρ) be the multiset

{a1 + (n− 1)/2, a2 + (n− 3)/2, . . . , an + (1− n)/2} ∈ Sn\Cn.

Let U(ρ) : U(gl)→ End(V ) be the U(gl)-representation induced by ρ. The morphism γHC should
satisfy U(ρ)(z) = θH(ρ)(γHC(z)) for all z ∈ Z(U(gln)), which determines γHC uniquely.

Example. — In case n = 1 it is easy to see that z1 = C[X1]. In case n = 2 it turns
out that z2 = C[c, C], where c = ( 1 0

0 1 ), h =
(

1 0
0 −1

)
, a+ = ( 0 1

0 0 ), a− = ( 0 0
1 0 ) ∈ gl2 and

C = 1
2h

2 + a+a− + a−a+.

Corollary 37. — The mapping Sn\Cn → Hom(zn,C), H 7→ θH ◦ γHC is a bijection.

Proof. — It suffices to note that Sn\Cn → Hom(C[X1, . . . , Xn]Sn ,C), H 7→ θH is a bijection
(here Sn acts on Cn by permuting the axises).

This result will become important when we state the global Langlands conjecture: The con-
jecture compares the infinitesimal characters with Hodge-Tate numbers, which are now both
multisets of complex numbers.

3.13. The space of cusp forms

For a partition n = n1 + n2 with n1, n2 ∈ Z≥1 define Nn1,n2 :=
(
In1 ∗

In2

)
⊂ GLn, where

Ini is the ni × ni-identity matrix (i = 1, 2). Fix a morphism χ : zn → C, or, equivalently by
Corollary 37, a multiset of n complex numbers.

Definition 38. — The space of cuspidal automorphic forms with infinitesimal character χ, no-
tation A◦χ ⊂ C∞, is the subspace of C∞ formed by smooth functions f : GLn(A)→ C satisfying:

(A1) Left GLn(Q)-invariant. The function f is invariant under the action of GLn(Q) by left
translations and thus factors to a function f : GLn(Q)\GLn(A)→ C.

(A2) O(n)×GLn(Ẑ)-finite. The translates of f under the subgroup O(n)×GLn(Ẑ) ⊂ GLn(A)
span a finite dimensional vector space.

(A3) Infinitesimal character χ. For all z ∈ zn one has z · f = χ(z) · f .
(A4) Cuspidal. For each partition n = n1 + n2 with n1, n2 ∈ Z≥1 and all g ∈ GLn(A), the

integral
∫
Nn1,n2 (Q)\Nn1,n2 (A)

f(ug)dµ(u) vanishes.
(A5) Growth condition. The function f is bounded on GLn(A)1 = {g ∈ GLn(A)||det g| = 1}.

Note that condition A5 in the definition of cuspidal automorphic form above, is dif-
ferent from the one given by Taylor in [39]. Without this modification, the function
GLn(A) → C, x 7→ |detx| will not be an automorphic form. This is problematic, because
it should correspond to the cyclotomic character under the global Langlands conjecture (for
n = 1). So without this modification, the conjecture is false.
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Inside the space of smooth functions C∞, property (A2) is not GLn(A)-stable but obviously
(O(n) × GLn(Ẑ), gln)-stable. Because any two compact open subgroups of GLn(A∞) are com-
mensurable(1), it follows that property (A2) is GLn(A∞)-stable. The other properties (A1),
(A3), (A4) and (A5) are stable under the GLn(A) action, and thus in particular under the
actions of GLn(A∞), O(n)×GLn(Ẑ) and gln.

The space A◦χ is an (gln, O(n)) × GLn(A∞)-module [4], and decomposes as a direct
sum of irreducible representations, A◦χ =

⊕
i∈IMi, each occuring with multiplicity one:

i 6= j =⇒ Mi 6∼= Mj (multiplicity one theorem, [4]). An GLn(A∞), O(n)×GLn(Ẑ)-module Π is
a cuspidal automorphic representation of GLn(A) with infinitesimal character χ if it is isomor-
phic to an irreducible subspace of A◦χ. Let M,N be two cuspidal automorphic representations.
Decompose M ∼=

⊗′
vMv and N ∼=

⊗′
v Nv, then M ∼= N if and only for nearly all v, Nv ∼= Mv

[4].

(1)Two subgroups H1, H2 ⊂ G are commensurable if H1 ∩H2 is a finite index subgroup of H1 and of H2.



Chapter 4: The global Langlands Conjecture

Conjecture 39 (Langlands, Fontaine-Mazur, . . . ). — Let ι : Q` → C be an embedding, H
a multiset of n integers, and ` a prime number. There exists a bijection between{

Irreducible cuspidal automorphic GLn(A)-representations
with infinitesimal character H

}
/ ∼=,

and {
Irreducible geometric `-adic GQ-representations over Q`

with Hodge-Tate numbers H

}
/ ∼=,

such that if Π is an automorphic representation corresponding to an `-adic GQ-representation V

under the above bijection, then Lp(Π, p−s) = L
(ι)
p (V, p−s), for nearly all p.

We give some remarks to help the reader understand the content of this conjecture, and some
of its implications.

We refer to the first set in Conjecture 39 as “the automorphic side”, and the second set
above as “the Galois side”. Moreover, we say that a geometric representation “corresponds” to
an automorphic representation if the above bijection maps the geometric representation to the
automorphic representation, where we assume that ι is fixed once and for all.

We say a Galois representation V on the Galois side is automorphic if it correspond to an
automorphic representation on the automorphic side.

The bijection in 39, if it exists, is automatically unique. Actually, something stronger is
true: Assume a map ϕ`,ι,H from a subset of the automorphic side to the Galois side exists,
which preserves the L-factors in the manner described in the conjecture above. Then ϕ`,ι,H is
automatically unique and injective. Also inversely, any map from a subset of the Galois side to
the automorphic side, which preserves L-factors, is automatically unique and injective.

The notion of ramification on both sides coincides. Let p be a prime number, different from
`. If Π corresponds to V in Conjecture 39, then Πp is ramified if and only if Vp is ramified.
This follows directly from the fact that (on both sides) “being ramified at a prime” can be read
off from the L-factors. More generally, to both a geometric and automorphic representation one
may associate a conductor. These conductors are equal if the two representations correspond.

Sometimes cuspidal automorphic forms are assumed to be bounded on GLn(A). For the
conjecture in the above form, it is really important to take cuspidal automorphic forms to be
bounded only on GLn(A)1, like we defined in A5. Otherwise, Conjecture 39 is wrong: there will
be no irreducible cuspidal automorphic representation on GL1(A) for the cyclotomic character.

The article [13] explains the relation between automorphic forms and modular forms for
n = 2. Briefly, to any newform, or cuspidal eigenform for Hecke operators, one may associate
an irreducible cuspidal automorphic representation of GL2(A), such that L-factors correspond
to L-factors. This article also describes which automorphic GL2(A)-representations come from
a modular form. Therefore, modularity of odd 2-dimensional Galois representations (up to twist
by an integral power of the cyclotomic character) is equivalent to automorphy.
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(In this paragraph we assume Conjecture 39 is true). The Galois side depends on the prime
number `, but the automorphic side does not. Therefore, one may start with a representation
V on the Galois side, take the corresponding Π on the automorphic side, change ` to a different
prime number λ, and go back to the Galois side (with the bijection of the conjecture corresponding
to λ), to find an λ-adic Galois representation V (λ). Doing this for all prime numbers λ, we find
V sitting in a family of geometric representations {V (λ)|λ prime}. This family of representations
has the property that L(ιλ)

p (V (λ), p−s) = L
(ιλ′ )
p (V (λ′), p−s), and HT (V (λ)) = HT (V (λ′)), for all

triples of prime numbers (p, λ, λ′) (the ιλ : Qλ → C are fixed embeddings).
If you go back to chapter 1, where we introduced étale cohomology, the cyclotomic character

and discussed Tate modules of elliptic curves, then you see that for all those cases the choice
of the prime ` was arbitrary, so those representations we already expected to sit in some kind
of family. However, a geometric representation can also be a strict subquotient V of the étale
cohomology of some smooth proper Q-scheme X.

4.1. Another conjecture

Note that in Conjecture 39 we actually put Langlands and Fontaine-Mazur. This is to say
that the conjecture we gave above is actually a combination of the Langlands conjecture with
the Fontaine-Mazur conjecture. The Langlands conjecture on its own states that the set of
automorphic representations as above is in bijection with the irreducible subquotients of the
étale cohomology of varieties. In a precise form it is formulated as:

Conjecture 40 (Langlands). — Let ι : Q` → C be an embedding, H ⊂ Z a multiset of n
integers, and ` a prime number. There exists a bijection between{

Irreducible cuspidal automorphic GLn(A)-representations
with infinitesimal character H

}
/ ∼=,

and 
Irreducible `-adic GQ-representations V such that
∃X proper smooth Q-scheme, i ∈ Z≥0, j ∈ Z:

V is isomorphic to a subquotient of Hi(XQ,ét,Q`(r)), and
the Hodge-Tate numbers of V equal to H

 / ∼=,

such that if Π is an automorphic representation corresponding to an `-adic GQ-representation V

under the above bijection, then Lp(Π, p−s) = L
(ι)
p (V, p−s), for nearly all p.

Note that Conjecture 39 and 40 should be equivalent, but they are so only conjecturally. To
prove their equivalence, one needs the Fontaine-Mazur conjecture.
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In this chapter we prove the one dimensional version of the conjectures 39 and 40 for the field
Q.

5.1. The automorphic forms on GL1

Let r ∈ Z be an integer. Let f : A× → C be a smooth function. The conditions A4

and A5 on f (recall definitions 38) are empty in case n = 1. To see this for A5, notice hat
(A×)1 = {g ∈ A×||g| = 1} is compact modulo Q×. Moreover, the subgroup O(1)× Ẑ× ⊂ A× is
the only maximal compact subgroup of A×, so A◦{r} is a A×-representation.

Let ψ : A× → C× is a continuous morphism. We let C(ψ) be the A×-representation with
space C and A×-action defined by A× × C(ψ) → C(ψ), (x, z) 7−→ ψ(x) · z. The vector space
C(| · |−r)⊗A◦{r} equals A◦{0} as A×-representations. In case r = 0, it follows from A3 that any
f ∈ A◦{0} is locally constant, so we conclude

A◦{0} = {f : Q×R×>0\A× −→ C|f locally constant} =
⊕

ψ∈Homcts(Q×R×>0\A×,C×)

C(ψ).

Twisting back the r, we get

((V.22)) A◦{r} =
⊕

ψ∈Homcts(Q×\A×,C×), ψ(R×>0)={1}

C(| · |r · ψ),

as A×-representations.
Let C(| · |r · ψ) be one of the irreducible components of A◦{r} and p a prime number which is

unramified in π := | · |r · ψ. The L-factor of π at p is given by

((V.23)) Lp(π, s) =
1

1− π(p̂)p−s
=

1
1− ψ(p̂)p−r−s

∈ C(p−s),

where p̂ ∈ A× = Ap,× ×Q×p equals (1, p).

5.2. Hodge-Tate characters

Theorem 41. — Let ρ : GQ → Q
×
` be a continuous morphism and r ∈ Z. The following are

equivalent:

1. ρ is de Rham at ` with HT (ρ) = {r};
2. ρ is Hodge-Tate at ` with HT (ρ) = {r};
3. there exists a continuous morphism φ : GQ → Q

×
` with finite image such that ρ = φ⊗ χr` .

Before we prove this theorem, we first give a remark and state and prove a lemma.

Remark. — The local Galois group GQ`
has a one-dimensional `-adic Hodge-Tate represen-

tation ρ : GQ`
→ Q

×
` with HT (ρ) = 0 and infinite image. In fact, any continuous morphism

ρ : GQ`
→ Q

×
` which is unramified is Hodge-Tate. We have GQ`

/IQ`
= Ẑ, and Ẑ admits plenty
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of continuous morphisms ρ : Ẑ→ Q
×
` . Such a morphism extends to a global continuous morphism

GQ → Q
×
` if and only if the image of ρ is finite.

Lemma 42. — Let ρ : GQ`
→ GL(V ) be a GQ`

-representation over Q` with finite image. Then
ρ is de Rham with HT (ρ) the multiset in which 0 occurs with multiplicity dimV .

Proof. — Let L := (Q`)ker(ρ), G := GQ`
/GL = Gal(L/Q`) and VL := L⊗Q`

V . Then

DdR(V ) = (BGLdR ⊗Q`
V )G = (VL)G.

We have L ∼= Q`[G] as Q`[G]-modules, so

(VL)G ∼= (Q`[G]⊗Q`
V )G ∼= V,

as Q`-vector spaces. Therefore, dim DdR(V ) = dimV and V is de Rham. The second statement
is proved in the same way by replacing BdR in the above calculations with C` and using that
CGL` = L.

Proof of Theorem 41. — The implication (1)⇒(2) is true for `-adic Galois representations of any
dimension, see Proposition 13, and the implication (3)⇒(1) follows from Lemma 42. The only
difficult implication is (2)⇒(3), the proof runs until the end of this section. We first need several
preparations.

We introduce the Tate trace for K/Q` a finite extension, contained in Q`. For n ∈ Z≥0 define
Kn := K(µ`n) and K∞ := K(µ`∞). The Tate trace is for each n ∈ Z≥0 defined by:

Rn : K∞ −→ Kn, x 7→
1

[Kn(x) : Kn]
TrKn(x)/Kn(x).

There are several facts of the Tate trace that we will use. (T1) Rn is uniformly continuous, so it
extends uniquely to a continuous, additive map Rn : K̂∞ → Kn. And (T2) limn→∞Rn(x) = x

for all x ∈ K̂∞. Next (T3), Rn is Kn-linear, and (T4) for all σ ∈ GK and x ∈ K̂∞ we have
Rn(σx) = σRn(x).

The Tate trace is introduced in the article [38]. Proposition 6 in this article proves (T1). The
properties (T2), (T3) and (T4) are easily seen to be true by checking them on the dense subspace
K∞ ⊂ K̂∞.

Proposition 43. — Let ρ : GK → K× be a continuous morphism with infinite image, such that
ker(χ`|GK ) ⊂ Ker(ρ). Then

(C` ⊗K K(ρ))GK = {0},
where GK acts on C` via the Galois action, and K(ρ) is the space K with GK-action via ρ. The
tensor product C` ⊗K K(ρ) is equipped with the GK-action on both factors.

Proof. — Via the bijection

C` ⊗K K(ρ) ∼−→ C`, a⊗ b 7→ ab,

we get an action of GK on C`, which is different from the Galois action. Let us denote this action
by • to distinguish it clearly from the Galois action. If x ∈ C` and σ ∈ GQ`

then σ(x) is the
result of σ acting on x via the Galois action of GQ`

on C`.
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Let now x ∈ C•,GK` be a vector, invariant for the action “•”. Then for all σ ∈ Ker(χ`|GK ) we
have x = σ • x = σ(x). Therefore

x ∈ C
Ker(χ`|GK )

` = K̂∞,

(use Ax-Sen-Tate, [10, 2.6]). We have

x = lim
n→∞

Rn(x).

So if we can prove that Rn(x) = 0 for all n, then clearly we have x = 0 and the theorem follows.
For all σ ∈ GK we have

x = σ • x = ρ(σ)σ(x),

hence, for all σ ∈ GK , σ(x) = x
ρ(σ) . By properties (T2) and (T3) of the Tate trace, we get

σ(Rn(x)) = Rn(σ(x)) = Rn

(
x

ρ(σ)

)
=

1
ρ(σ)

Rn(x).

Assume for a contradiction that Rn(x) 6= 0. Because #Im(ρ) =∞ the element Rn(x) ∈ Kn has
infinitely many Galois conjugates over K. But Rn(x) ∈ Kn is algebraic over K, so that it is
impossible. We conclude Rn(x) = 0 for all n. This completes the proof of Proposition 43.

Continuation of the proof of Theorem 41. — Let ρ : GQ → Q
×
` be a continuous morphism which

is Hodge-Tate at `. Then, by Proposition 7, ρ is of the form ρ = φ1φ2, with φ1 : GQ → Q
×
` with

finite image, and φ2 : GQ → Q
×
` unramified outside `. Because φ1 has finite image, we may

twist it away and asume that ρ = φ2, i.e. that ρ is unramified outside `. The maximal abelian
extension, unramified outside ` of Q is Q(µ`∞). Therefore, the kernel of ρ contains the kernel of
the cyclotomic character. We may replace ρ by ρχ−r` where {r} = HT (ρ), so we may assume that
ρ is C`-admissible. By Proposition 4, there exists a finite extension K of Q`, contained in Q`

such that Im(ρ) ⊂ K× ⊂ Q
×
` . The property “C`-admissible”, is stable for finite extensions of the

base field. Therefore, ρ|GK is C`-admissible, and Proposition 43 applies to the morphism ρ|GK .
Therefore Im(ρ|GK ) is finite. Clearly, the image of ρ must then also be finite. This completes the
proof of Theorem 41.

5.3. Proof of Conjecture 39 for n = 1

Using the results of the previous section it is now easy to deduce Conjecture 39 for n = 1. Let
ρ : GQ → Q

×
` be a continuous morphism. By Theorem 41 is ρ of the form ρ = φχr` , where r ∈ Z

and φ : GQ → Q
×
` is a continuous morphism with finite image.

Let p be a prime number different from ` and such that ρ is not ramified at p. Then
L

(ι)
p (ρ, s) = 1

1−ιφ(p)p−s+r ∈ C(p−s). Let ψ be the product of the morphism | · |r : Q×\A× → C×

with the morphism

Q×\A× −→ R×Q×\A× = Ẑ× ∼−→ Gab
Q

φ−→ Q
×
`

ι−→ C×.

If v is a finite place p different from ` where ψ is not ramified, then

Lp(ψp, s) =
1

1− ψp(p)p−s
=

1
1− ι(ρ(Frobp))p−s

∈ C(p−s).
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Hence ψ corresponds to ρ.
The Conjecture 40 for n = 1 is now also true, because we have verified the Fontaine-Mazur

conjecture for continuous morphisms GQ → Q
×
` in chapter 1.

5.4. Class field theory

We show how the Artin reciprocity map for Q may be obtained from the bijection in the
Langlands conjecture (Conjecture 39). Note that class field theory for Q is very classical; it
follows directly from the Kronecker-Weber theorem (which actually gives more). For this reason,
the reader should not take this section too seriously: we have only put it here to further explain
the relation between class field theory and the one dimensional Langlands conjecture (the case
n = 1 in Conjecture 39). On the other hand, the argument that we give here will probably
extend to general number fields, if one writes down a proper statement of the global Langlands
conjecture for general number fields (or even global fields).

Take the infinitesimal character H equal to {0}. By formula (V.22), the set A of (isomorphism
classes of) cuspidal automorphic GL1(A)-representations with infinitesimal character 0 is given
by A = Homcts(Ẑ×,C×).

We denote D the set of (isomorphism classes of) one-dimensional `-adic de Rham representa-
tions which are (1) unramified at nearly all primes and (2) have Hodge-Tate weight 0. The sets
A and D have the structure of a group via tensor products and duals.

For every embedding ι : Q` → C, the Langlands conjecture gives a bijection Art∨,`,ιQ : D → A

such that L-factors correspond to L-factors. By comparing L-factors we see that Art∨,`,ιQ is a
morphism of groups.

Let ρ ∈ D; we show that ρ has finite image. The morphism ψ = Art∨,`,ι,−1
Q (ρ) ∈ A has

finite image, and so ρ has finite image on the set {Frobp|p unramified prime} ⊂ Gab
Q / ker(ρ). We

claim that the subgroup C generated by this set is dense. To see this, let ϑ : Gab
Q /C → Q

×
` be

with finite image, then it corresponds to a φ ∈ A. For nearly all p we have φ(p̂) = 1, where
p̂ = (1, p−1) ∈ Z×p ×Z{p},×, so φ is trivial and thus ϑ is trivial, hence (Gab

Q /C)∨ = 1, and C = Gab
Q .

Because C is dense, ρ has finite image. Inversely, we know that if ρ has finite image, then it is
de Rham (see Lemma 42 of the previous section).

We conclude D = Homgrp, cts, fin. img(Gab
Q ,Q

×
` ), so we have an isomorphism

Art∨,`,ιQ : Homgrp, cts, fin. img(Gab
Q ,Q

×
` ) ∼−→ Homgrp, cts(Ẑ×,C×).

On applying ι we find an isomorphism

Art∨Q : Homgrp, cts(Gab
Q ,C×) ∼−→ Homgrp, cts(Ẑ×,C×),

which does not depend on ι. Apply Pontryagin duality to obtain the Artin map ArtQ : Ẑ× ∼→ Gab
Q .



Chapter 6: Elliptic curves with complex multiplication

In this chapter we will compute for an explicit elliptic curve with complex multiplication the
automorphic representation corresponding to the Tate Module of this curve.

6.1. Hecke characters

Let K be a number field, with ring of integers OK . The ring of K-adèles, notation AK , is the
restricted product of the completions Kv, where v runs over all places of K, and with respect to
the valuation rings Ov ⊂ Kv. As topological K-algebras one has AK = AQ ⊗Q K. We write
A∞K for the finite adèles of K, and K∞ = K ⊗Q R for the infinite adèles of K. We denote with
K×,◦∞ the connected component of 1 ∈ K×∞, and K×,◦v the connected comonent of 1 ∈ K×v .

A continuous morphism χ : A×K/K
× → C× is a Hecke character if for each Archimedian prime

v of K there exist a, b ∈ Z such that for all z ∈ K×,◦v we have χ|K×,◦v
(z) = zazb. This condition is

equivalent to the existence of a morphism of algebraic groups T (�) : (�⊗RK∞)× → (�⊗RC)×,
such that T (R)|K×,◦∞ = χ|K×,◦∞ . Such a morphism T (�) is automatically unique once it exists.

Note that we have to make the restriction to the connected component of identity, K×,◦∞ ⊂ K×∞,
because otherwise, in case K×∞ is non-connected, the adelic norm | · | : A×K → C× would not be

a Hecke character. For example if K = Q, then the composition R× → A×Q
|·|→ C×, is the usual

absolute value on R×, which does not come from a morphism of algebraic groups.
If v is a place of K, then χv is defined as the composition

K×v −→ A×K/K
× −→ C×.

Assume v = p is a finite place. We say that χ is unramified at p if χp is trivial on O×Kp
. In this

case χp(πp) does not depend on the choice of a local uniformizer πp ∈ Kp. If χ is unramified at
p, then the L-factor of χ at p is defined by

Lp(χ, s) def= (1− χp(πp)N(p)−1)−1 ∈ C(p−s).

If χ is ramified at p, then the L-factor is defined to be 1. The Hecke character χ has also L-factors
for the primes at infinity, in this thesis we do not bother about these factors.

The L-function of χ is the product of all the L-factors, and it is known to converge in some
right half plane, have meromorphic continuation and satisfy a functional equation (Tate’s thesis,
see [9]).

Let χ : A×K → C× be a Hecke character. Let us define the conductor of χ. Recall that
the open subgroups 1 + pn ⊂ K×p , where n ∈ Z≥0 varies, form a fundamental system of open
neighborhoods of identity. Therefore, there exists a minimal integer np ∈ Z≥0 such that χp is
trivial on 1 + pnp . The conductor of χ is the OK-ideal∏

p⊂OK prime

pnp .
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6.2. Some remarks on the Tate module

Proposition 44. — Let E/Q be an elliptic curve and ` a prime number. Then

1. the Hodge Tate multiset HT (V`(E)) is equal to {0, 1};
2. the GQ-representation V`(E) is irreducible;
3. if E has CM over the field K/Q, then the GK-representation V`(E) is reducible.

Proof. — (1) This is proved in [38, p. 180, cor. 2]. We can give a direct proof, but we have
to use the (highly non-trivial) result of Faltings stating that the Hodge-Tate multiset of V`(E) is
independent of `, see Remark 2.3 for the precise statement. Recall also that V`(E) is isomorphic
to the dual of H1(EQ`,ét,Q`) as Q`[GQ`

]-modules [27, 15.1].
Let {a, b} ∈ N(Z) be the Hodge-Tate multiset of E. We accept that the numbers a, b do not

depend on `.
We claim that there exists a prime number ` such that E has ordinary reduction at `. There

are several ways to prove this. One way is to use modularity to get the following ‘optimal’ results:
We have ap 6= 0 for a density 1 set of primes p if E has no CM, and if E has CM, then this
density equals to 1

2 . So certainly, a prime ` where E has ordinary reduction exists.
Without using modularity, we may prove that such a prime exists in the following manner.

Let S be the finite set consisting of `, together with the primes p where E has bad reduction. The
representation ρ : GQ → GL(V`(E)) factors to a representation ρ′ : GQ,S → GL(V`(E)), where
GQ,S is the Galois group of the maximal unramified-outside-S-extension of Q. Consider the
closed subset Z of GL(V`(E)) consisting of all matrices with trace 0. The image of 1 ∈ GQ,S
in GL(V`(E)) does not lie in Z, because the identity matrix has trace 2 6= 0. Therefore, the
inverse image of the complement Z{ ⊂ GL(V`(E)) in GQ,S is a non-empty open subset. By the
Chebotariev density theorem, there exists a prime p /∈ S such that Frobp lies in this inverse
image. By construction, the trace of Frobp acting on V`(E) is non-zero and so E has ordinary
reduction at p.

(As an exercise, the reader may try to adapt the above argument to prove that there is a
density 1

48 set of primes (within the set of all primes) where E has ordinary reduction.)
Pick ` a prime where E has ordinary reduction. Let Ẽ/Z[1/N ] be an elliptic curve with generic

fiber E, where N is the product of the primes where E has bad reduction. Observe that 6̀ |N .
Consider the exact sequence

((VI.24)) 0 −→ A −→ T`(E) −→ T`(Ẽ × F`) −→ 0,

of Z`[GQ`
]-modules, where A is the kernel of T`(E) → T`(Ẽ × F`). The Galois action on

T`(Ẽ ×F`) ∼= Z` is trivial and C`⊗Z` T`(E) ∼= C`(a)⊕C`(b). Therefore, one of the Hodge-Tate
numbers of V`(E) is 0.

Existence of the Weil paring T`(E) × T`(E) → Z`(1) implies that
∧2

T`(E) = Z`(1), so
a+ b = 1, hence HT (V`(E)) = {0, 1}. This completes the proof of point (1).
(2) This is proved in [38]. We may give a direct proof, but again we have to admit the (non-
trivial) result which states that V`(E) is a Hodge-Tate representation (in fact it is de Rham).
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Assume for a contradiction that V`(E) is reducible. Then V`(E)ss = U ⊕ W where
(u, U), (w,W ) are two one dimensional subrepresentations of V`(E)ss. Then U and W are Hodge-
Tate, because the property “Hodge-Tate” is stable under subquotients.

Assume HT (u) = {0} and HT (w) = {1}. By Theorem 41 we know that u and vχ−1
` have

finite image. Let S be the set consisting of ` and the primes where E has bad reduction. The
group GQ,S is the absolute-unramified-outside-S-quotient of GQ. The representation ρ factors to a
representation GQ,S → GL(V`(E)), which we also denote by ρ. Let H = ker(u)∩ker(wχ−1

` ) ⊂ GQ.
Then H is an open subgroup of GQ,S . By the Chebotariev density theorem, there exists a prime
p 6= ` where E has good reduction, such that Frobp lies in H. We have u(Frobp) = 1 and
w(Frobp) = p. But ap(E) = u(p) + w(p) = p + 1 so #Ẽ(Fp) = 0 (Theorem 8), which is
impossible.
(3) Assume that E has complex multiplication over K. Because T`(�) is a functor we have a
map OK → End(T`(E)). The GK-action on T`(E) is OK-linear, and T`(E) is a free Z` ⊗ OK-
module of rank 1, [37, II.1.4]. This implies that V`(E) is abelian as GK-representation and in
particular it is reducible.

6.3. Elliptic curves with complex multiplication

Let E/Q be an elliptic curve with complex multiplication by the ring of integers OK of a
quadratic imaginary field K ⊂ C. Let N be the conductor of E, and Ẽ/Z[1/N ] an elliptic curve
equipped with an isomorphism Ẽ ×Q ∼= E.

Let p be a prime of K where EK = E ×K has good reduction, let ẼK,p be the reduction of
EK modulo p, and let φp : ẼK,p → ẼK,p be the Frobenius, uniquely determined by

ẼK,p(κ(p)) −→ ẼK,p(κ(p)), (x, y, z) 7→ (x1/#κ(p), y1/#κ(p), z1/#κ(p)),

in projective coordinates, where κ(p) is an algebraic closure of the residue field κ(p) at p. Pick
for every K-prime p a uniformizer πp ∈ Kp, and write π̂p := (1, πp) ∈ Ap,×

K × K×p . By [37,
10.4], there exists a unique Hecke character χ : A×K/K

× → C× such that for all primes p where
E has good reduction, we have χE(π̂p) ∈ OK and the endomorphism [χE(π̂p)] ∈ End(ẼOK [1/N ])
reduces modulo p to the Frobenius φp.

We have

((VI.25)) Lp(χE , s)Lp(χE , s) = L
(ι)
p (V`(EK), s),

for all p where E has good reduction, and where ι : Q` → C is an isomorphism of fields [37, 10.4.1].
The Hecke character χE induces a cuspidal automorphic representation ΠE,K of GL1(AK). The
OK-module T`(EK) is free of rank 1, and GK acts on it linearly. We get a morphism GK → O×K,`.
By equation (VI.25), the representation V`(EK) corresponds to ΠE,K under the global Langlands
correspondence (for the number field K).

Let a ⊂ OK be an ideal which is coprime with N . We define χE(a) := χE(
∏

p π
vp(a)
p ). Let

L(χE , s) be the L-function of χE . Then L(χE , s) is of the form
∑
n∈Z≥1

ann
−s. The function
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∑
n∈Z≥1

anq
n is the q-expansion of a modular form f : h → C, see [30, 4.8.2, 4.5.16]. This

modular form is a cupsidal eigenform, has weight 2 and has conductor N .
The L-factor of f at a prime p not dividing N , is given by (1 − ap(f)p−s + pp−2s)−1, where

ap(f) = 0 if p is inert and ap(f) = χE(p) + χE(p) if p = pp in OK splits. By equation (VI.25),
f is the modular form corresponding to E.

Let ΠE = ΠE,∞⊗
⊗′

p ΠE,p be the automorphic representation corresponding to E, under the
global Langlands correspondence for K. For the primes p where E has good reduction, one has
ΠE,p

∼= ι
GL2(Qp)

B(Qp) (µp,1, µp,2), where µp,1, µp,2 : Q×p → C× are two morphisms which are trivial on
Z×p . The representation (µp,1, µp,2) is the morphism from B(Qp) = ( ∗ ∗0 ∗ ) ⊂ GL2(Qp) to C×,
sending a matrix

(
a b
0 d

)
to µp,1(a)µp,2(d) ∈ C×. By comparing L-factors we have

{µ1,p(p), µ2,p(p)} =

{(−p)−
1
2 ,−(−p)− 1

2 } p is inert in K

{χE(p), χE(p)} p splits into p · p in K,

which determines ΠE,p up to isomorphism.
The module ΠE,∞ is (up to isomorphism) the same for all elliptic curves E. This follows from

the fact that the infinitesimal character of E is given by H = {0, 1}, and the classification of the
(gln, O(n))-modules occurring in a cuspidal automorphic representation, see [39, p. 20].

6.4. Example: The elliptic curve y2 = x3 − 4x

Let E be the elliptic curve over Q given by the Weierstrass equation y2 = x3 − 4x.
The curve E has complex multiplication over the field K = Q(i), where i ∈ C acts by
E(Q)→ E(Q), (x, y) 7→ (−x, iy). The polynomial x3 − 4x is separable modulo all primes p dif-
ferent from 2, so the model Ẽ ⊂ P2

Z[1/2] given by the same equation (y2 = x3−4x) is smooth and
defines an elliptic curve over Z[1/2] with generic fiber E. The representation V`(E) is unramified
outside 2`. For primes p congruent to 3 mod 4, we have L(ι)

p (V`(E), s) = (1 + pp−2s) ∈ C(p−s).
The conductor of E over Q is 26; over Q(i) it equals (1 + i)4. The Hecke character χE corre-
sponding to E has conductor (1 + i)4. To determine χE , we will calculate all Hecke characters
of A×Q(i) with conductor ≤ (1 + i)4.

Define:

U∞ := {x ∈ Ẑ[i]
×
|v(1+i)(1− x) ≥ 4} ⊂ A∞,×Q(i)

U := {1} × U∞ ⊂ A×Q(i)

V := {x ∈ Z2[i]×|v(1+i)(1− x) ≥ 4} = 1 + (1 + i)4Z2[i]

ϕ : C× −→ (C× ×A∞,×)/Q(i)×U, z 7→ (z, 1).

We have ker(ϕ) = (1 + i)ZiZ ∩ V = 1.
The cokernel of ϕ is given by:

coker(ϕ) = C×Q(i)×U\A×Q(i) = Q(i)×U∞\A∞,×Q(i) = Q(i)×(V × ̂Z[1/2, i]
×

)\A∞,×Q(i)

= (Q(i)× ∩ ̂Z[1/2, i]
×

)V \Q2(i)× = (i+ 1)ZiZV \Q2(i)× = iZV \Z2[i]×.
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One has (Z/4Z)[i]× ∼= 〈i〉 × 〈3 + 2i〉, so Z2[i]/iZV = 〈3 + 2i〉, and the sequence

1 −→ C×
ϕ−→ Q(i)×U\A×Q(i) −→ coker(ϕ) −→ 1,

splits.
We conclude that there is an isomorphism

Z2 ×Hom(〈3 + 2i〉, {±1}) ∼−→ {Hecke characters with conductor ≤ (1 + i)4}

((a, b), ε) 7−→

Q(i)×U\A×Q(i)
∼= C× × 〈3 + 2i〉 → C×

(z, η) 7−→ zazbε(η).

Let π be prime of Q(i) different from (π), and χ a Hecke character with conductor ≤ (1+i)4. We
calculate the local L-factor Lπ(χ, s). There exist an unique x ∈ Z/4Z and y ∈ {0, 1} such that
π · ix · (3 + 2i)y ∈ V . Let π̂ be the element of A(1+i),∞,×

Q(i) with π on the coordinate corresponding
to (π) and with 1 on all other coordinates.

We need some notation: With a tuple (∗, ∗, ∗) ∈ A×Q(i) above, we mean the idèle viewed as

element of C× ×Q2(i)× ×A∞,(1+i),×
Q(i) = A×Q(i). We may now calculate:

χ(1, 1, π̂) = χ(π−1, π−1, π̂/π) = χ(π−1, ix(3 + 2i)y, 1)

= χ(i−xπ−1, (3 + 2i)y, 1) = iby−axπ−aπ−bε((3 + 2i)y),

Therefore:

((VI.26)) Lπ(χ, s) =
1

1− iby−axπ−aπ−bε((3 + 2i)y)NQ(i)/Q(π)−s
.

We can now determine χE . The Hodgte-Tate multiset of an elliptic curve is given by {0, 1},
so a = 1 and b = 0 in the above, and there are only two Hecke characters χε left, the Hecke
character with ε 6= 1 and the one with ε = 1. Some calculations yield the following table for the
values ap(χε):

p : 5 13 17 29 37 41 53 61 73
ε = 1 : −2 6 2 −10 −2 10 14 −10 −6
ε 6= 1 : 2 −6 2 10 2 10 −14 10 −6,

We have ap(E) = 1 − #Ẽ(Fp) + p if p 6= `, and by counting solutions to to the equation
y2 = x3 − 4x over F5 we conclude that the Hecke character χE corresponding to E is the Hecke
character with ε 6= 1.

Recall that any Hecke character gives a cuspidal eigenform of weight 2, and that cuspidal
eigenforms correspond to elliptic curves over Q modulo Q-isogeny. Therefore, there should
be an elliptic curve corresponding to ε = 1. Indeed, the curve y2 = x3 − x has conductor
(1 + i)3 ≤ (1 + i)4 has complex multiplication over Q(i), and is not isogeneous to E, so its Hecke
character is the one with ε = 1.





Chapter 7: Weil-Deligne representations

We introduce the Weil group and the notion of Weil-Deligne representations so that we can
state the local Langlands theorem. Most of this chapter is copied from the book [7, chap. 7].

7.1. The Weil group of a local field

Let F be a non-Archimedian local field of residue characteristic p. Fix a separable closure F s

of F . The Weil-group WF of F s/F is the (abstract) subgroup of GF = Gal(F s/F ) generated by
all the Frobenius elements. The topology on WF is the sparsest topology for which the inertia
subgroup IF ⊂ GF is an open subgroup of WF with its profinite topology.

Denote by k the residue field of F and with ks the residue field of F . Then WF is the inverse
image of Z ⊂ Ẑ = Gal(ks/k) under the morphism of reduction GF → WF . Local class field
theory yields an isomorphism ArtF : Wab

F → F×.
Let E be a field of characteristic 0 and V an E-vector space. The group WF is a locally

profinite group. A WF -representation ρ : WF → GL(V ) is called smooth if the stabiliser of each
vector v ∈ V is an open subgroup of WF , equivalently, the map WF × V → V is continuous for
the discrete topology on V . The representation ρ is called smooth-admissible if it is smooth and
the space of invariants V H is finite dimensional for each compact open subgroup H ⊂ WF .

7.2. The monodromy theorem

Let F be a non-Archimedian local field, and F s/F a separable closure of F . We denote with
ks the residue field of F s and with k the residue field of k. Let ` be a prime number which is
different from the residue characteristic p of F . Let F ur resp. F tr be the maximal unramified
(resp. tamely ramified) extension field of F contained in F s; it is the field corresponding to IF
resp. Iwild

K . Fix a prime π ∈ F .
Identify Ẑ with the Galois group of ks/k by letting 1 correspond to the geometric Frobenius.

We get a surjection GF → Ẑ and thus a surjection WF → Z. We denote this surjection by vF .
Via the isomorphism ArtF : F× ∼→Wab

F , the surjection vF corresponds to the valuation map on
F .

We define the map

| · | : WF −→ qZ, x 7→ q−vF (x),

where q = #k.

Lemma 45. — For all σ ∈ IF and w ∈ WF one has wσw−1 = σ|w| ∈ WF /Iwild
F .

Proof. — By Kummer theory, the extension F tr over F ur is generated by elements a ∈ F tr

such that an = π ∈ F for some n ∈ Z≥1 with p 6 |n. Let a ∈ F tr be such an element, and
ζ, η ∈ F ur be the n-th roots of unity such that σ(a) = ηa and w−1(a) = ζa. The map of
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reduction OF tr → κ(F tr) is injective when restricted to µ(F tr). Because w(ζ) = ζ
|w| ∈ κ(F tr),

we see w(ζ) = ζ |w| and σ(ζ) = ζ. We compute:

(wσw−1)(a) = (wσ)(ζ · a) = w(ζσ(a)) = w(ζηa) = η|w|w(ζa) = η|w|a = σ|w|(a),

This holds for all a and the assertion follows.

Any finite subextension F tr/E/F ur is generated by an element a ∈ E such that an = π,
where n = [E : F ur] is prime to p. For such an a the map Gal(E/F ur) → µn, σ 7→ σ(a)

a is an
isomorphism, and does not depend on a. Passing to the projective limit over all E, we get

((VII.27)) Gal(F tr/F ur) = IF /Iwild
K

∼−→ lim←−
n∈N,(n,p)=1

µn =
∏
λ6=p

Zλ(1).

Fix a surjection t` : IF → Z`.

Theorem 46. — (Recall ` 6= p). Let (ρ, V ) be an `-adicWF -representation over a closed subfield
E of Q`. There exists a unique nilpotent Nρ ∈ End(V ) and a open subgroup H ⊂ IF such that
for all σ ∈ H one has ρ(σ) = exp(t`(σ)Nρ).

Proof. — Proposition 4, is also true for `-adic representations of WF , although this group is not
profinite. To see this, let V be an `-adic WF -representation with coefficients over Q`, say. Then
it is also an IF -representation, so we may find a finite extension E1/Q` over which V is defined
as IF -representation. Now pick a geometric Frobenius Φ inWF , and enlarge this finite extension
E1 with the coefficients of the matrix of ρ(Φ) to find a finite extension E2 with the property that
the WF -representation V is obtained from extending scalars from a E2[WF ]-submodule of V .

Therefore, we may assume E = Q`. Assume an Nρ ∈ End(V ) exists such that
ρ(σ) = exp(t`(σ)Nρ) holds for all σ in some open subgroup H of IF . Pick a σ ∈ H such
that t`(σ) 6= 0, then Nρ = t`(σ)−1 log ρ(σ), so Nρ is unique. Moreover, for all w ∈ WF and
σ ∈ IF we have

exp(t`(σ)ρ(w)Nρρ(w)−1) = ρ(wσw−1) = exp(t`(σ)|w|Nρ).

By uniqueness

((VII.28)) ρ(w)Nρρ(w)−1 = |w|Nρ,

for all w ∈ WF . In particular q ·Nρ is conjugate to Nρ and the set of eigenvalues of Nρ is stable
under multiplication by q. Therefore Nρ cannot have any non-zero eigenvalues, and thus Nρ is
automatically nilpotent once it exists.

The image of IF in GL(V ) is compact hence contained in GL(L), where L ⊂ V is some Z`-
lattice in V . Let H ′ be the (open) kernel of the composition IF → GL(L) → GL(L/`L). The
image ρ[H ′] ⊂ GL(L) is a pro-`-group, so the kernel of ρ|H′ has to contain Iwild

F ∩ H ′, which
is pro-p. By equation (VII.27) the morphism ρ|H′ factors to a map φ : Z` → GL(L), such that
ρ|H′ = φ ◦ t`. We may now apply the following theorem to φ:

Theorem 47. — Let F = R or F = Q` for some prime number `. Let φ : G1 → G2 be
a continuous morphism where G1 and G2 are two analytic groups over F . Then φ is locally
analytical.
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Proof. — [35, p. 155].

Therefore φ : Z` → GL(L) is locally analytical. Hence there exist rk ∈ End(V ) for k ∈ N and
an open U ⊂ Z` with 0 ∈ U such that φ(x) =

∑
k≥0 rk · xk for all x ∈ U . Basic computation

shows φ(x) = exp(Nρx) for all x ∈ U , where Nρ := r1. Let us carry out this computation. Notice
r0 = 1. For all x, y ∈ U we have

∑
k≥0

rk(x+ y)k = φ(xy) = φ(x)φ(y) =

∑
k≥0

rk · xk
∑

k≥0

rk · yk
 =

∑
k≥0

k∑
d=0

rk−drdx
k−dyd.

Assume that rk−1 = Nk−1
ρ

(k−1)! . We prove rk = Nkρ
k! . We compute the coefficient of xk−1y on the left

hand side and on the right hand side of the equation to get krk = rk−1r1 = Nkρ
(k−1)! , by induction

on k, φ(x) = exp(Nρx).
By making U smaller we may assume that it is an open subgroup of Z`. For all

σ ∈ H := (ρ|H′)−1(U) we have ρ(σ) = exp(t`(σ)Nρ). This proves Theorem 46.

Corollary 48. — One has ρ(w)Nρρ(w)−1 = |w|Nρ for all w ∈ WF .

Proof. — This follows from the proof of 46, see equation (VII.28).

7.3. Weil-Deligne representations

Let E be a field of characteristic 0, F a non-Archimedian local field of residue charac-
teristic p. A Weil-Deligne representation of WF over E is a triple (ρ, V,N), where (ρ, V )
is a finite dimensional smooth representation of WF and N ∈ End(V ) a nilpotent endo-
morphism such that ρ(w)Nρ(w)−1 = |w|N for all w ∈ WF . A morphism of Weil-Deligne-
representations (ρ, V,N) → (ρ′, V ′, N) is a morphism of representations f : (ρ, V ) → (ρ′, V ′)
such that f ◦N = N ◦ f .

Let ` be a prime number different from p. We will now transform `-adic representations
into Weil-Deligne representations. Let (ρ, V ) be an `-adic representation of WF over Q`. Fix a
Frobenius element Φ ∈ WF . We define

((VII.29)) ρΦ : WF −→ GL(V ), w 7→ ρ(w) exp(−t`(Φ−vF (w)w)Nρ).

Lemma 49. — Fix a surjection t` : IF /Iwild
K → Z`, and a Frobenius element Φ ∈ WF as above.

The association

Dt`,Φ :

(ρ, V ) 7→ (ρΦ, V,Nρ)

(V → V ′) 7→ (V → V ′),

is a functor from the category of finite-dimensional, continuous WF -representations in Q`-vector
spaces to the category of Weil-Deligne representations.

Proof. — Let us first verify that ρΦ is indeed a representation for all ρ. Let w, v ∈ WF . Then

Φ−vF (wv)wv = Φ−vF (v)vv−1
(

Φ−vF (w)w
)
v = Φ−vF (v)v

(
Φ−vF (w)w

)|v|−1

,
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(recall Lemma 45) so,

ρΦ(wv) = ρ(w)ρ(v) exp(−t`(Φ−vF (wv)wv)Nρ)

= ρ(w)ρ(v) exp(−t`(Φ−vF (w)w) · |v|−1 ·Nρ) exp(−t`(Φ−vF (v)v)Nρ).

By Corollary 48, one has ρ(v)Nρρ(v)−1 = |v|Nρ, and thus

ρ(v) exp(−t`(Φ−vF (w)w) · |v|−1 ·Nρ) = exp(−t`(Φ−vF (w)w)Nρ)ρ(v).

Combining the above two conclusions gives ρΦ(wv) = ρΦ(w)ρΦ(v).
Let φ : ρ → ρ′ is a morphism of finite-dimensional, continuous WF -representations over Q`.

By uniqueness, Nρ◦φ = φ◦Nρ, hence φ is also a morphism of the Weil-Deligne representations.

Theorem 50. — Fix a surjection t` : IF /Iwild
K → Z`, and a Frobenius element Φ ∈ WF . The

functor Dt`,Φ is an isomorphism between the category of finite-dimensional continuous represen-
tations of WF over Q` and the category of Weil-Deligne representations of finite dimension over
Q`.

Proof. — Let (ρ, V,N) be a Weil-Deligne representation. A similar computation like we did
in Lemma 49 shows that ρΦ : WF → GL(V ) defined by ρΦ(w) = ρ(w) exp(t`(Φ−vF (w)w)) is a
representation. This construction is inverse to (ρ, V ) 7→ (ρΦ, V,Nρ).

Fix an isomorphism ι : Q`
∼→ C. Define the functor Dt`,Φ,ι as the composition

(�⊗Q`,ι
C) ◦Dt`,Φ.

Proposition 51. — Let t′` : IF → Z`, Φ′ ∈ WF a geometric Frobenius and ι′ : Q`
∼→ C an

isomorphism. The functors Dt`,Φ,ι and Dt′`,Φ
′,ι′ are isomorphic.

Sketch. — We give only a sketch, for more details see [7, p. 207]. The idependence of the functor
on ι is clear. Let Φ′ = Φx, x ∈ IF be another Frobenius. Define A = exp((q− 1)−1t`(x)Nρ); one
verifies A ◦ ρΦ ◦A−1 = ρΦ′(g) for all g ∈ WF . Similarly, assume t′` = αt` with α ∈ Z×` is another
surjection IF /Iwild

F → Z`. Define Vλ = ker(ρ(Φa) − λ)dimV , where a ∈ Z≥1 is sufficiently big
such that ρ(Φa) is central in ρ(WF ). Define B by Bv = µvv, v ∈ Vλ, for a family of elements
µλ ∈ Z×` satisfying αµλqn = µλ, then B satisfies BNρB−1 = αNρ.

7.4. The local Langlands theorem

Also in this section we assume that p 6= `. Let q be the cardinality of the residue field k of F .
Let (ρ′, V ′, N) be a complex Weil-Deligne representation. We define

L(ρ, q−s) = det(1− q−sρ|V IF ∩ker(N)(Frobp))−1 ∈ C(q−s).

Fix an isomorphism ι : Q` → C. With the above definition, the L-factor of an `-adic GF -
representation ρ equals to the L-factor of the Weil-Deligne representation ρΦ associated to ρ.

Consider the set A of isomorphism classes of quintuplets (F s/F, ψ, µ, V, ρ), where F is a local
field, F s/F a separable closure, ψ a non-trivial continuous morphism F → C∗, a Haar-measure
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µ on F , a finite dimensional complex vector space V and a smooth-admissible representation
ρ : WF → GL(V ). An isomorphism (F s/F, ψ, µ, V, ρ) ∼→ (F ′s/F ′, ψ′, µ′, V ′, ρ′), is a commutative
diagram

F

∼=
��

// F s

∼=
��

F ′ // F ′s,

and an isomorphism of representations r : f∗(ρ, V ) → (ρ′, V ′), where f∗ is the composition
W (F ′s/F )→W (F s/F )

ρ→ GL(V ). The morphism ψ and measure µ on F equal to the pull-back
of ψ′ and µ′ to F .

In Section 3.7 we have defined the L-factors and ε-factors only for smooth-admissible irre-
ducible representations of GLn(Qp). These definitions also work for non-Archimedian local fields
in general. See [24] for the definitions for general local fields.

Theorem 52 (Langlands (and Dwork, Deligne)). — There exists an unique function
ε : A→ C× such that

1. For all separable closures (F → F s) of all local fields and exact se-
quences 0 → ρ′ → ρ → ρ′′ → 0 of W (F s/F )-representations we have
ε(ρ, ψ, µ) = ε(ρ′, ψ, µ)ε(ρ′′, ψ, µ).

2. For all a ∈ R we have ε(V, ψ, aµ) = adimV ε(V, ψ, µ).
3. By (1), the function ε extends to virtual representations. If E ⊂ F s is finite over F and ρF

is a virtual representation of W (F s/F ) induced by a 0-dimensional virtual representation
ρE of W (F s/E) we have ε(ρF , ψ) = ε(ρE , ψ ◦ TrL/K).

4. If dim ρ = 1, then ε(ρ, ψ, µ) is the ε-factor defined by Tate in [9].

Proof. — [14, p. 535].

We need to introduce the notion of Frobenius semi-simple Weil-Deligne representations. A
Weil-Deligne representation (ρ, V,N) is Frobenius semi-simple if ρ is semi-simple. Any Weil
Deligne-representation (ρ, V,N) has a canonical Frobenius semi-simplification (ρ, V,N)ss, which
may be defined as follows. Pick a lift Φ of Frobp to WQ`

and write ρ(Φ) = ΦsΦu, where Φs
is semi-simple and Φu is unipotent. The semi-simplification is obtained by keeping N and ρ|Ip
unchanged and replacing ρ(Φ) by Φs.

Let n ∈ N. We let A0
n(F ) be the set of equivalence classes of cuspidal smooth-admissible

irreducible representations of GLn(F ), and G0
n(F ) be the set of equivalence classes of Frobenius

semi-simple Weil Deligne-representations.

Theorem 53 (Harris, Taylor, Henniart, Laumon, Stuhler,. . . )
There exists a unique sequence of bijections {σn : A0

n(F ) → G0
n(F )|n ∈ N} such that for all

n ∈ N, n′ ∈ N, π ∈ A0
n(F ), π′ ∈ A0

n′(F ), χ ∈ A0
1(F ):

1. The determinant of σn(π) corresponds via ArtF to the central character of π.
2. Twists: σn(π ⊗ χ) = σn(π)⊗ σ1(χ);
3. L-functions: L(π × π′, s) = L(σn(π)⊗ σn′(π′), s);



60 CHAPTER 7. WEIL-DELIGNE REPRESENTATIONS

4. ε-factors: ε(π × π′, s) = ε(σn(π)⊗ σn′(π′), s) ;
5. Duals: σn(π∨) = σn(π)∨.

There are several important remarks to make. The conditions (3) and (4) make the bijection
unique, more precisely, the objects on both sides are uniquely (up to isomorphism) determined
by the L-factors and ε-factors of the twists [22]. The map σ preserves the conductors of the
representations [8]. As we will see, this result also passes on to the global Langlands correspon-
dence.

We explain the compatibility between the global Langlands conjecture and the local Langlands
theorem. Suppose that Π =

⊗′
v Πv is an automorphic GLn(A)-representation corresponding

to a geometric (de Rham, and unramified almost everywhere) `-adic GQ-representation ρ (see
Conjecture 39). For any prime number p, we consider ρ|WQp

, where the injection WQp
→ GQ is

induced from an injection of fields Q→ Qp. Fix an isomorphism ι : Q` → C. Assume p 6= `. The
representation Dι(ρ|WQp

) is usually not irreducible (e.g. when ρ is unramified and n > 1), but we
may write its Frobenius semi-simplification Dι(ρ|WQp

)ss as a sum of irreducible representations
σ1, . . . , σk. The local Langlands theorem associates to each σi a GLn(Qp)-representation πi. The
automorphic factor Πp of the automorphic representation Π is isomorphic to I(π1, . . . , πn) (see
equation (III.20) for the notation I(∗, . . . , ∗)).

At the prime p = ` the correspondence is different, and also not yet fully understood; one can
go only from the Galois side to the automorphic side, but not in the other direction. To describe
this correspondence, one needs (φ, γ)-modules to replace the Weil-Deligne representations. It
goes beyond the scope of this thesis to discuss this case.
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[9] J. W. S. Cassels & A. Fröhlich – “editors. algebraic number theory”, in Reprint of the
1967 original, Academic Press, 1967.

[10] P. Colmez – “Périodes et représentations galoisiennes”, 2007.

[11] B. Conrad & O. Brinon – p-adic hodge theory, CMI, 2009, Two lectures at the Clay
Mathematical Institute Summer School, Honolulu, Hawaii.

[12] C. W. Curtis & I. Reiner – Representation theory of finite groups and associative algebras,
Pure and applied mathematics, 0079-8169, vol. vol. 11, New York [etc.] : Wiley, 1962.

[13] P. Deligne – “Formes modulaires et représentations de Gl(2)”, in Modular functions of one
variable, II, Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, p. 55–105.
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Hecke character, 49

Hecke operators, 43

Henniart, 59

Hodge-Tate

characters, 45

independence of `, 20

multiset, 20

multiset of an elliptic curve, 50

numbers, 20

representation, 20

ring, 20

Hyp, 30

Illusie, 22

independence of ι, 14

inertia group, 9

infinitesimal character, 41

invariants, 11

irreducible, 8, 35

isogeny, 15

kernel group scheme, 14

Krasner’s lemma, 8

Kronecker-Weber, 48

Langlands, 43, 44, 58

Langlands correspondence, 43

Laumon, 59

left Haar measure, 30

Lie-Brackets, 35

local class field theory, 55

local Langlands, 58

local Langlands theorem

unramified case, 38

local-global compatibility, 60

locally profinite, 27

model, 26

modular form

associated to a Hecke character, 51

modularity theorem, 14

modulus, 38

monodromy, 55, 56

morphism

étale, 17

étale morphism of analytical spaces, 18

Frobenius morphism, 14

of (O(n), gln)-modules, 35

of Galois representations, 7

of presheaves, 17

of sheaves, 17

of smooth G-representations, 27

of Weil-Deligne representations, 57

unramified, 10

with finite image, 10

multilinear, 33

multiplicity, 20

multiset, 20, 41

cardinality, 20

of roots of a polynomial, 20

norm map

on the Weil group, 55

norm on Q`, 7

Ogg-Tate-Shaverevich, 13

operator, 15

ordinary reduction, 50

presheaf of abelian groups, 17

quotient of the modular curve, 14

ramification, 9, 43

reciprocity map, 48

reciprocity morphism, 38

reductive group, 26

representation

cuspidal, 37

de Rham, 21
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geometric, 16
Hodge-Tate, 20

potentially semi-stable, 22

semi-stable, 22
smooth, 27

smooth representation, 23

representations
coming from geometry, 18

with finite image, 46

restricted product, 25
of the completions Kv , 49

restricted tensor product, 25
of smooth-admissible representations, 34

Ribets lemma, 9

right Haar measure, 30
ring of K-adèles, 49

ring of adèles, 25

ring of finite adèles, 25
Satake isomorphism, 34

self-dual, 36

self-dual Haar measure, 36
semi-simple, 8

semi-simplification

Frobenius semi-simplification, 59
separable isogeny, 15

Serre, 10
simple, 8

smooth, 23, 27, 39, 55

functions, 39
smooth base change, 18

smooth-admissible, 27, 35, 55

socle, 8
space of co-invariants, 11

space of coefficients Cπ , 35

space of cusp forms, 41

space of cuspidal automorphic forms with infinitesi-

mal character χ, 41

space of invariants, 11

split multiplicative reduction, 15

stable lattices, 8

Stuhler, 59

Sylow subgroup, 10

tamely ramified, 10, 55

Tate module

of a finite type, commutative group scheme, 7

of an abelian variety, 17

of an elliptic curve, 7

Tate trace, 46

Taylor, 43, 44, 59

Teichmuller character, 21

torsion sheaves, 18

Tsuji, 22

uniformizer, 49

unimodular, 30

unipotent, 59

unitary induction, 38

universal enveloping algebra, 40

unramified, 9, 25, 49, 55

valuation map

on the Weil group, 55

Weierstrass model, 13

minimal, 14

Weil paring, 50

Weil-Deligne representation, 57

Weil-Deligne representation associated to ρ, 58

Weil-group

of a non-Archimedian local field, 55


